tensor.py 18.4 KB
Newer Older
rusty1s's avatar
repr  
rusty1s committed
1
from textwrap import indent
rusty1s's avatar
typing  
rusty1s committed
2
from typing import Optional, List, Tuple, Dict, Union, Any
rusty1s's avatar
rusty1s committed
3
4
5
6

import torch
import scipy.sparse

rusty1s's avatar
rusty1s committed
7
from torch_sparse.storage import SparseStorage, get_layout
rusty1s's avatar
rusty1s committed
8
9


rusty1s's avatar
rusty1s committed
10
@torch.jit.script
rusty1s's avatar
rusty1s committed
11
class SparseTensor(object):
rusty1s's avatar
rusty1s committed
12
13
    storage: SparseStorage

rusty1s's avatar
rusty1s committed
14
    def __init__(self, row: Optional[torch.Tensor] = None,
rusty1s's avatar
rusty1s committed
15
16
17
                 rowptr: Optional[torch.Tensor] = None,
                 col: Optional[torch.Tensor] = None,
                 value: Optional[torch.Tensor] = None,
rusty1s's avatar
rusty1s committed
18
19
                 sparse_sizes: Optional[Tuple[int, int]] = None,
                 is_sorted: bool = False):
rusty1s's avatar
rusty1s committed
20
21
22
23
24
        self.storage = SparseStorage(row=row, rowptr=rowptr, col=col,
                                     value=value, sparse_sizes=sparse_sizes,
                                     rowcount=None, colptr=None, colcount=None,
                                     csr2csc=None, csc2csr=None,
                                     is_sorted=is_sorted)
rusty1s's avatar
rusty1s committed
25
26

    @classmethod
rusty1s's avatar
rusty1s committed
27
    def from_storage(self, storage: SparseStorage):
rusty1s's avatar
rusty1s committed
28
        self = SparseTensor.__new__(SparseTensor)
rusty1s's avatar
rusty1s committed
29
        self.storage = storage
rusty1s's avatar
rusty1s committed
30
31
        return self

rusty1s's avatar
rusty1s committed
32
33
34
35
36
37
38
39
40
    @classmethod
    def from_edge_index(self, edge_index: torch.Tensor,
                        edge_attr: Optional[torch.Tensor] = None,
                        sparse_sizes: Optional[Tuple[int, int]] = None,
                        is_sorted: bool = False):
        return SparseTensor(row=edge_index[0], rowptr=None, col=edge_index[1],
                            value=edge_attr, sparse_sizes=sparse_sizes,
                            is_sorted=is_sorted)

rusty1s's avatar
rusty1s committed
41
    @classmethod
rusty1s's avatar
rusty1s committed
42
    def from_dense(self, mat: torch.Tensor, has_value: bool = True):
rusty1s's avatar
rusty1s committed
43
44
45
46
        if mat.dim() > 2:
            index = mat.abs().sum([i for i in range(2, mat.dim())]).nonzero()
        else:
            index = mat.nonzero()
rusty1s's avatar
rusty1s committed
47
        index = index.t()
rusty1s's avatar
rusty1s committed
48

rusty1s's avatar
rusty1s committed
49
50
51
52
53
54
55
        row = index[0]
        col = index[1]

        value: Optional[torch.Tensor] = None
        if has_value:
            value = mat[row, col]

rusty1s's avatar
rusty1s committed
56
57
58
        return SparseTensor(row=row, rowptr=None, col=col, value=value,
                            sparse_sizes=(mat.size(0), mat.size(1)),
                            is_sorted=True)
rusty1s's avatar
rusty1s committed
59
60

