"docs/en_US/TrainingService/RemoteMachineMode.md" did not exist on "8314d6eec52aaa6c994e393cc231cf1d3d8753a4"
layout_inference.cc 47.2 KB
Newer Older
1
2
3
4
5
/*!
 * \file layout_inference.cc
 * \brief infer the fragment/shared memory layout
 */

6
#include <tvm/ffi/reflection/registry.h>
7
#include <tvm/tir/builtin.h>
8
#include <tvm/tir/index_map.h>
9
10
11
12
13
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>
#include <tvm/tir/utils.h>

14
#include <algorithm>
15
#include <deque>
16
#include <memory>
17
18
#include <queue>

19
#include "../layout/utils.h"
20
#include "../op/copy.h"
21
#include "../op/parallel.h"
22
#include "../op/region.h"
23

24
#include "arith/ir_mutator_with_analyzer.h"
25
#include "arith/ir_visitor_with_analyzer.h"
26
#include "common/loop_fusion_utils.h"
27
#include "common/loop_parallel_transform_utils.h"
28
#include "common/union_find.h"
29
#include "layout_reducer.h"
30
31
#include "loop_partition.h"
#include "loop_vectorize.h"
32
33
#include "runtime/thread_storage_scope.h"
#include "tir/transforms/ir_utils.h"
34
35
36
37

namespace tvm {
namespace tl {

38
39
40
using namespace tir;

/*!
41
 * \brief collect the mapping from the buffer var to it allocated buffer
42
 */
43
class ThreadBindingCollector : public StmtExprVisitor {
44
45
public:
  void VisitStmt_(const AttrStmtNode *op) final {
46
47
48
49
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      thread_binding_[iv->var.get()] = iv;
    }
50
51
52
    StmtExprVisitor::VisitStmt_(op);
  }

53
54
  // The thread binding map
  std::unordered_map<const VarNode *, IterVar> thread_binding_;
55
56
};

57
58
using namespace tir;
using arith::IRMutatorWithAnalyzer;
59
using arith::IRVisitorWithAnalyzer;
60
61
62
63
64
65
66

struct LayoutInferenceResult {
  Map<Buffer, Layout> layout_map;
  Map<For, Fragment> for_map;
  Map<For, PrimExpr> predicate_map;
};

67
class BufferUseDefCollector : public IRVisitorWithAnalyzer {
68
public:
69
70
  BufferUseDefCollector(bool skip_thread_partition)
      : skip_thread_partition_(skip_thread_partition) {}
71

72
73
  using arith::IRVisitorWithAnalyzer::IRVisitorWithAnalyzer;

74
75
  void RunInferStep(int cur_infer_id, InferLevel level, bool update_queue,
                    LayoutMap &layout_map, const LayoutMap &strict_layout_map,
76
                    std::deque<int> &q, std::vector<bool> &in_queue) {
77
78
79
80
81
82
83
84
85
86
87
88
89
    auto num_infer = infer_list_.size();

    // Range check for cur_infer_id
    ICHECK_GE(cur_infer_id, 0) << "cur_infer_id is negative, which is invalid.";
    ICHECK_LT(cur_infer_id, num_infer)
        << "cur_infer_id " << cur_infer_id << " is out of range, must be < "
        << num_infer << ".";

    // Make sure we can safely access infer_list_[cur_infer_id] and
    // thread_var_vec_[cur_infer_id]
    auto &next = infer_list_[cur_infer_id];
    auto iter_var = thread_var_vec_[cur_infer_id];
    auto thread_bounds = thread_bounds_vec_[cur_infer_id];
90
    arith::Analyzer *cur_analyzer = analyzer_vec_[cur_infer_id].get();
91
    auto buffer_oob = buffer_oob_vec_[cur_infer_id];
92
    // Double-check that 'next' is valid
93
94
    ICHECK(next.defined()) << "infer_list_[" << cur_infer_id
                           << "] is null inside run_infer_step.";
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

    // Check iter_var->dom and dom->extent
    ICHECK(iter_var.defined())
        << "thread_var_vec_[" << cur_infer_id << "] is not defined.";
    ICHECK(iter_var->dom.defined())
        << "iter_var->dom is not defined for infer_list_[" << cur_infer_id
        << "].";
    ICHECK(iter_var->dom->extent.defined())
        << "iter_var->dom->extent is not defined for infer_list_["
        << cur_infer_id << "].";

    const int64_t *extent_ptr = as_const_int(iter_var->dom->extent);
    ICHECK(extent_ptr != nullptr)
        << "iter_var->dom->extent is not a constant integer, which is "
           "required for layout inference.";

    // Run InferLayout
112
113
    auto updates =
        next->InferLayout(LayoutInferArgs{target_, thread_bounds, layout_map,
114
                                          cur_analyzer, buffer_oob},
115
                          level);
116

117
118
119
120
121
122
    // Process the returned updates
    for (const auto &[buffer, layout] : updates) {
      // Basic validity checks
      ICHECK(buffer.defined()) << "InferLayout returned an undefined buffer.";
      ICHECK(layout.defined()) << "InferLayout returned an undefined layout.";

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
      // Helper: propagate inferred layout to alias buffers (same data Var)
      auto propagate_alias = [&](const Buffer &src_buffer,
                                 const Layout &src_layout) {
        if (!buffer_data_to_buffers_.count(src_buffer->data))
          return;
        const auto &siblings = buffer_data_to_buffers_[src_buffer->data];
        for (const auto &sib : siblings) {
          if (sib.same_as(src_buffer))
            continue;
          bool shapes_equal =
              src_layout->InputShape().size() == sib->shape.size();
          if (shapes_equal) {
            for (size_t i = 0; i < src_layout->InputShape().size(); ++i) {
              if (!analyzer_.CanProveEqual(src_layout->InputShape()[i],
                                           sib->shape[i])) {
                shapes_equal = false;
                break;
              }
            }
          }
          Layout target_layout =
144
145
146
147
148
              shapes_equal
                  ? src_layout
                  : src_layout->Reshape(sib->shape, &analyzer_,
                                        Integer(src_buffer->dtype.bytes()),
                                        Integer(sib->dtype.bytes()));
149
150
151
152
153
154
155
156
157
158
          if (layout_map.count(sib)) {
            ICHECK(target_layout->IsEqual(layout_map[sib].get()))
                << "Get different layout for alias buffer " << sib
                << " (data-shared with " << src_buffer
                << ")\n current: " << target_layout->DebugOutput()
                << "\n previous: " << layout_map[sib]->DebugOutput();
          } else {
            layout_map.Set(sib, target_layout);
            if (update_queue && use_list_.count(sib)) {
              for (int idx : use_list_[sib]) {
159
                EnqueueWithPriority(idx, q, in_queue, cur_infer_id, layout_map);
160
161
162
163
164
165
              }
            }
          }
        }
      };

