tensor.py 20.7 KB
Newer Older
rusty1s's avatar
repr  
rusty1s committed
1
from textwrap import indent
rusty1s's avatar
typing  
rusty1s committed
2
from typing import Optional, List, Tuple, Dict, Union, Any
rusty1s's avatar
rusty1s committed
3
4

import torch
5
import numpy as np
rusty1s's avatar
rusty1s committed
6
import scipy.sparse
rusty1s's avatar
rusty1s committed
7
from torch_scatter import segment_csr
rusty1s's avatar
rusty1s committed
8

rusty1s's avatar
rusty1s committed
9
from torch_sparse.storage import SparseStorage, get_layout
rusty1s's avatar
rusty1s committed
10
11


rusty1s's avatar
rusty1s committed
12
@torch.jit.script
rusty1s's avatar
rusty1s committed
13
class SparseTensor(object):
rusty1s's avatar
rusty1s committed
14
15
    storage: SparseStorage

rusty1s's avatar
rusty1s committed
16
    def __init__(self, row: Optional[torch.Tensor] = None,
rusty1s's avatar
rusty1s committed
17
18
19
                 rowptr: Optional[torch.Tensor] = None,
                 col: Optional[torch.Tensor] = None,
                 value: Optional[torch.Tensor] = None,
rusty1s's avatar
update  
rusty1s committed
20
21
                 sparse_sizes: Optional[Tuple[Optional[int],
                                              Optional[int]]] = None,
rusty1s's avatar
rusty1s committed
22
                 is_sorted: bool = False):
rusty1s's avatar
rusty1s committed
23
24
25
26
27
        self.storage = SparseStorage(row=row, rowptr=rowptr, col=col,
                                     value=value, sparse_sizes=sparse_sizes,
                                     rowcount=None, colptr=None, colcount=None,
                                     csr2csc=None, csc2csr=None,
                                     is_sorted=is_sorted)
rusty1s's avatar
rusty1s committed
28
29

    @classmethod
rusty1s's avatar
rusty1s committed
30
    def from_storage(self, storage: SparseStorage):
rusty1s's avatar
rusty1s committed
31
32
33
34
35
36
37
38
39
        out = SparseTensor(row=storage._row, rowptr=storage._rowptr,
                           col=storage._col, value=storage._value,
                           sparse_sizes=storage._sparse_sizes, is_sorted=True)
        out.storage._rowcount = storage._rowcount
        out.storage._colptr = storage._colptr
        out.storage._colcount = storage._colcount
        out.storage._csr2csc = storage._csr2csc
        out.storage._csc2csr = storage._csc2csr
        return out
rusty1s's avatar
rusty1s committed
40

rusty1s's avatar
rusty1s committed
41
42
43
    @classmethod
    def from_edge_index(self, edge_index: torch.Tensor,
                        edge_attr: Optional[torch.Tensor] = None,
rusty1s's avatar
update  
rusty1s committed
44
45
                        sparse_sizes: Optional[Tuple[Optional[int],
                                                     Optional[int]]] = None,
rusty1s's avatar
rusty1s committed
46
47
48
49
50
                        is_sorted: bool = False):
        return SparseTensor(row=edge_index[0], rowptr=None, col=edge_index[1],
                            value=edge_attr, sparse_sizes=sparse_sizes,
                            is_sorted=is_sorted)

rusty1s's avatar
rusty1s committed
51
    @classmethod
rusty1s's avatar
rusty1s committed
52
    def from_dense(self, mat: torch.Tensor, has_value: bool = True):
rusty1s's avatar
rusty1s committed
53
        if mat.dim() > 2:
rusty1s's avatar
reset  
rusty1s committed
54
            index = mat.abs().sum([i for i in range(2, mat.dim())]).nonzero()
rusty1s's avatar
rusty1s committed
55
        else:
rusty1s's avatar
reset  
rusty1s committed
56
            index = mat.nonzero()
rusty1s's avatar
rusty1s committed
57
        index = index.t()
rusty1s's avatar
rusty1s committed
58

rusty1s's avatar
rusty1s committed
59
60
61
62
63
64
65
        row = index[0]
        col = index[1]

        value: Optional[torch.Tensor] = None
        if has_value:
            value = mat[row, col]

rusty1s's avatar
rusty1s committed
66
67
68
        return SparseTensor(row=row, rowptr=None, col=col, value=value,
                            sparse_sizes=(mat.size(0), mat.size(1)),
                            is_sorted=True)
rusty1s's avatar
rusty1s committed
69
70