    @classmethod
rusty1s's avatar
rusty1s committed
61
    def from_torch_sparse_coo_tensor(self, mat: torch.Tensor,
rusty1s's avatar
rusty1s committed
62
                                     has_value: bool = True):
rusty1s's avatar
rusty1s committed
63
64
65
        mat = mat.coalesce()
        index = mat._indices()
        row, col = index[0], index[1]
rusty1s's avatar
rusty1s committed
66
67
68
69
70

        value: Optional[torch.Tensor] = None
        if has_value:
            value = mat._values()

rusty1s's avatar
rusty1s committed
71
72
73
        return SparseTensor(row=row, rowptr=None, col=col, value=value,
                            sparse_sizes=(mat.size(0), mat.size(1)),
                            is_sorted=True)
rusty1s's avatar
rusty1s committed
74
75

    @classmethod
rusty1s's avatar
rusty1s committed
76
77
    def eye(self, M: int, N: Optional[int] = None, has_value: bool = True,
            dtype: Optional[int] = None, device: Optional[torch.device] = None,
rusty1s's avatar
rusty1s committed
78
            fill_cache: bool = False):
rusty1s's avatar
rusty1s committed
79

rusty1s's avatar
rusty1s committed
80
        N = M if N is None else N
rusty1s's avatar
rusty1s committed
81

rusty1s's avatar
rusty1s committed
82
        row = torch.arange(min(M, N), device=device)
rusty1s's avatar
rusty1s committed
83
        col = row
rusty1s's avatar
rusty1s committed
84

rusty1s's avatar
rusty1s committed
85
        rowptr = torch.arange(M + 1, device=row.device)
rusty1s's avatar
rusty1s committed
86
        if M > N:
rusty1s's avatar
rusty1s committed
87
            rowptr[N + 1:] = N
rusty1s's avatar
rusty1s committed
88
89

        value: Optional[torch.Tensor] = None
rusty1s's avatar
rusty1s committed
90
        if has_value:
rusty1s's avatar
rusty1s committed
91
            value = torch.ones(row.numel(), dtype=dtype, device=row.device)
rusty1s's avatar
rusty1s committed
92
93
94
95
96
97

        rowcount: Optional[torch.Tensor] = None
        colptr: Optional[torch.Tensor] = None
        colcount: Optional[torch.Tensor] = None
        csr2csc: Optional[torch.Tensor] = None
        csc2csr: Optional[torch.Tensor] = None
rusty1s's avatar
rusty1s committed
98
99

        if fill_cache:
rusty1s's avatar
rusty1s committed
100
            rowcount = torch.ones(M, dtype=torch.long, device=row.device)
rusty1s's avatar
rusty1s committed
101
            if M > N:
rusty1s's avatar
rusty1s committed
102
103
104
105
                rowcount[N:] = 0

            colptr = torch.arange(N + 1, dtype=torch.long, device=row.device)
            colcount = torch.ones(N, dtype=torch.long, device=row.device)
rusty1s's avatar
rusty1s committed
106
            if N > M:
rusty1s's avatar
rusty1s committed
107
108
                colptr[M + 1:] = M
                colcount[M:] = 0
rusty1s's avatar
rusty1s committed
109
110
            csr2csc = csc2csr = row

rusty1s's avatar
rusty1s committed
111
        storage: SparseStorage = SparseStorage(
rusty1s's avatar
rusty1s committed
112
113
114
            row=row, rowptr=rowptr, col=col, value=value, sparse_sizes=(M, N),
            rowcount=rowcount, colptr=colptr, colcount=colcount,
            csr2csc=csr2csc, csc2csr=csc2csr, is_sorted=True)
rusty1s's avatar
rusty1s committed
115

rusty1s's avatar
rusty1s committed
116
117
118
119
120
        self = SparseTensor.__new__(SparseTensor)
        self.storage = storage
        return self

    def copy(self):
rusty1s's avatar
rusty1s committed
121
        return self.from_storage(self.storage)
rusty1s's avatar
rusty1s committed
122
123

    def clone(self):
rusty1s's avatar
rusty1s committed
124
        return self.from_storage(self.storage.clone())
rusty1s's avatar
rusty1s committed
125