166
167
168
169
170
171
      if (layout_map.count(buffer)) {
        // If new layout contains the old one, update map
        if (buffer.scope() == "local.fragment" &&
            level != InferLevel::kStrict && !strict_layout_map.count(buffer)) {
          // Actually this test has been done in ParallelOp::InferLayout
          // already. Just do it again to avoid missing implementations in other
172
          // `TileOperator`s.
173
174
175
176
177

          auto dst_layout_opt = layout.as<Fragment>();
          ICHECK(dst_layout_opt.has_value())
              << "Failed to cast layout to Fragment for buffer " << buffer
              << ", layout type is " << layout->GetTypeKey();
178
          const auto &dst_layout = dst_layout_opt.value();
179
180
181
182
183
          auto src_layout_opt = layout_map[buffer].as<Fragment>();
          ICHECK(src_layout_opt.has_value())
              << "Failed to cast layout_map[buffer] to Fragment for buffer "
              << buffer << ", layout type is "
              << layout_map[buffer]->GetTypeKey();
184
          const auto &src_layout = src_layout_opt.value();
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
          ICHECK(dst_layout->InputDim() == src_layout->InputDim());
          Array<PrimExpr> indices;
          indices.reserve(dst_layout->InputDim());
          arith::Analyzer inner_analyzer;
          for (int i = 0; i < dst_layout->InputDim(); ++i) {
            auto x = InputPlaceholder(i);
            indices.push_back(x);
            // should be literal - literal = 0, any analyzer will work
            ICHECK(is_zero(inner_analyzer.Simplify(
                dst_layout->InputShape()[i] - src_layout->InputShape()[i])));
            inner_analyzer.Bind(x, Range(0, dst_layout->InputShape()[i]));
          }
          if (ProveFragmentContains(src_layout, dst_layout, indices, indices,
                                    inner_analyzer)) {
            layout_map.Set(buffer, layout);
200
201
            // Propagate to alias buffers as well
            propagate_alias(buffer, layout);
202
203
204
205
            continue;
          }
        }
        // If already in map, ensure they are structurally equal
206
        ICHECK(layout->IsEqual(layout_map[buffer].get()))
207
208
209
            << "Get different layout for " << buffer
            << "\n current layout: " << layout->DebugOutput()
            << "\n previous layout: " << layout_map[buffer]->DebugOutput();
210
211
        // Ensure aliases are consistent too
        propagate_alias(buffer, layout);
212
213
214
      } else {
        // Otherwise, update map
        layout_map.Set(buffer, layout);
215
216
        // Propagate to alias buffers (may enqueue their users)
        propagate_alias(buffer, layout);
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
        if (!update_queue)
          continue;

        // Check if buffer exists in use_list_
        if (!use_list_.count(buffer)) {
          LOG(WARNING) << "Layout inference failed for buffer " << buffer
                       << ". "
                       << "The buffer cannot be inferred with current layout "
                          "inference rules.";
          continue;
        }

        // Push back into BFS queue
        for (int idx : use_list_[buffer]) {
          ICHECK_GE(idx, 0)
              << "Index in use_list_ for buffer " << buffer << " is negative.";
          ICHECK_LT(idx, num_infer)
              << "Index in use_list_ for buffer " << buffer
              << " out of range: " << idx << " >= " << num_infer << ".";

237
          EnqueueWithPriority(idx, q, in_queue, cur_infer_id, layout_map);
238
239
240
241
242
243
        }
      }
    }
  };

  void FinishInferQueue(InferLevel level, LayoutMap &layout_map,
244
                        const LayoutMap &strict_layout_map, std::deque<int> &q,
245
246
                        std::vector<bool> &in_queue) {
    auto num_infer = infer_list_.size();
247

248
249
    while (!q.empty()) {
      int cur_infer_id = q.front();
250
      q.pop_front();
251
252
253
254
255
256
257
258
259
260
      // Range check again, just to be safe
      ICHECK_GE(cur_infer_id, 0);
      ICHECK_LT(cur_infer_id, num_infer);

      in_queue[cur_infer_id] = false;
      RunInferStep(cur_infer_id, level, true, layout_map, strict_layout_map, q,
                   in_queue);
    }
  };

261
  LayoutInferenceResult Run() {
262
263
264
265
266
    // Basic consistency check: infer_list_ and thread_var_vec_ should have the
    // same size
    ICHECK_EQ(infer_list_.size(), thread_var_vec_.size())
        << "Size mismatch: infer_list_ and thread_var_vec_ must match in "
           "length.";
267
268
269
    ICHECK_EQ(thread_bounds_vec_.size(), infer_list_.size())
        << "Size mismatch: thread_bounds_vec_ and infer_list_ must match in "
           "length.";
270
271
272
    ICHECK_EQ(analyzer_vec_.size(), infer_list_.size())
        << "Size mismatch: analyzer_vec_ and infer_list_ must match in "
           "length.";
273
274
275
    ICHECK_EQ(buffer_oob_vec_.size(), infer_list_.size())
        << "Size mismatch: buffer_oob_vec_ and infer_list_ must match in "
           "length.";
276

277
278
279
280
281
    DLOG(INFO) << "[InferLayout] all participating operators:" << '\n';
    for (int i = 0; i < infer_list_stmt_.size(); ++i) {
      DLOG(INFO) << "    op " << i << ":" << infer_list_stmt_[i] << '\n';
    }

282
283
284
285
    // If needed, you can also check that annotated_layout_map_ is not empty, or
    // anything else relevant to your setup.