    @classmethod
rusty1s's avatar
rusty1s committed
71
    def from_torch_sparse_coo_tensor(self, mat: torch.Tensor,
rusty1s's avatar
rusty1s committed
72
                                     has_value: bool = True):
rusty1s's avatar
rusty1s committed
73
74
75
        mat = mat.coalesce()
        index = mat._indices()
        row, col = index[0], index[1]
rusty1s's avatar
rusty1s committed
76
77
78

        value: Optional[torch.Tensor] = None
        if has_value:
79
            value = mat.values()
rusty1s's avatar
rusty1s committed
80

rusty1s's avatar
rusty1s committed
81
82
83
        return SparseTensor(row=row, rowptr=None, col=col, value=value,
                            sparse_sizes=(mat.size(0), mat.size(1)),
                            is_sorted=True)
rusty1s's avatar
rusty1s committed
84
85

    @classmethod
rusty1s's avatar
rusty1s committed
86
87
    def eye(self, M: int, N: Optional[int] = None, has_value: bool = True,
            dtype: Optional[int] = None, device: Optional[torch.device] = None,
rusty1s's avatar
rusty1s committed
88
            fill_cache: bool = False):
rusty1s's avatar
rusty1s committed
89

rusty1s's avatar
rusty1s committed
90
        N = M if N is None else N
rusty1s's avatar
rusty1s committed
91

rusty1s's avatar
rusty1s committed
92
        row = torch.arange(min(M, N), device=device)
rusty1s's avatar
rusty1s committed
93
        col = row
rusty1s's avatar
rusty1s committed
94

rusty1s's avatar
rusty1s committed
95
        rowptr = torch.arange(M + 1, device=row.device)
rusty1s's avatar
rusty1s committed
96
        if M > N:
rusty1s's avatar
rusty1s committed
97
            rowptr[N + 1:] = N
rusty1s's avatar
rusty1s committed
98
99

        value: Optional[torch.Tensor] = None
rusty1s's avatar
rusty1s committed
100
        if has_value:
rusty1s's avatar
rusty1s committed
101
            value = torch.ones(row.numel(), dtype=dtype, device=row.device)
rusty1s's avatar
rusty1s committed
102
103
104
105
106
107

        rowcount: Optional[torch.Tensor] = None
        colptr: Optional[torch.Tensor] = None
        colcount: Optional[torch.Tensor] = None
        csr2csc: Optional[torch.Tensor] = None
        csc2csr: Optional[torch.Tensor] = None
rusty1s's avatar
rusty1s committed
108
109

        if fill_cache:
rusty1s's avatar
rusty1s committed
110
            rowcount = torch.ones(M, dtype=torch.long, device=row.device)
rusty1s's avatar
rusty1s committed
111
            if M > N:
rusty1s's avatar
rusty1s committed
112
113
114
115
                rowcount[N:] = 0

            colptr = torch.arange(N + 1, dtype=torch.long, device=row.device)
            colcount = torch.ones(N, dtype=torch.long, device=row.device)
rusty1s's avatar
rusty1s committed
116
            if N > M:
rusty1s's avatar
rusty1s committed
117
118
                colptr[M + 1:] = M
                colcount[M:] = 0
rusty1s's avatar
rusty1s committed
119
120
            csr2csc = csc2csr = row

rusty1s's avatar
rusty1s committed
121
122
123
124
125
126
127
128
        out = SparseTensor(row=row, rowptr=rowptr, col=col, value=value,
                           sparse_sizes=(M, N), is_sorted=True)
        out.storage._rowcount = rowcount
        out.storage._colptr = colptr
        out.storage._colcount = colcount
        out.storage._csr2csc = csr2csc
        out.storage._csc2csr = csc2csr
        return out
rusty1s's avatar
rusty1s committed
129
130

    def copy(self):
rusty1s's avatar
rusty1s committed
131
        return self.from_storage(self.storage)
rusty1s's avatar
rusty1s committed
132
133

    def clone(self):
rusty1s's avatar
rusty1s committed
134
        return self.from_storage(self.storage.clone())
rusty1s's avatar
rusty1s committed
135

rusty1s's avatar
typo  
rusty1s committed
136
    def type_as(self, tensor: torch.Tensor):
rusty1s's avatar
rusty1s committed
137
        value = self.storage.value()
rusty1s's avatar
rusty1s committed
138
139
140
141
142
143
144
145
        if value is None or tensor.dtype == value.dtype:
            return self
        return self.from_storage(self.storage.type_as(tensor))

    def device_as(self, tensor: torch.Tensor, non_blocking: bool = False):
        if tensor.device == self.device():
            return self
        return self.from_storage(self.storage.device_as(tensor, non_blocking))
rusty1s's avatar
rusty1s committed
146
147
148