rusty1s's avatar
rusty1s committed
126
    def type_as(self, tensor=torch.Tensor):
rusty1s's avatar
rusty1s committed
127
        value = self.storage.value()
rusty1s's avatar
rusty1s committed
128
129
130
131
132
133
134
135
        if value is None or tensor.dtype == value.dtype:
            return self
        return self.from_storage(self.storage.type_as(tensor))

    def device_as(self, tensor: torch.Tensor, non_blocking: bool = False):
        if tensor.device == self.device():
            return self
        return self.from_storage(self.storage.device_as(tensor, non_blocking))
rusty1s's avatar
rusty1s committed
136
137
138

    # Formats #################################################################

rusty1s's avatar
rusty1s committed
139
140
    def coo(self) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        return self.storage.row(), self.storage.col(), self.storage.value()
rusty1s's avatar
rusty1s committed
141

rusty1s's avatar
rusty1s committed
142
143
    def csr(self) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        return self.storage.rowptr(), self.storage.col(), self.storage.value()
rusty1s's avatar
rusty1s committed
144

rusty1s's avatar
rusty1s committed
145
146
147
148
149
150
    def csc(self) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        perm = self.storage.csr2csc()
        value = self.storage.value()
        if value is not None:
            value = value[perm]
        return self.storage.colptr(), self.storage.row()[perm], value
rusty1s's avatar
rusty1s committed
151
152
153

    # Storage inheritance #####################################################

rusty1s's avatar
rusty1s committed
154
    def has_value(self) -> bool:
rusty1s's avatar
rusty1s committed
155
        return self.storage.has_value()
rusty1s's avatar
rusty1s committed
156

rusty1s's avatar
rusty1s committed
157
    def set_value_(self, value: Optional[torch.Tensor],
rusty1s's avatar
rusty1s committed
158
159
                   layout: Optional[str] = None):
        self.storage.set_value_(value, layout)
rusty1s's avatar
rusty1s committed
160
161
        return self

rusty1s's avatar
rusty1s committed
162
    def set_value(self, value: Optional[torch.Tensor],
rusty1s's avatar
rusty1s committed
163
164
165
                  layout: Optional[str] = None):
        return self.from_storage(self.storage.set_value(value, layout))

rusty1s's avatar
rusty1s committed
166
    def sparse_sizes(self) -> Tuple[int, int]:
rusty1s's avatar
rusty1s committed
167
        return self.storage.sparse_sizes()
rusty1s's avatar
rusty1s committed
168

rusty1s's avatar
rusty1s committed
169
170
    def sparse_size(self, dim: int) -> int:
        return self.storage.sparse_sizes()[dim]
rusty1s's avatar
rusty1s committed
171

rusty1s's avatar
rusty1s committed
172
    def sparse_resize(self, sparse_sizes: Tuple[int, int]):
rusty1s's avatar
rusty1s committed
173
        return self.from_storage(self.storage.sparse_resize(sparse_sizes))
rusty1s's avatar
rusty1s committed
174

rusty1s's avatar
rusty1s committed
175
176
177
178
    def sparse_reshape(self, num_rows: int, num_cols: int):
        return self.from_storage(
            self.storage.sparse_reshape(num_rows, num_cols))

rusty1s's avatar
rusty1s committed
179
    def is_coalesced(self) -> bool:
rusty1s's avatar
rusty1s committed
180
        return self.storage.is_coalesced()
rusty1s's avatar
rusty1s committed
181

rusty1s's avatar
rusty1s committed
182
    def coalesce(self, reduce: str = "sum"):
rusty1s's avatar
rusty1s committed
183
        return self.from_storage(self.storage.coalesce(reduce))
rusty1s's avatar
rusty1s committed
184

rusty1s's avatar
rusty1s committed
185
186
    def fill_cache_(self):
        self.storage.fill_cache_()
rusty1s's avatar
rusty1s committed
187
188
        return self

rusty1s's avatar
rusty1s committed
189
190
    def clear_cache_(self):
        self.storage.clear_cache_()
rusty1s's avatar
rusty1s committed
191
192
193
194
        return self