    // Copy the annotated layout map to local variable
286
    Map<Buffer, Layout> layout_map = annotated_layout_map_;
287
    Map<Buffer, Layout> strict_layout_map;
288
289
    int num_infer = infer_list_.size();

290
    // Prepare BFS queue for iterative inference
291
    std::deque<int> q;
292
    std::vector<bool> in_queue(num_infer, true);
293
294
    for (int i = 0; i < num_infer; i++) {
      // Check that each infer_list_ entry is valid
295
      ICHECK(infer_list_[i].defined())
296
297
298
299
300
301
302
          << "infer_list_[" << i
          << "] is null. The inference object is not allocated properly.";

      // Check that each thread_var_vec_ entry is defined
      if (!thread_var_vec_[i].defined() && skip_thread_partition_) {
        thread_var_vec_[i] = thread_var_;
      }
303
      q.push_back(i);
304
    }
305

306
    // step 1: infer strict layout
307
    for (int i = 0; i < num_infer; i++) {
308
309
      RunInferStep(i, InferLevel::kStrict, false, layout_map, strict_layout_map,
                   q, in_queue);
310
311
    }

312
313
314
315
    for (const auto &[buffer, layout] : layout_map) {
      strict_layout_map.Set(buffer, layout);
    }

316
    // step 2: infer common layout with BFS
317
318
    FinishInferQueue(InferLevel::kCommon, layout_map, strict_layout_map, q,
                     in_queue);
319

320
    // step 3: relax constraints to free and re-run
321
322
    InferInFreeMode(layout_map, strict_layout_map);

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
    // step 4: finalize alias layouts by Var
    // For each storage var, if any buffer in the group has a layout,
    // propagate (reshape if needed) to the rest to ensure completeness.
    for (const auto &[var, buffers] : buffer_data_to_buffers_) {
      // Find a representative with existing layout
      Optional<Buffer> rep;
      Optional<Layout> rep_layout;
      for (const auto &buf : buffers) {
        if (layout_map.count(buf)) {
          rep = buf;
          rep_layout = layout_map[buf];
          break;
        }
      }
      if (!rep_layout.defined())
        continue;
      for (const auto &buf : buffers) {
        if (!layout_map.count(buf)) {
          bool shapes_equal =
              rep_layout.value()->InputShape().size() == buf->shape.size();
          if (shapes_equal) {
            for (size_t i = 0; i < rep_layout.value()->InputShape().size();
                 ++i) {
              if (!analyzer_.CanProveEqual(rep_layout.value()->InputShape()[i],
                                           buf->shape[i])) {
                shapes_equal = false;
                break;
              }
            }
          }

354
355
356
357
358
359
          Layout reshaped = shapes_equal
                                ? rep_layout.value()
                                : rep_layout.value()->Reshape(
                                      buf->shape, &analyzer_,
                                      Integer(rep.value()->dtype.bytes()),
                                      Integer(buf->dtype.bytes()));
360
361
362
363
364
          layout_map.Set(buf, reshaped);
        }
      }
    }

365
    // Check that all local.fragment buffers have inferred layouts
366
    for (const auto &[buffer, _] : use_list_) {
367
368
369
370
371
      if (buffer.scope() == "local.fragment") {
        ICHECK_NE(layout_map.count(buffer), 0)
            << "The layout for fragment " << buffer
            << " can not be inferred correctly.";
      }
372
373
    }

374
    // Collect layout info for For nodes
375
376
    Map<For, Fragment> for_map;
    Map<For, PrimExpr> predicate_map;
377
378
379
    ICHECK(infer_list_.size() == thread_var_vec_.size())
        << "infer_list_ and thread_var_vec_ size mismatch";
    for (int i = 0; i < infer_list_.size(); i++) {
380
      TileOperator base_infer = std::move(infer_list_[i]);
381
382
      auto thread_var = thread_var_vec_[i];

383
      // Check if base_infer is valid
384
385
386
      ICHECK(base_infer.defined()) << "Null pointer encountered in "
                                      "infer_list_ while collecting for_map.";
      if (auto for_infer = base_infer.as<ParallelOpNode>()) {
387
        // Check that the loop layout is defined
388
        ICHECK(for_infer->GetLoopLayout().defined())
389
            << "The Layout for Parallel for cannot be inferred correctly:\n"
390
391
            << for_infer->GetRoot();
        for_map.Set(for_infer->GetRoot(), for_infer->GetLoopLayout());
392
        // thread_var_ should be defined if we rely on it
393
394
        ICHECK(thread_var.defined())
            << "thread_var is not defined. Cannot retrieve predicate.";
395

396
        if (auto predicate = for_infer->GetPredicate(thread_var->var)) {
397
          predicate_map.Set(for_infer->GetRoot(), predicate.value());
398
        }
399
400
401
402
403
404
      }
    }

    return {layout_map, for_map, predicate_map};
  }

405
406
  void Collect(const PrimFunc &f) {
    for (const auto &[_, buffer] : f->buffer_map) {
407
408
409
410
411
412
413
      if (buffer_data_to_buffers_.count(buffer->data)) {
        auto buffers = buffer_data_to_buffers_[buffer->data];
        buffers.push_back(buffer);
        buffer_data_to_buffers_.Set(buffer->data, buffers);
      } else {
        buffer_data_to_buffers_.Set(buffer->data, {buffer});
      }
414
415
    }
    auto target = f->GetAttr<Target>(tvm::attr::kTarget);
416
417
    ICHECK(target.defined())
        << "Layout_Inference: Require the target attribute";
418
419
420
421
    target_ = target.value();
    this->operator()(f->body);
  }

422
private:
423
424
425
426
427
428
429
430
431
432
433
434
  Map<Var, Buffer> GetBufferMap() const {
    Map<Var, Buffer> buffer_map;
    for (const auto &[var, buffers] : buffer_data_to_buffers_) {
      // Use the first buffer for each var
      // TODO(lei): phaseout buffer_map in future.
      if (!buffers.empty()) {
        buffer_map.Set(var, buffers[0]);
      }
    }
    return buffer_map;
  }

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
  // Return true if all buffers that this op (idx) touches already have
  // inferred layouts in layout_map. Used to prioritize enqueue order.
  bool ShouldPrioritize(int idx, const LayoutMap &layout_map) const {
    auto it = op_touched_buffers_.find(idx);
    if (it == op_touched_buffers_.end() || it->second.empty())
      return false;
    for (const auto &buf : it->second) {
      if (!layout_map.count(buf))
        return false;
    }
    return true;
  }

  // Enqueue idx to q with priority if all its buffers already
  // have layouts. Also guards against duplicates and self-enqueue.
  void EnqueueWithPriority(int idx, std::deque<int> &q,
                           std::vector<bool> &in_queue, int cur_infer_id,
                           const LayoutMap &layout_map) const {
    if (idx == cur_infer_id)
      return;
    if (idx < 0 || idx >= static_cast<int>(in_queue.size()))
      return;
    if (in_queue[idx])
      return;
    in_queue[idx] = true;
    if (ShouldPrioritize(idx, layout_map)) {
      q.push_front(idx);
    } else {
      q.push_back(idx);
    }
  }