    # Formats #################################################################

rusty1s's avatar
rusty1s committed
149
150
    def coo(self) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        return self.storage.row(), self.storage.col(), self.storage.value()
rusty1s's avatar
rusty1s committed
151

rusty1s's avatar
rusty1s committed
152
153
    def csr(self) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        return self.storage.rowptr(), self.storage.col(), self.storage.value()
rusty1s's avatar
rusty1s committed
154

rusty1s's avatar
rusty1s committed
155
156
157
158
159
160
    def csc(self) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        perm = self.storage.csr2csc()
        value = self.storage.value()
        if value is not None:
            value = value[perm]
        return self.storage.colptr(), self.storage.row()[perm], value
rusty1s's avatar
rusty1s committed
161
162
163

    # Storage inheritance #####################################################

rusty1s's avatar
rusty1s committed
164
    def has_value(self) -> bool:
rusty1s's avatar
rusty1s committed
165
        return self.storage.has_value()
rusty1s's avatar
rusty1s committed
166

rusty1s's avatar
rusty1s committed
167
    def set_value_(self, value: Optional[torch.Tensor],
rusty1s's avatar
rusty1s committed
168
169
                   layout: Optional[str] = None):
        self.storage.set_value_(value, layout)
rusty1s's avatar
rusty1s committed
170
171
        return self

rusty1s's avatar
rusty1s committed
172
    def set_value(self, value: Optional[torch.Tensor],
rusty1s's avatar
rusty1s committed
173
174
175
                  layout: Optional[str] = None):
        return self.from_storage(self.storage.set_value(value, layout))

rusty1s's avatar
rusty1s committed
176
    def sparse_sizes(self) -> Tuple[int, int]:
rusty1s's avatar
rusty1s committed
177
        return self.storage.sparse_sizes()
rusty1s's avatar
rusty1s committed
178

rusty1s's avatar
rusty1s committed
179
180
    def sparse_size(self, dim: int) -> int:
        return self.storage.sparse_sizes()[dim]
rusty1s's avatar
rusty1s committed
181

rusty1s's avatar
rusty1s committed
182
    def sparse_resize(self, sparse_sizes: Tuple[int, int]):
rusty1s's avatar
rusty1s committed
183
        return self.from_storage(self.storage.sparse_resize(sparse_sizes))
rusty1s's avatar
rusty1s committed
184

rusty1s's avatar
rusty1s committed
185
186
187
188
    def sparse_reshape(self, num_rows: int, num_cols: int):
        return self.from_storage(
            self.storage.sparse_reshape(num_rows, num_cols))

rusty1s's avatar
rusty1s committed
189
    def is_coalesced(self) -> bool:
rusty1s's avatar
rusty1s committed
190
        return self.storage.is_coalesced()
rusty1s's avatar
rusty1s committed
191

rusty1s's avatar
rusty1s committed
192
    def coalesce(self, reduce: str = "sum"):
rusty1s's avatar
rusty1s committed
193
        return self.from_storage(self.storage.coalesce(reduce))
rusty1s's avatar
rusty1s committed
194

rusty1s's avatar
rusty1s committed
195
196
    def fill_cache_(self):
        self.storage.fill_cache_()
rusty1s's avatar
rusty1s committed
197
198
        return self

rusty1s's avatar
rusty1s committed
199
200
    def clear_cache_(self):
        self.storage.clear_cache_()
rusty1s's avatar
rusty1s committed
201
202
        return self

rusty1s's avatar
rusty1s committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    def __eq__(self, other) -> bool:
        if not isinstance(other, self.__class__):
            return False

        if self.sizes() != other.sizes():
            return False

        rowptrA, colA, valueA = self.csr()
        rowptrB, colB, valueB = other.csr()

