transforms.rst 8.05 KB
Newer Older
1
2
.. _transforms:

3
4
Transforming and augmenting images
==================================
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
5
6
7

.. currentmodule:: torchvision.transforms

8
9
10
Transforms are common image transformations available in the
``torchvision.transforms`` module. They can be chained together using
:class:`Compose`.
11
12
13
Most transform classes have a function equivalent: :ref:`functional
transforms <functional_transforms>` give fine-grained control over the
transformations.
14
15
This is useful if you have to build a more complex transformation pipeline
(e.g. in the case of segmentation tasks).
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
16

17
18
19
20
Most transformations accept both `PIL <https://pillow.readthedocs.io>`_ images
and tensor images, although some transformations are PIL-only and some are
tensor-only. The :ref:`conversion_transforms` may be used to convert to and from
PIL images, or for converting dtypes and ranges.
21
22
23
24
25
26
27

The transformations that accept tensor images also accept batches of tensor
images. A Tensor Image is a tensor with ``(C, H, W)`` shape, where ``C`` is a
number of channels, ``H`` and ``W`` are image height and width. A batch of
Tensor Images is a tensor of ``(B, C, H, W)`` shape, where ``B`` is a number
of images in the batch.

28
The expected range of the values of a tensor image is implicitly defined by
29
30
31
32
33
34
35
36
37
the tensor dtype. Tensor images with a float dtype are expected to have
values in ``[0, 1)``. Tensor images with an integer dtype are expected to
have values in ``[0, MAX_DTYPE]`` where ``MAX_DTYPE`` is the largest value
that can be represented in that dtype.

Randomized transformations will apply the same transformation to all the
images of a given batch, but they will produce different transformations
across calls. For reproducible transformations across calls, you may use
:ref:`functional transforms <functional_transforms>`.
38

39
The following examples illustrate the use of the available transforms:
40
41
42
43
44
45
46
47
48
49
50
51
52

    * :ref:`sphx_glr_auto_examples_plot_transforms.py`

        .. figure:: ../source/auto_examples/images/sphx_glr_plot_transforms_001.png
            :align: center
            :scale: 65%

    * :ref:`sphx_glr_auto_examples_plot_scripted_tensor_transforms.py`

        .. figure:: ../source/auto_examples/images/sphx_glr_plot_scripted_tensor_transforms_001.png
            :align: center
            :scale: 30%

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
.. warning::

    Since v0.8.0 all random transformations are using torch default random generator to sample random parameters.
    It is a backward compatibility breaking change and user should set the random state as following:

    .. code:: python

        # Previous versions
        # import random
        # random.seed(12)

        # Now
        import torch
        torch.manual_seed(17)

    Please, keep in mind that the same seed for torch random generator and Python random generator will not
    produce the same results.

71

72
73
74
75
Transforms scriptability
------------------------

.. TODO: Add note about v2 scriptability (in next PR)
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

In order to script the transformations, please use ``torch.nn.Sequential`` instead of :class:`Compose`.

.. code:: python

    transforms = torch.nn.Sequential(
        transforms.CenterCrop(10),
        transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
    )
    scripted_transforms = torch.jit.script(transforms)

Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor`` and does not require
`lambda` functions or ``PIL.Image``.

For any custom transformations to be used with ``torch.jit.script``, they should be derived from ``torch.nn.Module``.

92

93
94
Geometry
--------
95

96
97
98
99
.. autosummary::
    :toctree: generated/
    :template: class.rst

100
    Resize
101
    v2.Resize
102
    RandomCrop
103
    v2.RandomCrop
104
    RandomResizedCrop
105
    v2.RandomResizedCrop
106
    CenterCrop
107
    v2.CenterCrop
108
    FiveCrop
109
    v2.FiveCrop
110
    TenCrop
111
    v2.TenCrop
112
    Pad
113
    v2.Pad
114
    RandomAffine
115
    v2.RandomAffine
116
    RandomPerspective
117
    v2.RandomPerspective
118
    RandomRotation
119
    v2.RandomRotation
120
    RandomHorizontalFlip
121
    v2.RandomHorizontalFlip
122
    RandomVerticalFlip
123
    v2.RandomVerticalFlip
124

125
126
Color
-----
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
127

128
129
130
131
132
.. autosummary::
    :toctree: generated/
    :template: class.rst

    ColorJitter
133
    v2.ColorJitter
134
    Grayscale
135
    v2.Grayscale
136
    RandomGrayscale
137
    v2.RandomGrayscale
138
    GaussianBlur
139
    v2.GaussianBlur
140
    RandomInvert
141
    v2.RandomInvert
142
    RandomPosterize
143
    v2.RandomPosterize
144
    RandomSolarize
145
    v2.RandomSolarize
146
    RandomAdjustSharpness
147
    v2.RandomAdjustSharpness
148
    RandomAutocontrast
149
    v2.RandomAutocontrast
150
    RandomEqualize
151
    v2.RandomEqualize
152