467
  void VisitExpr_(const CallNode *op) final {
468
    IRVisitorWithAnalyzer::VisitExpr_(op);
469
    // Do not analysis the call node to the global function.
470
471
    if (op->op.as<GlobalVarNode>())
      return;
472

473
    auto p = ParseOperator(tvm::ffi::GetRef<Call>(op));
474
    if (p.defined()) {
475
      for (const auto &arg : op->args) {
476
477
        if (auto buffer = getBufferFromAccessPtr(arg)) {
          addToUseList(buffer.value());
478
479
        } else if (auto buffer = getBufferFromRegion(arg)) {
          addToUseList(buffer.value());
480
481
        }
      }
482
      // Compute thread_var_ and thread_bounds_
483
      thread_var_vec_.push_back(thread_var_);
484
485
486
487
      if (analyzer_.const_int_bound.IsBound(thread_var_->var)) {
        auto const_int_bound = analyzer_.const_int_bound(thread_var_);
        auto min_value = const_int_bound->min_value;
        auto max_value = const_int_bound->max_value;
488
        auto extent = max_value - min_value + 1;
489
490
        auto dtype = thread_var_->var.dtype();
        thread_bounds_vec_.push_back(Range::FromMinExtent(
491
            IntImm(dtype, min_value), IntImm(dtype, extent)));
492
493
494
      } else {
        thread_bounds_vec_.push_back(Range::FromMinExtent(0, 1));
      }
495
      analyzer_vec_.push_back(analyzer_.Clone());
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526

      // Compute buffer oob for each buffer in the op
      if (const auto *copy = p.as<CopyNode>()) {
        auto src_tensor = copy->src;
        auto dst_tensor = copy->dst;
        auto src_range = copy->src_range;
        auto dst_range = copy->dst_range;
        bool src_oob = false;
        bool dst_oob = false;
        for (size_t i = 0; i < src_range.size(); i++) {
          if (!analyzer_.CanProve(src_range[i]->min + src_range[i]->extent <=
                                      src_tensor->shape[i],
                                  arith::ProofStrength::kSymbolicBound)) {
            src_oob = true;
            break;
          }
        }
        for (size_t i = 0; i < dst_range.size(); i++) {
          if (!analyzer_.CanProve(dst_range[i]->min + dst_range[i]->extent <=
                                      dst_tensor->shape[i],
                                  arith::ProofStrength::kSymbolicBound)) {
            dst_oob = true;
            break;
          }
        }
        buffer_oob_vec_.push_back(src_oob || dst_oob);
      } else {
        buffer_oob_vec_.push_back(false);
      }

      // Add the tile operator to infer_list_
527
      infer_list_stmt_.push_back(tvm::ffi::GetRef<ObjectRef>(op));
528
      infer_list_.push_back(std::move(p));
529
530
531
    }
  }

532
  Optional<Buffer> getBufferFromAccessPtr(const PrimExpr &expr) {
533
534
535
    if (auto bl = expr.as<BufferLoadNode>()) {
      return bl->buffer;
    }
536
    auto call = expr.as<CallNode>();
537
538
539
540
    if (!call) {
      return std::nullopt;
    }
    if (call->op.same_as(builtin::tvm_access_ptr())) {
541
542
      auto var_opt = call->args[1].as<Var>();
      if (!var_opt.has_value()) {
543
544
        LOG(WARNING) << "[getBufferFromAccessPtr] args[1] is not a Var, type: "
                     << call->args[1]->GetTypeKey();
545
546
        return std::nullopt;
      }
547
      const auto &var = var_opt.value();
548
549
550
551
552
553
554
      if (buffer_data_to_buffers_.count(var)) {
        const auto &buffers = buffer_data_to_buffers_[var];
        if (!buffers.empty()) {
          return buffers[0]; // Return the first buffer
        }
      }
      return std::nullopt;
555
556
557
558
559
560
561
562
563
564
565
566
    }
    return std::nullopt;
  }

  Optional<Buffer> getBufferFromRegion(const PrimExpr &expr) {
    if (auto call = expr.as<CallNode>()) {
      if (call->op.same_as(RegionOp::Get())) {
        if (auto bl = call->args[0].as<BufferLoadNode>()) {
          return bl->buffer;
        }
        return std::nullopt;
      }
567
    }
568
    return std::nullopt;
569
570
  }

571
  void addToUseList(const Buffer &buffer) {
572
573
574
575
    // buffer scope must be local.fragment
    if (buffer.scope() != "local.fragment") {
      return;
    }
576
577
578
579
580
    int infer_idx = infer_list_.size();
    if (use_list_.find(buffer) == use_list_.end()) {
      use_list_[buffer] = {};
    }
    use_list_[buffer].push_back(infer_idx);
581
582
583
584
585
586
587
588
589
590
591
592
593

    // Track which buffers this op (infer_idx) touches for prioritization.
    // Avoid duplicates.
    auto &vec = op_touched_buffers_[infer_idx];
    bool exists = false;
    for (const auto &b : vec) {
      if (b.same_as(buffer)) {
        exists = true;
        break;
      }
    }
    if (!exists)
      vec.push_back(buffer);
594
595
  }

596
  void VisitStmt_(const ForNode *op) final {
597
    if (op->kind == ForKind::kParallel) {
598
      auto infer = ParallelOp(tvm::ffi::GetRef<For>(op));
599
      for (const auto &[buffer, _] : infer->GetIndiceMap()) {
600
601
        addToUseList(buffer);
      }
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666