    # Utility functions #######################################################

rusty1s's avatar
rusty1s committed
195
196
197
    def fill_value_(self, fill_value: float, dtype: Optional[int] = None):
        value = torch.full((self.nnz(), ), fill_value, dtype=dtype,
                           device=self.device())
rusty1s's avatar
rusty1s committed
198
199
        return self.set_value_(value, layout='coo')

rusty1s's avatar
rusty1s committed
200
201
202
    def fill_value(self, fill_value: float, dtype: Optional[int] = None):
        value = torch.full((self.nnz(), ), fill_value, dtype=dtype,
                           device=self.device())
rusty1s's avatar
rusty1s committed
203
204
205
        return self.set_value(value, layout='coo')

    def sizes(self) -> List[int]:
rusty1s's avatar
rusty1s committed
206
        sparse_sizes = self.sparse_sizes()
rusty1s's avatar
rusty1s committed
207
208
        value = self.storage.value()
        if value is not None:
rusty1s's avatar
rusty1s committed
209
210
211
            return list(sparse_sizes) + list(value.size())[1:]
        else:
            return list(sparse_sizes)
rusty1s's avatar
rusty1s committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

    def size(self, dim: int) -> int:
        return self.sizes()[dim]

    def dim(self) -> int:
        return len(self.sizes())

    def nnz(self) -> int:
        return self.storage.col().numel()

    def numel(self) -> int:
        value = self.storage.value()
        if value is not None:
            return value.numel()
        else:
            return self.nnz()
rusty1s's avatar
rusty1s committed
228

rusty1s's avatar
rusty1s committed
229
    def density(self) -> float:
rusty1s's avatar
rusty1s committed
230
231
        return self.nnz() / (self.sparse_size(0) * self.sparse_size(1))

rusty1s's avatar
rusty1s committed
232
    def sparsity(self) -> float:
rusty1s's avatar
rusty1s committed
233
234
        return 1 - self.density()

rusty1s's avatar
rusty1s committed
235
    def avg_row_length(self) -> float:
rusty1s's avatar
rusty1s committed
236
237
        return self.nnz() / self.sparse_size(0)

rusty1s's avatar
rusty1s committed
238
    def avg_col_length(self) -> float:
rusty1s's avatar
rusty1s committed
239
240
        return self.nnz() / self.sparse_size(1)

rusty1s's avatar
rusty1s committed
241
242
243
244
    def bandwidth(self) -> int:
        row, col, _ = self.coo()
        return int((row - col).abs_().max())

rusty1s's avatar
rusty1s committed
245
246
247
248
    def avg_bandwidth(self) -> float:
        row, col, _ = self.coo()
        return float((row - col).abs_().to(torch.float).mean())

rusty1s's avatar
rusty1s committed
249
250
251
252
253
    def bandwidth_proportion(self, bandwidth: int) -> float:
        row, col, _ = self.coo()
        tmp = (row - col).abs_()
        return int((tmp <= bandwidth).sum()) / self.nnz()

rusty1s's avatar
rusty1s committed
254
    def is_quadratic(self) -> bool:
rusty1s's avatar
rusty1s committed
255
256
        return self.sparse_size(0) == self.sparse_size(1)

rusty1s's avatar
rusty1s committed
257
258
    def is_symmetric(self) -> bool:
        if not self.is_quadratic():
rusty1s's avatar
rusty1s committed
259
260
            return False

rusty1s's avatar
rusty1s committed
261
262
263
264
265
266
        rowptr, col, value1 = self.csr()
        colptr, row, value2 = self.csc()

