layout_inference.cc 24.3 KB
Newer Older
1
2
3
4
5
/*!
 * \file layout_inference.cc
 * \brief infer the fragment/shared memory layout
 */

6
#include <tvm/ffi/reflection/registry.h>
7
#include <tvm/tir/builtin.h>
8
#include <tvm/tir/index_map.h>
9
10
11
12
13
14
15
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>
#include <tvm/tir/utils.h>

#include <queue>

16
#include "../layout/utils.h"
17
#include "../op/parallel.h"
18
#include "../op/region.h"
19
#include "arith/ir_mutator_with_analyzer.h"
20
#include "arith/ir_visitor_with_analyzer.h"
21
#include "common/loop_fusion_utils.h"
22
#include "common/loop_parallel_transform_utils.h"
23
#include "common/union_find.h"
24
25
#include "loop_partition.h"
#include "loop_vectorize.h"
26
27
#include "runtime/thread_storage_scope.h"
#include "tir/transforms/ir_utils.h"
28
29
30
31

namespace tvm {
namespace tl {

32
33
34
using namespace tir;

/*!
35
 * \brief collect the mapping from the buffer var to it allocated buffer
36
 */
37
class ThreadBindingCollector : public StmtExprVisitor {
38
39
public:
  void VisitStmt_(const AttrStmtNode *op) final {
40
41
42
43
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      thread_binding_[iv->var.get()] = iv;
    }
44
45
46
    StmtExprVisitor::VisitStmt_(op);
  }

47
48
  // The thread binding map
  std::unordered_map<const VarNode *, IterVar> thread_binding_;
49
50
};

51
52
using namespace tir;
using arith::IRMutatorWithAnalyzer;
53
using arith::IRVisitorWithAnalyzer;
54
55
56
57
58
59
60

struct LayoutInferenceResult {
  Map<Buffer, Layout> layout_map;
  Map<For, Fragment> for_map;
  Map<For, PrimExpr> predicate_map;
};

61
class BufferUseDefCollector : public IRVisitorWithAnalyzer {
62
public:
63
64
  BufferUseDefCollector(bool skip_thread_partition)
      : skip_thread_partition_(skip_thread_partition) {}
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
  void RunInferStep(int cur_infer_id, InferLevel level, bool update_queue,
                    LayoutMap &layout_map, const LayoutMap &strict_layout_map,
                    std::queue<int> &q, std::vector<bool> &in_queue) {
    auto num_infer = infer_list_.size();

    // Range check for cur_infer_id
    ICHECK_GE(cur_infer_id, 0) << "cur_infer_id is negative, which is invalid.";
    ICHECK_LT(cur_infer_id, num_infer)
        << "cur_infer_id " << cur_infer_id << " is out of range, must be < "
        << num_infer << ".";

    // Make sure we can safely access infer_list_[cur_infer_id] and
    // thread_var_vec_[cur_infer_id]
    auto &next = infer_list_[cur_infer_id];
    auto iter_var = thread_var_vec_[cur_infer_id];
    auto thread_bounds = thread_bounds_vec_[cur_infer_id];
    // Double-check that 'next' is valid
83
84
    ICHECK(next.defined()) << "infer_list_[" << cur_infer_id
                           << "] is null inside run_infer_step.";
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

    // Check iter_var->dom and dom->extent
    ICHECK(iter_var.defined())
        << "thread_var_vec_[" << cur_infer_id << "] is not defined.";
    ICHECK(iter_var->dom.defined())
        << "iter_var->dom is not defined for infer_list_[" << cur_infer_id
        << "].";
    ICHECK(iter_var->dom->extent.defined())
        << "iter_var->dom->extent is not defined for infer_list_["
        << cur_infer_id << "].";

    const int64_t *extent_ptr = as_const_int(iter_var->dom->extent);
    ICHECK(extent_ptr != nullptr)
        << "iter_var->dom->extent is not a constant integer, which is "
           "required for layout inference.";