        if valueA is None and valueB is not None:
            return False
        if valueA is not None and valueB is None:
            return False
        if not torch.equal(rowptrA, rowptrB):
            return False
        if not torch.equal(colA, colB):
            return False
        if valueA is None and valueB is None:
            return True
        return torch.equal(valueA, valueB)

rusty1s's avatar
rusty1s committed
225
226
    # Utility functions #######################################################

rusty1s's avatar
rusty1s committed
227
228
229
    def fill_value_(self, fill_value: float, dtype: Optional[int] = None):
        value = torch.full((self.nnz(), ), fill_value, dtype=dtype,
                           device=self.device())
rusty1s's avatar
rusty1s committed
230
231
        return self.set_value_(value, layout='coo')

rusty1s's avatar
rusty1s committed
232
233
234
    def fill_value(self, fill_value: float, dtype: Optional[int] = None):
        value = torch.full((self.nnz(), ), fill_value, dtype=dtype,
                           device=self.device())
rusty1s's avatar
rusty1s committed
235
236
237
        return self.set_value(value, layout='coo')

    def sizes(self) -> List[int]:
rusty1s's avatar
rusty1s committed
238
        sparse_sizes = self.sparse_sizes()
rusty1s's avatar
rusty1s committed
239
240
        value = self.storage.value()
        if value is not None:
rusty1s's avatar
rusty1s committed
241
242
243
            return list(sparse_sizes) + list(value.size())[1:]
        else:
            return list(sparse_sizes)
rusty1s's avatar
rusty1s committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

    def size(self, dim: int) -> int:
        return self.sizes()[dim]

    def dim(self) -> int:
        return len(self.sizes())

    def nnz(self) -> int:
        return self.storage.col().numel()

    def numel(self) -> int:
        value = self.storage.value()
        if value is not None:
            return value.numel()
        else:
            return self.nnz()
rusty1s's avatar
rusty1s committed
260

rusty1s's avatar
rusty1s committed
261
    def density(self) -> float:
rusty1s's avatar
rusty1s committed
262
263
        return self.nnz() / (self.sparse_size(0) * self.sparse_size(1))

rusty1s's avatar
rusty1s committed
264
    def sparsity(self) -> float:
rusty1s's avatar
rusty1s committed
265
266
        return 1 - self.density()

rusty1s's avatar
rusty1s committed
267
    def avg_row_length(self) -> float:
rusty1s's avatar
rusty1s committed
268
269
        return self.nnz() / self.sparse_size(0)

rusty1s's avatar
rusty1s committed
270
    def avg_col_length(self) -> float:
rusty1s's avatar
rusty1s committed
271
272
        return self.nnz() / self.sparse_size(1)

rusty1s's avatar
rusty1s committed
273
274
275
276
    def bandwidth(self) -> int:
        row, col, _ = self.coo()
        return int((row - col).abs_().max())

rusty1s's avatar
rusty1s committed
277
278
279
280
    def avg_bandwidth(self) -> float:
        row, col, _ = self.coo()
        return float((row - col).abs_().to(torch.float).mean())

rusty1s's avatar
rusty1s committed
281
282
283
284
285
    def bandwidth_proportion(self, bandwidth: int) -> float:
        row, col, _ = self.coo()
        tmp = (row - col).abs_()
        return int((tmp <= bandwidth).sum()) / self.nnz()

rusty1s's avatar
rusty1s committed
286
    def is_quadratic(self) -> bool:
rusty1s's avatar
rusty1s committed
287
288
        return self.sparse_size(0) == self.sparse_size(1)

rusty1s's avatar
rusty1s committed
289
290
    def is_symmetric(self) -> bool:
        if not self.is_quadratic():
rusty1s's avatar
rusty1s committed
291
292
            return False

rusty1s's avatar
rusty1s committed
293
294
295
296
297
298
        rowptr, col, value1 = self.csr()
        colptr, row, value2 = self.csc()

        if (rowptr != colptr).any() or (col != row).any():
            return False

rusty1s's avatar
rusty1s committed
299
        if value1 is None or value2 is None:
rusty1s's avatar
rusty1s committed
300
            return True
rusty1s's avatar
rusty1s committed
301
302
        else:
            return bool((value1 == value2).all())
rusty1s's avatar
rusty1s committed
303