        if (rowptr != colptr).any() or (col != row).any():
            return False

rusty1s's avatar
rusty1s committed
267
        if value1 is None or value2 is None:
rusty1s's avatar
rusty1s committed
268
            return True
rusty1s's avatar
rusty1s committed
269
270
        else:
            return bool((value1 == value2).all())
rusty1s's avatar
rusty1s committed
271

rusty1s's avatar
rusty1s committed
272
273
274
275
276
277
278
279
280
    def to_symmetric(self, reduce: str = "sum"):
        row, col, value = self.coo()

        row, col = torch.cat([row, col], dim=0), torch.cat([col, row], dim=0)
        if value is not None:
            value = torch.cat([value, value], dim=0)

        N = max(self.size(0), self.size(1))

rusty1s's avatar
rusty1s committed
281
282
        out = SparseTensor(row=row, rowptr=None, col=col, value=value,
                           sparse_sizes=(N, N), is_sorted=False)
rusty1s's avatar
rusty1s committed
283
284
285
        out = out.coalesce(reduce)
        return out

rusty1s's avatar
rusty1s committed
286
    def detach_(self):
rusty1s's avatar
rusty1s committed
287
288
289
        value = self.storage.value()
        if value is not None:
            value.detach_()
rusty1s's avatar
rusty1s committed
290
291
292
        return self

    def detach(self):
rusty1s's avatar
rusty1s committed
293
294
295
296
297
298
299
300
301
302
303
        value = self.storage.value()
        if value is not None:
            value = value.detach()
        return self.set_value(value, layout='coo')

    def requires_grad(self) -> bool:
        value = self.storage.value()
        if value is not None:
            return value.requires_grad
        else:
            return False
rusty1s's avatar
rusty1s committed
304

rusty1s's avatar
rusty1s committed
305
    def requires_grad_(self, requires_grad: bool = True,
rusty1s's avatar
rusty1s committed
306
                       dtype: Optional[int] = None):
rusty1s's avatar
rusty1s committed
307
        if requires_grad and not self.has_value():
rusty1s's avatar
rusty1s committed
308
            self.fill_value_(1., dtype)
rusty1s's avatar
rusty1s committed
309

rusty1s's avatar
rusty1s committed
310
311
312
        value = self.storage.value()
        if value is not None:
            value.requires_grad_(requires_grad)
rusty1s's avatar
rusty1s committed
313
314
        return self

rusty1s's avatar
rusty1s committed
315
    def pin_memory(self):
rusty1s's avatar
rusty1s committed
316
        return self.from_storage(self.storage.pin_memory())
rusty1s's avatar
rusty1s committed
317

rusty1s's avatar
rusty1s committed
318
319
    def is_pinned(self) -> bool:
        return self.storage.is_pinned()
rusty1s's avatar
rusty1s committed
320
321

    def device(self):
rusty1s's avatar
rusty1s committed
322
        return self.storage.col().device
rusty1s's avatar
rusty1s committed
323
324

    def cpu(self):
rusty1s's avatar
rusty1s committed
325
        return self.device_as(torch.tensor(0), non_blocking=False)
rusty1s's avatar
rusty1s committed
326

rusty1s's avatar
rusty1s committed
327
328
    def cuda(self):
        return self.from_storage(self.storage.cuda())
rusty1s's avatar
rusty1s committed
329

rusty1s's avatar
rusty1s committed
330
331
    def is_cuda(self) -> bool:
        return self.storage.col().is_cuda
rusty1s's avatar
rusty1s committed
332

rusty1s's avatar
rusty1s committed
333
    def dtype(self):
rusty1s's avatar
rusty1s committed
334
335
        value = self.storage.value()
        return value.dtype if value is not None else torch.float
rusty1s's avatar
rusty1s committed
336

rusty1s's avatar
rusty1s committed
337
    def is_floating_point(self) -> bool:
rusty1s's avatar
rusty1s committed
338
339
        value = self.storage.value()
        return torch.is_floating_point(value) if value is not None else True
rusty1s's avatar
rusty1s committed
340
341