      PostOrderVisit(op->body, [this](const ObjectRef &node) {
        if (auto *buffer_load = node.as<BufferLoadNode>()) {
          if (buffer_load->buffer.defined() &&
              buffer_load->buffer->data.defined()) {
            if (buffer_data_to_buffers_.count(buffer_load->buffer->data)) {
              // Check if this buffer is already in the list
              auto buffers = buffer_data_to_buffers_[buffer_load->buffer->data];
              bool found = false;
              for (const auto &buf : buffers) {
                if (buf.same_as(buffer_load->buffer)) {
                  found = true;
                  break;
                }
              }
              if (!found) {
                buffers.push_back(buffer_load->buffer);
                buffer_data_to_buffers_.Set(buffer_load->buffer->data, buffers);
                DLOG(INFO) << "[LayoutInference] BufferStore: added buffer "
                           << buffer_load->buffer
                           << " buffer.get() = " << buffer_load->buffer.get()
                           << " data = " << buffer_load->buffer->data.get();
              }
            } else {
              buffer_data_to_buffers_.Set(buffer_load->buffer->data,
                                          {buffer_load->buffer});
              DLOG(INFO) << "[LayoutInference] BufferStore: new buffer "
                         << buffer_load->buffer
                         << " buffer.get() = " << buffer_load->buffer.get()
                         << " data = " << buffer_load->buffer->data.get();
            }
          }
        } else if (auto *buffer_store = node.as<BufferStoreNode>()) {
          if (buffer_store->buffer.defined() &&
              buffer_store->buffer->data.defined()) {
            if (buffer_data_to_buffers_.count(buffer_store->buffer->data)) {
              auto buffers =
                  buffer_data_to_buffers_[buffer_store->buffer->data];
              bool found = false;
              for (const auto &buf : buffers) {
                if (buf.same_as(buffer_store->buffer)) {
                  found = true;
                  break;
                }
              }
              if (!found) {
                buffers.push_back(buffer_store->buffer);
                buffer_data_to_buffers_.Set(buffer_store->buffer->data,
                                            buffers);
                DLOG(INFO) << "[LayoutInference] BufferStore: added buffer "
                           << buffer_store->buffer
                           << " buffer.get() = " << buffer_store->buffer.get()
                           << " data = " << buffer_store->buffer->data.get();
              }
            } else {
              buffer_data_to_buffers_.Set(buffer_store->buffer->data,
                                          {buffer_store->buffer});
              DLOG(INFO) << "[LayoutInference] BufferStore: new buffer "
                         << buffer_store->buffer
                         << " buffer.get() = " << buffer_store->buffer.get()
                         << " data = " << buffer_store->buffer->data.get();
            }
          }
        }
      });
667
      infer_list_stmt_.push_back(tvm::ffi::GetRef<ObjectRef>(op));
668
669
      infer_list_.push_back(std::move(infer));
      thread_var_vec_.push_back(thread_var_);
670
671
672
673
      if (thread_var_.defined() &&
          analyzer_.const_int_bound.IsBound(thread_var_->var)) {
        auto const_int_bound = analyzer_.const_int_bound(thread_var_);
        auto dtype = thread_var_->var.dtype();
674
675
        auto extent =
            const_int_bound->max_value - const_int_bound->min_value + 1;
676
        thread_bounds_vec_.push_back(Range::FromMinExtent(
677
            IntImm(dtype, const_int_bound->min_value), IntImm(dtype, extent)));
678
679
680
      } else {
        thread_bounds_vec_.push_back(Range::FromMinExtent(0, 1));
      }
681
      analyzer_vec_.push_back(analyzer_.Clone());
682
      buffer_oob_vec_.push_back(false);
683
    } else {
684
      IRVisitorWithAnalyzer::VisitStmt(op->body);
685
686
687
    }
  }

688
  void VisitStmt_(const BlockNode *op) final {
689
    for (auto buffer : op->alloc_buffers) {
690
691
692
693
694
695
696
      if (buffer_data_to_buffers_.count(buffer->data)) {
        auto buffers = buffer_data_to_buffers_[buffer->data];
        buffers.push_back(buffer);
        buffer_data_to_buffers_.Set(buffer->data, buffers);
      } else {
        buffer_data_to_buffers_.Set(buffer->data, {buffer});
      }
697
    }
698
699
700
701
702
703

    // First, visit the block body to collect all buffers from
    // BufferLoad/BufferStore
    IRVisitorWithAnalyzer::VisitStmt_(op);

    // After visiting, apply layouts to all collected buffers
704
    if (op->annotations.count(attr::kLayoutMap)) {
705
      // Check if the layout map is Map<Var, Layout>
706
707
708
      auto map =
          op->annotations.Get(attr::kLayoutMap)->as<Map<Var, Layout>>().value();
      for (const auto &[var, layout] : map) {
709
        ICHECK(buffer_data_to_buffers_.count(var))
710
            << "buffer " << var << " is not found in the block";
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
        const auto &buffers = buffer_data_to_buffers_[var];
        ICHECK(!buffers.empty()) << "buffer list for " << var << " is empty";
        // Apply layout to all buffers associated with this var
        for (const auto &buffer : buffers) {

          // Reshape the layout to match the buffer's shape
          // Check if shapes are structurally equal
          bool shapes_equal =
              layout->InputShape().size() == buffer->shape.size();
          if (shapes_equal) {
            for (size_t i = 0; i < layout->InputShape().size(); ++i) {
              if (!analyzer_.CanProveEqual(layout->InputShape()[i],
                                           buffer->shape[i])) {
                shapes_equal = false;
                break;
              }
            }
          }

          if (shapes_equal) {
            annotated_layout_map_.Set(buffer, layout);
          } else {
733
734
735
736
737
            // Use the first buffer sharing this var as the base for dtype ratio
            int base_bytes = buffers[0]->dtype.bytes();
            auto reshaped_layout =
                layout->Reshape(buffer->shape, &analyzer_, Integer(base_bytes),
                                Integer(buffer->dtype.bytes()));
738
739
740
            annotated_layout_map_.Set(buffer, reshaped_layout);
          }
        }
741
742
743
744
      }
    }
  }

745
  void VisitStmt_(const AttrStmtNode *op) final {
746
747
748
749
750
751
752
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      if (iv->thread_tag == "threadIdx.x") {
        ICHECK(iv->dom->extent.as<IntImmNode>());
        thread_var_ = iv;
      }
    }
753
    IRVisitorWithAnalyzer::VisitStmt_(op);
754
755
  }

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
  void VisitExpr_(const BufferLoadNode *op) final {
    // Collect buffer from BufferLoad
    if (op->buffer.defined() && op->buffer->data.defined()) {
      if (buffer_data_to_buffers_.count(op->buffer->data)) {
        // Check if this buffer is already in the list
        auto buffers = buffer_data_to_buffers_[op->buffer->data];
        bool found = false;
        for (const auto &buf : buffers) {
          if (buf.same_as(op->buffer)) {
            found = true;
            break;
          }
        }
        if (!found) {
          buffers.push_back(op->buffer);
          buffer_data_to_buffers_.Set(op->buffer->data, buffers);
          DLOG(INFO) << "[LayoutInference] BufferLoad: added buffer "
                     << op->buffer << " buffer.get() = " << op->buffer.get()
                     << " data = " << op->buffer->data.get();
        }
      } else {
        buffer_data_to_buffers_.Set(op->buffer->data, {op->buffer});
        DLOG(INFO) << "[LayoutInference] BufferLoad: new buffer " << op->buffer
                   << " buffer.get() = " << op->buffer.get()
                   << " data = " << op->buffer->data.get();
      }
    }
    IRVisitorWithAnalyzer::VisitExpr_(op);
  }