rusty1s's avatar
rusty1s committed
304
    def to_symmetric(self, reduce: str = "sum"):
rusty1s's avatar
rusty1s committed
305
306
        N = max(self.size(0), self.size(1))

rusty1s's avatar
rusty1s committed
307
        row, col, value = self.coo()
rusty1s's avatar
rusty1s committed
308
309
310
311
312
313
314
315
316
        idx = col.new_full((2 * col.numel() + 1, ), -1)
        idx[1:row.numel() + 1] = row
        idx[row.numel() + 1:] = col
        idx[1:] *= N
        idx[1:row.numel() + 1] += col
        idx[row.numel() + 1:] += row

        idx, perm = idx.sort()
        mask = idx[1:] > idx[:-1]
rusty1s's avatar
fix  
rusty1s committed
317
318
        perm = perm[1:].sub_(1)
        idx = perm[mask]
rusty1s's avatar
rusty1s committed
319
320

        if value is not None:
rusty1s's avatar
rusty1s committed
321
322
323
324
            ptr = mask.nonzero().flatten()
            ptr = torch.cat([ptr, ptr.new_full((1, ), perm.size(0))])
            value = torch.cat([value, value])[perm]
            value = segment_csr(value, ptr, reduce=reduce)
rusty1s's avatar
rusty1s committed
325

rusty1s's avatar
fix  
rusty1s committed
326
327
        new_row = torch.cat([row, col], dim=0, out=perm)[idx]
        new_col = torch.cat([col, row], dim=0, out=perm)[idx]
rusty1s's avatar
rusty1s committed
328

rusty1s's avatar
rusty1s committed
329
330
        out = SparseTensor(row=new_row, rowptr=None, col=new_col, value=value,
                           sparse_sizes=(N, N), is_sorted=True)
rusty1s's avatar
rusty1s committed
331
332
        return out

rusty1s's avatar
rusty1s committed
333
    def detach_(self):
rusty1s's avatar
rusty1s committed
334
335
336
        value = self.storage.value()
        if value is not None:
            value.detach_()
rusty1s's avatar
rusty1s committed
337
338
339
        return self

    def detach(self):
rusty1s's avatar
rusty1s committed
340
341
342
343
344
345
346
347
348
349
350
        value = self.storage.value()
        if value is not None:
            value = value.detach()
        return self.set_value(value, layout='coo')

    def requires_grad(self) -> bool:
        value = self.storage.value()
        if value is not None:
            return value.requires_grad
        else:
            return False
rusty1s's avatar
rusty1s committed
351

rusty1s's avatar
rusty1s committed
352
    def requires_grad_(self, requires_grad: bool = True,
rusty1s's avatar
rusty1s committed
353
                       dtype: Optional[int] = None):
rusty1s's avatar
rusty1s committed
354
        if requires_grad and not self.has_value():
rusty1s's avatar
rusty1s committed
355
            self.fill_value_(1., dtype)
rusty1s's avatar
rusty1s committed
356

rusty1s's avatar
rusty1s committed
357
358
359
        value = self.storage.value()
        if value is not None:
            value.requires_grad_(requires_grad)
rusty1s's avatar
rusty1s committed
360
361
        return self

rusty1s's avatar
rusty1s committed
362
    def pin_memory(self):
rusty1s's avatar
rusty1s committed
363
        return self.from_storage(self.storage.pin_memory())
rusty1s's avatar
rusty1s committed
364

rusty1s's avatar
rusty1s committed
365
366
    def is_pinned(self) -> bool:
        return self.storage.is_pinned()
rusty1s's avatar
rusty1s committed
367
368

    def device(self):
rusty1s's avatar
rusty1s committed
369
        return self.storage.col().device
rusty1s's avatar
rusty1s committed
370
371

    def cpu(self):
rusty1s's avatar
rusty1s committed
372
        return self.device_as(torch.tensor(0), non_blocking=False)
rusty1s's avatar
rusty1s committed
373

rusty1s's avatar
rusty1s committed
374
375
    def cuda(self):
        return self.from_storage(self.storage.cuda())
rusty1s's avatar
rusty1s committed
376

rusty1s's avatar
rusty1s committed
377
378
    def is_cuda(self) -> bool:
        return self.storage.col().is_cuda
rusty1s's avatar
rusty1s committed
379

rusty1s's avatar
rusty1s committed
380
    def dtype(self):
rusty1s's avatar
rusty1s committed
381
382
        value = self.storage.value()
        return value.dtype if value is not None else torch.float
rusty1s's avatar
rusty1s committed
383