    def bfloat16(self):
rusty1s's avatar
rusty1s committed
342
343
        return self.type_as(
            torch.tensor(0, dtype=torch.bfloat16, device=self.device()))
rusty1s's avatar
rusty1s committed
344
345

    def bool(self):
rusty1s's avatar
rusty1s committed
346
347
        return self.type_as(
            torch.tensor(0, dtype=torch.bool, device=self.device()))
rusty1s's avatar
rusty1s committed
348
349

    def byte(self):
rusty1s's avatar
rusty1s committed
350
351
        return self.type_as(
            torch.tensor(0, dtype=torch.uint8, device=self.device()))
rusty1s's avatar
rusty1s committed
352
353

    def char(self):
rusty1s's avatar
rusty1s committed
354
355
        return self.type_as(
            torch.tensor(0, dtype=torch.int8, device=self.device()))
rusty1s's avatar
rusty1s committed
356
357

    def half(self):
rusty1s's avatar
rusty1s committed
358
359
        return self.type_as(
            torch.tensor(0, dtype=torch.half, device=self.device()))
rusty1s's avatar
rusty1s committed
360
361

    def float(self):
rusty1s's avatar
rusty1s committed
362
363
        return self.type_as(
            torch.tensor(0, dtype=torch.float, device=self.device()))
rusty1s's avatar
rusty1s committed
364
365

    def double(self):
rusty1s's avatar
rusty1s committed
366
367
        return self.type_as(
            torch.tensor(0, dtype=torch.double, device=self.device()))
rusty1s's avatar
rusty1s committed
368
369

    def short(self):
rusty1s's avatar
rusty1s committed
370
371
        return self.type_as(
            torch.tensor(0, dtype=torch.short, device=self.device()))
rusty1s's avatar
rusty1s committed
372
373

    def int(self):
rusty1s's avatar
rusty1s committed
374
375
        return self.type_as(
            torch.tensor(0, dtype=torch.int, device=self.device()))
rusty1s's avatar
rusty1s committed
376
377

    def long(self):
rusty1s's avatar
rusty1s committed
378
379
        return self.type_as(
            torch.tensor(0, dtype=torch.long, device=self.device()))
rusty1s's avatar
rusty1s committed
380
381
382

    # Conversions #############################################################

rusty1s's avatar
rusty1s committed
383
    def to_dense(self, dtype: Optional[int] = None) -> torch.Tensor:
rusty1s's avatar
rusty1s committed
384
        row, col, value = self.coo()
rusty1s's avatar
rusty1s committed
385

rusty1s's avatar
fixes  
rusty1s committed
386
        if value is not None:
rusty1s's avatar
rusty1s committed
387
388
            mat = torch.zeros(self.sizes(), dtype=value.dtype,
                              device=self.device())
rusty1s's avatar
rusty1s committed
389
        else:
rusty1s's avatar
rusty1s committed
390
            mat = torch.zeros(self.sizes(), dtype=dtype, device=self.device())
rusty1s's avatar
rusty1s committed
391
392
393
394

        if value is not None:
            mat[row, col] = value
        else:
rusty1s's avatar
rusty1s committed
395
396
            mat[row, col] = torch.ones(self.nnz(), dtype=mat.dtype,
                                       device=mat.device)
rusty1s's avatar
rusty1s committed
397

rusty1s's avatar
rusty1s committed
398
399
        return mat

rusty1s's avatar
rusty1s committed
400
401
    def to_torch_sparse_coo_tensor(self, dtype: Optional[int] = None
                                   ) -> torch.Tensor:
rusty1s's avatar
rusty1s committed
402
403
        row, col, value = self.coo()
        index = torch.stack([row, col], dim=0)
rusty1s's avatar
rusty1s committed
404

rusty1s's avatar
rusty1s committed
405
        if value is None:
rusty1s's avatar
rusty1s committed
406
            value = torch.ones(self.nnz(), dtype=dtype, device=self.device())
rusty1s's avatar
rusty1s committed
407

rusty1s's avatar
rusty1s committed
408
        return torch.sparse_coo_tensor(index, value, self.sizes())
rusty1s's avatar
rusty1s committed
409

rusty1s's avatar
rusty1s committed
410
411
412
413
414
415
416
417
418
419
420
421