  void VisitStmt_(const BufferStoreNode *op) final {
    // Collect buffer from BufferStore
    if (op->buffer.defined() && op->buffer->data.defined()) {
      if (buffer_data_to_buffers_.count(op->buffer->data)) {
        // Check if this buffer is already in the list
        auto buffers = buffer_data_to_buffers_[op->buffer->data];
        bool found = false;
        for (const auto &buf : buffers) {
          if (buf.same_as(op->buffer)) {
            found = true;
            break;
          }
        }
        if (!found) {
          buffers.push_back(op->buffer);
          buffer_data_to_buffers_.Set(op->buffer->data, buffers);
          DLOG(INFO) << "[LayoutInference] BufferStore: added buffer "
                     << op->buffer << " buffer.get() = " << op->buffer.get()
                     << " data = " << op->buffer->data.get();
        }
      } else {
        buffer_data_to_buffers_.Set(op->buffer->data, {op->buffer});
        DLOG(INFO) << "[LayoutInference] BufferStore: new buffer " << op->buffer
                   << " buffer.get() = " << op->buffer.get()
                   << " data = " << op->buffer->data.get();
      }
    }
    IRVisitorWithAnalyzer::VisitStmt_(op);
  }

  Map<Var, Array<Buffer>> buffer_data_to_buffers_;
817
  std::vector<ObjectRef> infer_list_stmt_;
818
  std::vector<TileOperator> infer_list_;
819
820
  std::unordered_map<Buffer, std::vector<int>, ObjectPtrHash, ObjectPtrEqual>
      use_list_;
821
822
  // Per-op list of buffers it touches (fragment scope), used for prioritization
  std::unordered_map<int, std::vector<Buffer>> op_touched_buffers_;
823
824
825
826
  // This is a workaround for cpu backend,
  // we need to define a thread_var for the serial loop.
  IterVar thread_var_ = IterVar(Range::FromMinExtent(0, 1), Var("v_thread"),
                                IterVarType::kDataPar);
827
  std::vector<IterVar> thread_var_vec_;
828
  std::vector<Range> thread_bounds_vec_;
829
  std::vector<std::unique_ptr<arith::Analyzer>> analyzer_vec_;
830
  std::vector<bool> buffer_oob_vec_;
831
832
  Target target_;
  LayoutMap annotated_layout_map_;
833
  bool skip_thread_partition_{false};
834

835
836
  std::vector<TileOperator> BackupInferList() {
    std::vector<TileOperator> back_infer_list;
837
838
839
840
841
842
843
844
845
    back_infer_list.reserve(infer_list_.size());
    for (auto &&p : infer_list_) {
      back_infer_list.push_back(p->Clone());
    }
    return back_infer_list;
  }

  void InferInFreeMode(LayoutMap &layout_map,
                       const LayoutMap &strict_layout_map) {
846
847
848
849
850
851
852

    DLOG(INFO) << "Enforced layout maps:" << '\n';
    for (auto &&[k, v] : layout_map) {
      DLOG(INFO) << "    " << k << ": " << v->DebugOutput() << '\n';
    }
    DLOG(INFO) << '\n';

853
854
855
856
857
858
859
860
861
    // Group operators into connected components
    UnionFind<int> uf;
    for (int i = 0; i < infer_list_.size(); i++) {
      uf.MakeSet(i);
    }
    for (const auto &[buffer, infer_indices] : use_list_) {
      if (infer_indices.empty())
        continue;

862
      // Union all infer_list_ indices that share the same Buffer object
863
864
865
866
867
      int first_idx = infer_indices[0];
      for (size_t i = 1; i < infer_indices.size(); i++) {
        uf.Union(first_idx, infer_indices[i]);
      }
    }
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
    // Additionally, union across buffers that share the same underlying
    // buffer->data (Var). This handles cases like reshape where multiple
    // Buffer objects alias the same storage.
    for (const auto &[var, buffers] : buffer_data_to_buffers_) {
      std::vector<int> merged;
      for (const auto &buf : buffers) {
        auto it = use_list_.find(buf);
        if (it != use_list_.end()) {
          const auto &vec = it->second;
          merged.insert(merged.end(), vec.begin(), vec.end());
        }
      }
      if (merged.size() > 1) {
        std::sort(merged.begin(), merged.end());
        merged.erase(std::unique(merged.begin(), merged.end()), merged.end());
        int first = merged[0];
        for (size_t i = 1; i < merged.size(); ++i) {
          uf.Union(first, merged[i]);
        }
      }
    }
889

890
891
892
893
894
    std::unordered_map<int, std::vector<int>> components;
    for (int i = 0; i < infer_list_.size(); i++) {
      int root = uf.Find(i);
      components[root].push_back(i);
    }
895
    // Create a map from root to buffers
896
897
898
899
900
    std::unordered_map<int, std::vector<Buffer>> components_buffers;
    for (const auto &[buffer, infer_indices] : use_list_) {
      int root = uf.Find(infer_indices[0]);
      components_buffers[root].push_back(buffer);
    }
901
902
    // Keep components_buffers for debug purpose
    (void)components_buffers;
903
904
905

    // For each component, try each op as root, and determine the least
    // replicated one
906
    std::deque<int> q;
907
    std::vector<bool> in_queue(infer_list_.size(), false);
908

909
    for (auto &&[root, members] : components) {
910
911
      DLOG(INFO) << "======================= processing component " << root
                 << '\n';
912
913
914
      decltype(infer_list_) best_infer_list;
      LayoutMap best_layout_map;
      int64_t min_reg_num = INT64_MAX;
915
      int min_reg_num_infer_root = -1;
916

917
      // Try each member as the root of inference for this component
918
      for (int attempt_infer_root : members) {
919
        DLOG(INFO) << "----------------------- try root " << attempt_infer_root
920
                   << " members " << members.size() << '\n';
921
        // Backup the current infer_list_ state
922
        auto back_infer_list = BackupInferList();
923
        // Copy the current layout_map for temporary use
924
925
926
        LayoutMap tmp_layout_map = layout_map;
        bool do_update = true;
        try {
927
          // Run inference starting from attempt_infer_root
928
929
930
931
          RunInferStep(attempt_infer_root, InferLevel::kFree, true,
                       tmp_layout_map, strict_layout_map, q, in_queue);
          FinishInferQueue(InferLevel::kFree, tmp_layout_map, strict_layout_map,
                           q, in_queue);
932
933
934