rusty1s's avatar
rusty1s committed
384
    def is_floating_point(self) -> bool:
rusty1s's avatar
rusty1s committed
385
386
        value = self.storage.value()
        return torch.is_floating_point(value) if value is not None else True
rusty1s's avatar
rusty1s committed
387
388

    def bfloat16(self):
rusty1s's avatar
rusty1s committed
389
390
        return self.type_as(
            torch.tensor(0, dtype=torch.bfloat16, device=self.device()))
rusty1s's avatar
rusty1s committed
391
392

    def bool(self):
rusty1s's avatar
rusty1s committed
393
394
        return self.type_as(
            torch.tensor(0, dtype=torch.bool, device=self.device()))
rusty1s's avatar
rusty1s committed
395
396

    def byte(self):
rusty1s's avatar
rusty1s committed
397
398
        return self.type_as(
            torch.tensor(0, dtype=torch.uint8, device=self.device()))
rusty1s's avatar
rusty1s committed
399
400

    def char(self):
rusty1s's avatar
rusty1s committed
401
402
        return self.type_as(
            torch.tensor(0, dtype=torch.int8, device=self.device()))
rusty1s's avatar
rusty1s committed
403
404

    def half(self):
rusty1s's avatar
rusty1s committed
405
406
        return self.type_as(
            torch.tensor(0, dtype=torch.half, device=self.device()))
rusty1s's avatar
rusty1s committed
407
408

    def float(self):
rusty1s's avatar
rusty1s committed
409
410
        return self.type_as(
            torch.tensor(0, dtype=torch.float, device=self.device()))
rusty1s's avatar
rusty1s committed
411
412

    def double(self):
rusty1s's avatar
rusty1s committed
413
414
        return self.type_as(
            torch.tensor(0, dtype=torch.double, device=self.device()))
rusty1s's avatar
rusty1s committed
415
416

    def short(self):
rusty1s's avatar
rusty1s committed
417
418
        return self.type_as(
            torch.tensor(0, dtype=torch.short, device=self.device()))
rusty1s's avatar
rusty1s committed
419
420

    def int(self):
rusty1s's avatar
rusty1s committed
421
422
        return self.type_as(
            torch.tensor(0, dtype=torch.int, device=self.device()))
rusty1s's avatar
rusty1s committed
423
424

    def long(self):
rusty1s's avatar
rusty1s committed
425
426
        return self.type_as(
            torch.tensor(0, dtype=torch.long, device=self.device()))
rusty1s's avatar
rusty1s committed
427
428
429

    # Conversions #############################################################

rusty1s's avatar
rusty1s committed
430
    def to_dense(self, dtype: Optional[int] = None) -> torch.Tensor:
rusty1s's avatar
rusty1s committed
431
        row, col, value = self.coo()
rusty1s's avatar
rusty1s committed
432

rusty1s's avatar
fixes  
rusty1s committed
433
        if value is not None:
rusty1s's avatar
rusty1s committed
434
435
            mat = torch.zeros(self.sizes(), dtype=value.dtype,
                              device=self.device())
rusty1s's avatar
rusty1s committed
436
        else:
rusty1s's avatar
rusty1s committed
437
            mat = torch.zeros(self.sizes(), dtype=dtype, device=self.device())
rusty1s's avatar
rusty1s committed
438
439
440
441

        if value is not None:
            mat[row, col] = value
        else:
rusty1s's avatar
rusty1s committed
442
443
            mat[row, col] = torch.ones(self.nnz(), dtype=mat.dtype,
                                       device=mat.device)
rusty1s's avatar
rusty1s committed
444

rusty1s's avatar
rusty1s committed
445
446
        return mat

rusty1s's avatar
typo  
rusty1s committed
447
448
    def to_torch_sparse_coo_tensor(
            self, dtype: Optional[int] = None) -> torch.Tensor:
rusty1s's avatar
rusty1s committed
449
450
        row, col, value = self.coo()
        index = torch.stack([row, col], dim=0)
rusty1s's avatar
rusty1s committed
451

rusty1s's avatar
rusty1s committed
452
        if value is None:
rusty1s's avatar
rusty1s committed
453
            value = torch.ones(self.nnz(), dtype=dtype, device=self.device())
rusty1s's avatar
rusty1s committed
454