# Python Bindings #############################################################


def share_memory_(self: SparseTensor) -> SparseTensor:
    self.storage.share_memory_()


def is_shared(self: SparseTensor) -> bool:
    return self.storage.is_shared()


rusty1s's avatar
typing  
rusty1s committed
422
423
424
def to(self, *args: Optional[List[Any]],
       **kwargs: Optional[Dict[str, Any]]) -> SparseTensor:

rusty1s's avatar
rusty1s committed
425
    device, dtype, non_blocking = torch._C._nn._parse_to(*args, **kwargs)[:3]
rusty1s's avatar
rusty1s committed
426
427
428
429
430
431
432
433
434

    if dtype is not None:
        self = self.type_as(torch.tensor(0., dtype=dtype))
    if device is not None:
        self = self.device_as(torch.tensor(0., device=device), non_blocking)

    return self


rusty1s's avatar
typing  
rusty1s committed
435
def __getitem__(self: SparseTensor, index: Any) -> SparseTensor:
rusty1s's avatar
repr  
rusty1s committed
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
    index = list(index) if isinstance(index, tuple) else [index]
    # More than one `Ellipsis` is not allowed...
    if len([i for i in index if not torch.is_tensor(i) and i == ...]) > 1:
        raise SyntaxError

    dim = 0
    out = self
    while len(index) > 0:
        item = index.pop(0)
        if isinstance(item, int):
            out = out.select(dim, item)
            dim += 1
        elif isinstance(item, slice):
            if item.step is not None:
                raise ValueError('Step parameter not yet supported.')

            start = 0 if item.start is None else item.start
            start = self.size(dim) + start if start < 0 else start

            stop = self.size(dim) if item.stop is None else item.stop
            stop = self.size(dim) + stop if stop < 0 else stop

            out = out.narrow(dim, start, max(stop - start, 0))
            dim += 1
        elif torch.is_tensor(item):
            if item.dtype == torch.bool:
                out = out.masked_select(dim, item)
                dim += 1
            elif item.dtype == torch.long:
                out = out.index_select(dim, item)
                dim += 1
        elif item == Ellipsis:
            if self.dim() - len(index) < dim:
                raise SyntaxError
            dim = self.dim() - len(index)
        else:
            raise SyntaxError

    return out


rusty1s's avatar
typing  
rusty1s committed
477
def __repr__(self: SparseTensor) -> str:
rusty1s's avatar
repr  
rusty1s committed
478
479
480
    i = ' ' * 6
    row, col, value = self.coo()
    infos = []
rusty1s's avatar
rusty1s committed
481
482
    infos += [f'row={indent(row.__repr__(), i)[len(i):]}']
    infos += [f'col={indent(col.__repr__(), i)[len(i):]}']
rusty1s's avatar
repr  
rusty1s committed
483
484

    if value is not None:
rusty1s's avatar
rusty1s committed
485
        infos += [f'val={indent(value.__repr__(), i)[len(i):]}']
rusty1s's avatar
repr  
rusty1s committed
486
487

    infos += [
rusty1s's avatar
rusty1s committed
488
489
        f'size={tuple(self.sizes())}, nnz={self.nnz()}, '
        f'density={100 * self.density():.02f}%'
rusty1s's avatar
repr  
rusty1s committed
490
    ]
rusty1s's avatar
rusty1s committed
491

rusty1s's avatar
repr  
rusty1s committed
492
493
494
    infos = ',\n'.join(infos)