    // Run InferLayout
    auto updates = next->InferLayout(
        LayoutInferArgs{target_, thread_bounds, layout_map}, level);
104

105
106
107
108
109
110
111
112
113
114
115
116
    // Process the returned updates
    for (const auto &[buffer, layout] : updates) {
      // Basic validity checks
      ICHECK(buffer.defined()) << "InferLayout returned an undefined buffer.";
      ICHECK(layout.defined()) << "InferLayout returned an undefined layout.";

      if (layout_map.count(buffer)) {
        // If new layout contains the old one, update map
        if (buffer.scope() == "local.fragment" &&
            level != InferLevel::kStrict && !strict_layout_map.count(buffer)) {
          // Actually this test has been done in ParallelOp::InferLayout
          // already. Just do it again to avoid missing implementations in other
117
          // `TileOperator`s.
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
          auto dst_layout = layout.as<Fragment>().value();
          auto src_layout = layout_map[buffer].as<Fragment>().value();
          ICHECK(dst_layout->InputDim() == src_layout->InputDim());
          Array<PrimExpr> indices;
          indices.reserve(dst_layout->InputDim());
          arith::Analyzer inner_analyzer;
          for (int i = 0; i < dst_layout->InputDim(); ++i) {
            auto x = InputPlaceholder(i);
            indices.push_back(x);
            // should be literal - literal = 0, any analyzer will work
            ICHECK(is_zero(inner_analyzer.Simplify(
                dst_layout->InputShape()[i] - src_layout->InputShape()[i])));
            inner_analyzer.Bind(x, Range(0, dst_layout->InputShape()[i]));
          }
          if (ProveFragmentContains(src_layout, dst_layout, indices, indices,
                                    inner_analyzer)) {
            layout_map.Set(buffer, layout);
            continue;
          }
        }
        // If already in map, ensure they are structurally equal
        ICHECK(StructuralEqual()(layout, layout_map[buffer]))
            << "Get different layout for " << buffer
            << "\n current layout: " << layout->DebugOutput()
            << "\n previous layout: " << layout_map[buffer]->DebugOutput();
      } else {
        // Otherwise, update map
        layout_map.Set(buffer, layout);
        if (!update_queue)
          continue;

        // Check if buffer exists in use_list_
        if (!use_list_.count(buffer)) {
          LOG(WARNING) << "Layout inference failed for buffer " << buffer
                       << ". "
                       << "The buffer cannot be inferred with current layout "
                          "inference rules.";
          continue;
        }

        // Push back into BFS queue
        for (int idx : use_list_[buffer]) {
          ICHECK_GE(idx, 0)
              << "Index in use_list_ for buffer " << buffer << " is negative.";
          ICHECK_LT(idx, num_infer)
              << "Index in use_list_ for buffer " << buffer
              << " out of range: " << idx << " >= " << num_infer << ".";

          if (!in_queue[idx] && idx != cur_infer_id) {
            in_queue[idx] = true;
            q.push(idx);
          }
        }
      }
    }
  };

  void FinishInferQueue(InferLevel level, LayoutMap &layout_map,
                        const LayoutMap &strict_layout_map, std::queue<int> &q,
                        std::vector<bool> &in_queue) {
    auto num_infer = infer_list_.size();
    while (!q.empty()) {
      int cur_infer_id = q.front();
      q.pop();
      // Range check again, just to be safe
      ICHECK_GE(cur_infer_id, 0);
      ICHECK_LT(cur_infer_id, num_infer);

      in_queue[cur_infer_id] = false;
      RunInferStep(cur_infer_id, level, true, layout_map, strict_layout_map, q,
                   in_queue);
    }
  };

192
  LayoutInferenceResult Run() {
193
194
195
196
197
    // Basic consistency check: infer_list_ and thread_var_vec_ should have the
    // same size
    ICHECK_EQ(infer_list_.size(), thread_var_vec_.size())
        << "Size mismatch: infer_list_ and thread_var_vec_ must match in "
           "length.";
198
199
200
    ICHECK_EQ(thread_bounds_vec_.size(), infer_list_.size())
        << "Size mismatch: thread_bounds_vec_ and infer_list_ must match in "
           "length.";
201
202
203
204
205

    // If needed, you can also check that annotated_layout_map_ is not empty, or
    // anything else relevant to your setup.