rusty1s's avatar
rusty1s committed
455
        return torch.sparse_coo_tensor(index, value, self.sizes())
rusty1s's avatar
rusty1s committed
456

rusty1s's avatar
rusty1s committed
457
458
459
460
461
462

# Python Bindings #############################################################


def share_memory_(self: SparseTensor) -> SparseTensor:
    self.storage.share_memory_()
rusty1s's avatar
typo  
rusty1s committed
463
    return self
rusty1s's avatar
rusty1s committed
464
465
466
467
468
469


def is_shared(self: SparseTensor) -> bool:
    return self.storage.is_shared()


rusty1s's avatar
typing  
rusty1s committed
470
471
def to(self, *args: Optional[List[Any]],
       **kwargs: Optional[Dict[str, Any]]) -> SparseTensor:
rusty1s's avatar
rusty1s committed
472
    device, dtype, non_blocking = torch._C._nn._parse_to(*args, **kwargs)[:3]
rusty1s's avatar
rusty1s committed
473
474
475
476
477
478
479
480
481

    if dtype is not None:
        self = self.type_as(torch.tensor(0., dtype=dtype))
    if device is not None:
        self = self.device_as(torch.tensor(0., device=device), non_blocking)

    return self


rusty1s's avatar
rusty1s committed
482
483
484
485
486
487
488
489
490
def cpu(self) -> SparseTensor:
    return self.device_as(torch.tensor(0., device='cpu'))


def cuda(self, device: Optional[Union[int, str]] = None,
         non_blocking: bool = False):
    return self.device_as(torch.tensor(0., device=device or 'cuda'))


rusty1s's avatar
typing  
rusty1s committed
491
def __getitem__(self: SparseTensor, index: Any) -> SparseTensor:
rusty1s's avatar
repr  
rusty1s committed
492
493
    index = list(index) if isinstance(index, tuple) else [index]
    # More than one `Ellipsis` is not allowed...
494
495
496
497
    if len([
            i for i in index
            if not isinstance(i, (torch.Tensor, np.ndarray)) and i == ...
    ]) > 1:
rusty1s's avatar
repr  
rusty1s committed
498
499
500
501
502
503
        raise SyntaxError

    dim = 0
    out = self
    while len(index) > 0:
        item = index.pop(0)
rusty1s's avatar
rusty1s committed
504
        if isinstance(item, (list, tuple)):
505
506
507
508
            item = torch.tensor(item, device=self.device())
        if isinstance(item, np.ndarray):
            item = torch.from_numpy(item).to(self.device())

rusty1s's avatar
repr  
rusty1s committed
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
        if isinstance(item, int):
            out = out.select(dim, item)
            dim += 1
        elif isinstance(item, slice):
            if item.step is not None:
                raise ValueError('Step parameter not yet supported.')

            start = 0 if item.start is None else item.start
            start = self.size(dim) + start if start < 0 else start

            stop = self.size(dim) if item.stop is None else item.stop
            stop = self.size(dim) + stop if stop < 0 else stop

            out = out.narrow(dim, start, max(stop - start, 0))
            dim += 1
        elif torch.is_tensor(item):
            if item.dtype == torch.bool:
                out = out.masked_select(dim, item)
                dim += 1
            elif item.dtype == torch.long:
                out = out.index_select(dim, item)
                dim += 1
        elif item == Ellipsis:
            if self.dim() - len(index) < dim:
                raise SyntaxError
            dim = self.dim() - len(index)
        else:
            raise SyntaxError

    return out


rusty1s's avatar
typing  
rusty1s committed
541
def __repr__(self: SparseTensor) -> str:
rusty1s's avatar
repr  
rusty1s committed
542
543
544
    i = ' ' * 6
    row, col, value = self.coo()
    infos = []
rusty1s's avatar
rusty1s committed
545
546
    infos += [f'row={indent(row.__repr__(), i)[len(i):]}']
    infos += [f'col={indent(col.__repr__(), i)[len(i):]}']
rusty1s's avatar
repr  
rusty1s committed
547
548

    if value is not None:
rusty1s's avatar
rusty1s committed
549
        infos += [f'val={indent(value.__repr__(), i)[len(i):]}']
rusty1s's avatar
repr  
rusty1s committed
550
551