    i = ' ' * (len(self.__class__.__name__) + 1)
rusty1s's avatar
rusty1s committed
495
    return f'{self.__class__.__name__}({indent(infos, i)[len(i):]})'
rusty1s's avatar
repr  
rusty1s committed
496
497


rusty1s's avatar
rusty1s committed
498
499
500
SparseTensor.share_memory_ = share_memory_
SparseTensor.is_shared = is_shared
SparseTensor.to = to
rusty1s's avatar
repr  
rusty1s committed
501
502
SparseTensor.__getitem__ = __getitem__
SparseTensor.__repr__ = __repr__
rusty1s's avatar
rusty1s committed
503
504
505

# Scipy Conversions ###########################################################

rusty1s's avatar
rusty1s committed
506
507
ScipySparseMatrix = Union[scipy.sparse.coo_matrix, scipy.sparse.
                          csr_matrix, scipy.sparse.csc_matrix]
rusty1s's avatar
rusty1s committed
508
509
510


@torch.jit.ignore
rusty1s's avatar
rusty1s committed
511
def from_scipy(mat: ScipySparseMatrix, has_value: bool = True) -> SparseTensor:
rusty1s's avatar
rusty1s committed
512
513
514
515
516
517
518
519
520
    colptr = None
    if isinstance(mat, scipy.sparse.csc_matrix):
        colptr = torch.from_numpy(mat.indptr).to(torch.long)

    mat = mat.tocsr()
    rowptr = torch.from_numpy(mat.indptr).to(torch.long)
    mat = mat.tocoo()
    row = torch.from_numpy(mat.row).to(torch.long)
    col = torch.from_numpy(mat.col).to(torch.long)
rusty1s's avatar
rusty1s committed
521
522
523
    value = None
    if has_value:
        value = torch.from_numpy(mat.data)
rusty1s's avatar
rusty1s committed
524
525
    sparse_sizes = mat.shape[:2]

rusty1s's avatar
rusty1s committed
526
527
528
529
    storage = SparseStorage(row=row, rowptr=rowptr, col=col, value=value,
                            sparse_sizes=sparse_sizes, rowcount=None,
                            colptr=colptr, colcount=None, csr2csc=None,
                            csc2csr=None, is_sorted=True)
rusty1s's avatar
rusty1s committed
530
531
532
533
534

    return SparseTensor.from_storage(storage)


@torch.jit.ignore
rusty1s's avatar
rusty1s committed
535
def to_scipy(self: SparseTensor, layout: Optional[str] = None,
rusty1s's avatar
rusty1s committed
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
             dtype: Optional[torch.dtype] = None) -> ScipySparseMatrix:
    assert self.dim() == 2
    layout = get_layout(layout)

    if not self.has_value():
        ones = torch.ones(self.nnz(), dtype=dtype).numpy()

    if layout == 'coo':
        row, col, value = self.coo()
        row = row.detach().cpu().numpy()
        col = col.detach().cpu().numpy()
        value = value.detach().cpu().numpy() if self.has_value() else ones
        return scipy.sparse.coo_matrix((value, (row, col)), self.sizes())
    elif layout == 'csr':
        rowptr, col, value = self.csr()
        rowptr = rowptr.detach().cpu().numpy()
        col = col.detach().cpu().numpy()
        value = value.detach().cpu().numpy() if self.has_value() else ones
        return scipy.sparse.csr_matrix((value, col, rowptr), self.sizes())
    elif layout == 'csc':
        colptr, row, value = self.csc()
        colptr = colptr.detach().cpu().numpy()
        row = row.detach().cpu().numpy()
        value = value.detach().cpu().numpy() if self.has_value() else ones
        return scipy.sparse.csc_matrix((value, row, colptr), self.sizes())


SparseTensor.from_scipy = from_scipy
SparseTensor.to_scipy = to_scipy