          // After the first search, run inference for all other members in
          // order
935
936
937
938
939
940
941
942
          for (int other_infer_root : members) {
            if (other_infer_root != attempt_infer_root) {
              RunInferStep(other_infer_root, InferLevel::kFree, true,
                           tmp_layout_map, strict_layout_map, q, in_queue);
              FinishInferQueue(InferLevel::kFree, tmp_layout_map,
                               strict_layout_map, q, in_queue);
            }
          }
943
        } catch (const LayoutConflictException &e) {
944
          do_update = false;
945
946
947
          DLOG(INFO) << "attempt failed due to LayoutConflictException "
                     << e.what() << '\n';
        } catch (const NormalizeIterException &e) {
948
          do_update = false;
949
950
          DLOG(INFO) << "attempt failed due to NormalizeIterException "
                     << e.what() << '\n';
951
952
953
954
        } catch (const LoopLayoutInjectiveException &e) {
          do_update = false;
          DLOG(INFO) << "attempt failed due to LoopLayoutInjectiveException "
                     << e.what() << '\n';
955
956
957
        }

        if (do_update) {
958
          // Compute the total register number for this layout
959
          int64_t reg_num = 0;
960
          for (const auto &[buffer, layout] : tmp_layout_map) {
961
962
963
964
            if (auto frag = layout.as<Fragment>()) {
              int64_t frag_reg_num = 1;
              for (auto i : frag.value()->OutputShape()) {
                auto pci = as_const_int(i);
965
966
967
968
969
970
971
                ICHECK(pci != nullptr)
                    << "Can not use non-constant range to "
                       "iterate over a fragment/local "
                       "buffer. Non-constant shape expr is: "
                    << i
                    << ". This is possibly because you use symbolic shape when "
                       "accessing a fragment/local buffer.";
972
973
974
975
976
                frag_reg_num *= *pci;
              }
              reg_num += frag_reg_num;
            }
          }
977
          // Update the best plan if this one uses fewer registers
978
979
980
          if (reg_num < min_reg_num ||
              (reg_num == min_reg_num &&
               attempt_infer_root < min_reg_num_infer_root)) {
981
982
            best_infer_list =
                BackupInferList(); // Use backup to avoid moving out infer_list_
983
984
            best_layout_map = tmp_layout_map;
            min_reg_num = reg_num;
985
            min_reg_num_infer_root = attempt_infer_root;
986
987
          }
        }
988
        // Restore infer_list_ state for the next attempt
989
990
        infer_list_ = std::move(back_infer_list);
      }
991
992
993
994
995
996
      ICHECK(min_reg_num < INT64_MAX) << "no available layout found" << '\n';
      // Apply the best plan for this component
      infer_list_ = std::move(best_infer_list);
      layout_map = best_layout_map;
      DLOG(INFO) << "[InferInFreeMode] Final selection is attempt_infer_root = "
                 << min_reg_num_infer_root << '\n';
997
998
    }
  }
999
1000
1001
};

class LayoutInferencer : public IRMutatorWithAnalyzer {
1002
public:
1003
  static PrimFunc Substitute(PrimFunc f, bool skip_thread_partition = false) {
1004
    arith::Analyzer analyzer;
1005
    PrimFuncNode *fptr = f.CopyOnWrite();
1006
    fptr->body = ParallelLoopFuser::Fuse(f->body);
1007
    BufferUseDefCollector collector(skip_thread_partition);
1008
1009
    collector.Collect(f);
    auto result = collector.Run();
1010
    LayoutInferencer substituter(result, skip_thread_partition, &analyzer);
1011
1012
1013
1014
    fptr->body = substituter.VisitStmt(f->body);
    return f;
  }

1015
private:
1016
  LayoutInferencer(const LayoutInferenceResult &result,
1017
1018
                   bool skip_thread_partition, arith::Analyzer *analyzer)
      : arith::IRMutatorWithAnalyzer(analyzer), result_(result),
1019
        skip_thread_partition_(skip_thread_partition) {};
1020

1021
1022
  using arith::IRMutatorWithAnalyzer::IRMutatorWithAnalyzer;

1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
  /**
   * @brief Visit and mutate a Block node to attach inferred layout information.
   *
   * Converts the visited Block via the base visitor, asserts that every buffer
   * allocated with scope "local.framgent" has an inferred layout in
   * result_.layout_map, and attaches result_.layout_map to the Block's
   * annotations under attr::kLayoutMap.
   *
   * If any "local.framgent" buffer lacks an entry in result_.layout_map an
   * ICHECK will fail with the offending buffer printed.
   *
   * @return Stmt The (possibly modified) Block statement with the layout-map
   * annotation set.
   */
1037
  Stmt VisitStmt_(const BlockNode *op) final {
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
    Block block = Downcast<Block>(IRMutatorWithAnalyzer::VisitStmt_(op));

    for (auto buffer : block->alloc_buffers) {
      if (buffer.scope() == "local.framgent") {
        ICHECK(result_.layout_map.count(buffer))
            << "Cannot inference fragment layout for " << buffer;
      }
    }
    auto block_ptr = block.CopyOnWrite();
    block_ptr->annotations.Set(attr::kLayoutMap, result_.layout_map);
    return block;
  }

1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
  /**
   * @brief Visit and transform For nodes according to inferred layout
   * information.
   *
   * If the For node is present in result_.for_map, this method applies
   * loop-level layout-driven transformations: it optionally partitions the loop
   * across the thread index, vectorizes the loop body, and wraps the loop with
   * a predicate if one was inferred for the loop root.
   *
   * Detailed behavior:
   * - Reads reducer information from the For node's attr::kReducerInfo
   * annotation (if present) to detect reduction targets.
   * - Detects register-local buffer stores (buffers with scope "local") in the
   *   original loop body; if only register-local stores are present the loop is
   *   treated as a register-local scenario and is not partitioned across
   * threads.
   * - Obtains the loop layout from result_.for_map[root] and, unless the loop
   * is register-local or skip_thread_partition_ is set, partitions the loop via
   *   PartitionLoop using thread_var_ and analyzer_.
   * - Scans the transformed loop body to determine whether it accesses any
   *   non-local buffers (scopes other than "local" or "local.fragment").
   * - Scans the transformed loop body to detect reducers (based on
   * reducer_info). If a reducer is present the loop is NOT vectorized
   * (reduction axes are excluded from vectorization as a conservative
   * workaround).
   * - If the loop has non-local accesses and no reducer, the loop is vectorized
   *   via VectorizeLoop.
   * - If a predicate exists in result_.predicate_map for the loop root and the
   *   loop was partitioned, the method returns an IfThenElse surrounding the
   *   (possibly partitioned/vectorized) loop with that predicate; otherwise it
   *   returns the transformed For.
   *
   * @return The possibly transformed For statement (or an IfThenElse wrapping
   * it)
   */
1086
  Stmt VisitStmt_(const ForNode *op) final {
1087
1088
1089
1090
1091
1092
    Map<Var, ReducerInfo> reducer_info;
    if (op->annotations.count(attr::kReducerInfo))
      reducer_info = op->annotations.Get(attr::kReducerInfo)
                         ->as<Map<Var, ReducerInfo>>()
                         .value();