    infos += [
rusty1s's avatar
rusty1s committed
552
553
        f'size={tuple(self.sizes())}, nnz={self.nnz()}, '
        f'density={100 * self.density():.02f}%'
rusty1s's avatar
repr  
rusty1s committed
554
    ]
rusty1s's avatar
rusty1s committed
555

rusty1s's avatar
repr  
rusty1s committed
556
557
558
    infos = ',\n'.join(infos)

    i = ' ' * (len(self.__class__.__name__) + 1)
rusty1s's avatar
rusty1s committed
559
    return f'{self.__class__.__name__}({indent(infos, i)[len(i):]})'
rusty1s's avatar
repr  
rusty1s committed
560
561


rusty1s's avatar
rusty1s committed
562
563
564
SparseTensor.share_memory_ = share_memory_
SparseTensor.is_shared = is_shared
SparseTensor.to = to
rusty1s's avatar
rusty1s committed
565
566
SparseTensor.cpu = cpu
SparseTensor.cuda = cuda
rusty1s's avatar
repr  
rusty1s committed
567
568
SparseTensor.__getitem__ = __getitem__
SparseTensor.__repr__ = __repr__
rusty1s's avatar
rusty1s committed
569
570
571

# Scipy Conversions ###########################################################

rusty1s's avatar
typo  
rusty1s committed
572
573
ScipySparseMatrix = Union[scipy.sparse.coo_matrix, scipy.sparse.csr_matrix,
                          scipy.sparse.csc_matrix]
rusty1s's avatar
rusty1s committed
574
575
576


@torch.jit.ignore
rusty1s's avatar
rusty1s committed
577
def from_scipy(mat: ScipySparseMatrix, has_value: bool = True) -> SparseTensor:
rusty1s's avatar
rusty1s committed
578
579
580
581
582
583
584
585
586
    colptr = None
    if isinstance(mat, scipy.sparse.csc_matrix):
        colptr = torch.from_numpy(mat.indptr).to(torch.long)

    mat = mat.tocsr()
    rowptr = torch.from_numpy(mat.indptr).to(torch.long)
    mat = mat.tocoo()
    row = torch.from_numpy(mat.row).to(torch.long)
    col = torch.from_numpy(mat.col).to(torch.long)
rusty1s's avatar
rusty1s committed
587
588
589
    value = None
    if has_value:
        value = torch.from_numpy(mat.data)
rusty1s's avatar
rusty1s committed
590
591
    sparse_sizes = mat.shape[:2]

rusty1s's avatar
rusty1s committed
592
593
594
595
    storage = SparseStorage(row=row, rowptr=rowptr, col=col, value=value,
                            sparse_sizes=sparse_sizes, rowcount=None,
                            colptr=colptr, colcount=None, csr2csc=None,
                            csc2csr=None, is_sorted=True)
rusty1s's avatar
rusty1s committed
596
597
598
599
600

    return SparseTensor.from_storage(storage)


@torch.jit.ignore
rusty1s's avatar
rusty1s committed
601
def to_scipy(self: SparseTensor, layout: Optional[str] = None,
rusty1s's avatar
rusty1s committed
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
             dtype: Optional[torch.dtype] = None) -> ScipySparseMatrix:
    assert self.dim() == 2
    layout = get_layout(layout)

    if not self.has_value():
        ones = torch.ones(self.nnz(), dtype=dtype).numpy()

    if layout == 'coo':
        row, col, value = self.coo()
        row = row.detach().cpu().numpy()
        col = col.detach().cpu().numpy()
        value = value.detach().cpu().numpy() if self.has_value() else ones
        return scipy.sparse.coo_matrix((value, (row, col)), self.sizes())
    elif layout == 'csr':
        rowptr, col, value = self.csr()
        rowptr = rowptr.detach().cpu().numpy()
        col = col.detach().cpu().numpy()
        value = value.detach().cpu().numpy() if self.has_value() else ones
        return scipy.sparse.csr_matrix((value, col, rowptr), self.sizes())
    elif layout == 'csc':
        colptr, row, value = self.csc()
        colptr = colptr.detach().cpu().numpy()
        row = row.detach().cpu().numpy()
        value = value.detach().cpu().numpy() if self.has_value() else ones
        return scipy.sparse.csc_matrix((value, row, colptr), self.sizes())


SparseTensor.from_scipy = from_scipy
SparseTensor.to_scipy = to_scipy