153
154
Composition
-----------
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
155

156
157
158
.. autosummary::
    :toctree: generated/
    :template: class.rst
vfdev's avatar
vfdev committed
159

160
    Compose
161
    v2.Compose
162
    RandomApply
163
    v2.RandomApply
164
    RandomChoice
165
    v2.RandomChoice
166
    RandomOrder
167
    v2.RandomOrder
vfdev's avatar
vfdev committed
168

169
170
Miscellaneous
-------------
vfdev's avatar
vfdev committed
171

172
173
174
.. autosummary::
    :toctree: generated/
    :template: class.rst
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
175

176
    LinearTransformation
177
    v2.LinearTransformation
178
    Normalize
179
    v2.Normalize
180
    RandomErasing
181
    v2.RandomErasing
182
    Lambda
183
    v2.Lambda
vfdev's avatar
vfdev committed
184

185
.. _conversion_transforms:
186

187
188
Conversion
----------
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
189

190
191
192
.. autosummary::
    :toctree: generated/
    :template: class.rst
vfdev's avatar
vfdev committed
193

194
    ToPILImage
195
196
    v2.ToPILImage
    v2.ToImagePIL
197
    ToTensor
198
    v2.ToTensor
199
    PILToTensor
200
    v2.PILToTensor
201
    ConvertImageDtype
202
203
    v2.ConvertImageDtype
    v2.ConvertDtype
Nicolas Hug's avatar
Nicolas Hug committed
204

205
206
Auto-Augmentation
-----------------
207
208
209
210
211
212
213

`AutoAugment <https://arxiv.org/pdf/1805.09501.pdf>`_ is a common Data Augmentation technique that can improve the accuracy of Image Classification models.
Though the data augmentation policies are directly linked to their trained dataset, empirical studies show that
ImageNet policies provide significant improvements when applied to other datasets.
In TorchVision we implemented 3 policies learned on the following datasets: ImageNet, CIFAR10 and SVHN.
The new transform can be used standalone or mixed-and-matched with existing transforms:

214
215
216
.. autosummary::
    :toctree: generated/
    :template: class.rst
217

218
219
    AutoAugmentPolicy
    AutoAugment
220
    v2.AutoAugment
221
    RandAugment
222
    v2.RandAugment
223
    TrivialAugmentWide
224
    v2.TrivialAugmentWide
225
    AugMix
226
    v2.AugMix
227

228
229
.. _functional_transforms:

230
231
232
Functional Transforms
---------------------

233
234
.. currentmodule:: torchvision.transforms.functional

235
236
237
Functional transforms give you fine-grained control of the transformation pipeline.
As opposed to the transformations above, functional transforms don't contain a random number
generator for their parameters.
238
239
That means you have to specify/generate all parameters, but the functional transform will give you
reproducible results across calls.
240
241
242

Example:
you can apply a functional transform with the same parameters to multiple images like this:
243
244
245
246
247
248
249

.. code:: python

    import torchvision.transforms.functional as TF
    import random

    def my_segmentation_transforms(image, segmentation):
250
        if random.random() > 0.5:
251
252
253
254
255
256
            angle = random.randint(-30, 30)
            image = TF.rotate(image, angle)
            segmentation = TF.rotate(segmentation, angle)
        # more transforms ...
        return image, segmentation

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

Example:
you can use a functional transform to build transform classes with custom behavior:

.. code:: python

    import torchvision.transforms.functional as TF
    import random

    class MyRotationTransform:
        """Rotate by one of the given angles."""

        def __init__(self, angles):
            self.angles = angles

        def __call__(self, x):
            angle = random.choice(self.angles)
            return TF.rotate(x, angle)

    rotation_transform = MyRotationTransform(angles=[-30, -15, 0, 15, 30])


279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
.. autosummary::
    :toctree: generated/
    :template: function.rst

    adjust_brightness
    adjust_contrast
    adjust_gamma
    adjust_hue
    adjust_saturation
    adjust_sharpness
    affine
    autocontrast
    center_crop
    convert_image_dtype
    crop
    equalize
    erase
    five_crop
    gaussian_blur
298
    get_dimensions
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
    get_image_num_channels
    get_image_size
    hflip
    invert
    normalize
    pad
    perspective
    pil_to_tensor
    posterize
    resize
    resized_crop
    rgb_to_grayscale
    rotate
    solarize
    ten_crop
    to_grayscale
    to_pil_image
    to_tensor
    vflip