1093
    For for_node = Downcast<For>(IRMutatorWithAnalyzer::VisitStmt_(op));
1094
1095
    if (result_.for_map.count(tvm::ffi::GetRef<For>(op))) {
      auto root = tvm::ffi::GetRef<For>(op);
1096
1097
1098
1099
1100
1101
      // This check is a workaround to support T.Parallel for local buffers.
      // For example:
      //   for i in T.Parallel(1024):
      //     A_local[i] = A_global[i]
      // Here, A_local is a register-local buffer held independently by each
      // thread, so explicit thread binding is not required.
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
      bool store_into_local = false;
      PostOrderVisit(root, [&](const ObjectRef &obj) {
        if (const auto *store = obj.as<BufferStoreNode>()) {
          if (store->buffer.scope() == "local") {
            store_into_local = true;
          }
          // if the case is like:
          // for i in T.Parallel(1024):
          //     A_local[i] = B_global[i]
          //     A_frag[i] = A_global[i]
          // exception will be raise in Parallel::LayoutInference
        }
      });
      // This check if for the loop that only manuplates "local" buffers,
      // for i in T.Parallel(1024):
      //     A_local[i] = B_local[i]
      // Though this might be illegal
1119
1120
      // We use PostOrderVisit to detect whether the loop only manuplates
      // "local" buffers, which indicates register usage and justifies skipping
1121
      // thread binding.
1122
      bool local_register_only = true;
1123
1124
      PostOrderVisit(root, [&](const ObjectRef &obj) {
        if (const auto *store = obj.as<BufferStoreNode>()) {
1125
1126
1127
1128
1129
1130
          if (store->buffer.scope() != "local") {
            local_register_only = false;
          }
        } else if (const auto *load = obj.as<BufferLoadNode>()) {
          if (load->buffer.scope() != "local") {
            local_register_only = false;
1131
1132
1133
1134
          }
        }
      });

1135
      auto loop_layout = result_.for_map[root];
1136
      // FIXME: tell in-Parallel and out-of-Parallel `local`s apart
1137
1138
1139
      // NOTE(lei): a bit ugly, we should rethink about this part in future.
      bool parallel_loop =
          !skip_thread_partition_ && !local_register_only && !store_into_local;
1140

1141
      if (parallel_loop) {
1142
1143
1144
        for_node =
            PartitionLoop(for_node, thread_var_->var, analyzer_, loop_layout);
      }
1145
      // If none thread bindings are provided, partition the loop
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
      bool has_non_local = false;
      PostOrderVisit(for_node->body, [&](const ObjectRef &obj) {
        if (const auto *load = obj.as<BufferLoadNode>()) {
          String scope = load->buffer.scope();
          if (scope != "local" && scope != "local.fragment") {
            has_non_local = true;
          }
        } else if (const auto *store = obj.as<BufferStoreNode>()) {
          String scope = store->buffer.scope();
          if (scope != "local" && scope != "local.fragment") {
            has_non_local = true;
          }
        }
      });
1160
1161
1162
1163
1164
1165
1166
1167
1168
      // Workaround: if reducer is presented, don't vectorize loop
      // Best solution should be isolate reduction axis out of vectorization
      bool has_reducer = false;
      PostOrderVisit(for_node->body, [&](const ObjectRef &obj) {
        if (!has_reducer)
          if (const auto *store = obj.as<BufferStoreNode>()) {
            has_reducer = reducer_info.count(store->buffer->data) != 0;
          }
      });
1169

1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
      // If a cast operation exists, vectorization may still be required
      bool has_cast_operations = false;
      PostOrderVisit(for_node->body, [&](const ObjectRef &obj) {
        if (const auto *store = obj.as<BufferStoreNode>()) {
          // Check if this is a non-reducer store with Cast operation
          if (store->value.as<CastNode>()) {
            has_cast_operations = true;
          }
        }
      });

      if ((has_non_local || has_cast_operations) && !has_reducer) {
1182
        for_node = VectorizeLoop(for_node, analyzer_);
1183
      }
1184

1185
1186
      if (result_.predicate_map.count(root) && parallel_loop) {
        return IfThenElse(result_.predicate_map[root], for_node);
1187
1188
1189
1190
1191
1192
1193
      } else {
        return for_node;
      }
    }
    return for_node;
  }

1194
  Stmt VisitStmt_(const AttrStmtNode *op) final {
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      ICHECK_NE(iv->thread_tag.length(), 0U);
      if (iv->thread_tag == "threadIdx.x") {
        thread_var_ = iv;
      }
    }
    return IRMutatorWithAnalyzer::VisitStmt_(op);
  }

1205
private:
1206
  const LayoutInferenceResult result_;
1207
1208
  IterVar thread_var_ = IterVar(Range::FromMinExtent(0, 1), Var("v_thread"),
                                IterVarType::kDataPar);
1209
  bool skip_thread_partition_{false};
1210
1211
1212
1213
};

tvm::transform::Pass LayoutInference() {
  using namespace tir::transform;
1214
  auto pass_func = [=](PrimFunc f, const IRModule &m, const PassContext &ctx) {
1215
    f.CopyOnWrite()->body = ParallelLoopTransformer::Substitute(f->body);
1216
    ThreadBindingCollector collector;
1217
    collector(f->body);
1218
    bool has_thread_binding = !collector.thread_binding_.empty();
1219
    bool skip_thread_partition = !has_thread_binding;
1220
    return LayoutInferencer::Substitute(std::move(f), skip_thread_partition);
1221
1222
1223
1224
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.LayoutInference", {});
}

1225
TVM_FFI_STATIC_INIT_BLOCK() {
1226
1227
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.LayoutInference", LayoutInference);
1228
}
1229

1230
1231
} // namespace tl
} // namespace tvm