    // Copy the annotated layout map to local variable
206
    Map<Buffer, Layout> layout_map = annotated_layout_map_;
207
    Map<Buffer, Layout> strict_layout_map;
208
209
    int num_infer = infer_list_.size();

210
    // Prepare BFS queue for iterative inference
211
212
    std::queue<int> q;
    std::vector<bool> in_queue(num_infer, true);
213
214
    for (int i = 0; i < num_infer; i++) {
      // Check that each infer_list_ entry is valid
215
      ICHECK(infer_list_[i].defined())
216
217
218
219
220
221
222
          << "infer_list_[" << i
          << "] is null. The inference object is not allocated properly.";

      // Check that each thread_var_vec_ entry is defined
      if (!thread_var_vec_[i].defined() && skip_thread_partition_) {
        thread_var_vec_[i] = thread_var_;
      }
223
      q.push(i);
224
    }
225

226
    // step 1: infer strict layout
227
    for (int i = 0; i < num_infer; i++) {
228
229
      RunInferStep(i, InferLevel::kStrict, false, layout_map, strict_layout_map,
                   q, in_queue);
230
231
    }

232
233
234
235
    for (const auto &[buffer, layout] : layout_map) {
      strict_layout_map.Set(buffer, layout);
    }

236
    // step 2: infer common layout with BFS
237
238
    FinishInferQueue(InferLevel::kCommon, layout_map, strict_layout_map, q,
                     in_queue);
239

240
    // step 3: relax constraints to free and re-run
241
242
    InferInFreeMode(layout_map, strict_layout_map);

243
    // Check that all local.fragment buffers have inferred layouts
244
    for (const auto &[buffer, _] : use_list_) {
245
246
247
248
249
      if (buffer.scope() == "local.fragment") {
        ICHECK_NE(layout_map.count(buffer), 0)
            << "The layout for fragment " << buffer
            << " can not be inferred correctly.";
      }
250
251
    }

252
    // Collect layout info for For nodes
253
254
    Map<For, Fragment> for_map;
    Map<For, PrimExpr> predicate_map;
255
256
257
    ICHECK(infer_list_.size() == thread_var_vec_.size())
        << "infer_list_ and thread_var_vec_ size mismatch";
    for (int i = 0; i < infer_list_.size(); i++) {
258
      TileOperator base_infer = std::move(infer_list_[i]);
259
260
      auto thread_var = thread_var_vec_[i];

261
      // Check if base_infer is valid
262
263
264
      ICHECK(base_infer.defined()) << "Null pointer encountered in "
                                      "infer_list_ while collecting for_map.";
      if (auto for_infer = base_infer.as<ParallelOpNode>()) {
265
        // Check that the loop layout is defined
266
        ICHECK(for_infer->GetLoopLayout().defined())
267
            << "The Layout for Parallel for cannot be inferred correctly:\n"
268
269
            << for_infer->GetRoot();
        for_map.Set(for_infer->GetRoot(), for_infer->GetLoopLayout());
270
        // thread_var_ should be defined if we rely on it
271
272
        ICHECK(thread_var.defined())
            << "thread_var is not defined. Cannot retrieve predicate.";
273

274
        if (auto predicate = for_infer->GetPredicate(thread_var->var)) {
275
          predicate_map.Set(for_infer->GetRoot(), predicate.value());
276
        }
277
278
279
280
281
282
      }
    }

    return {layout_map, for_map, predicate_map};
  }

283
284
  void Collect(const PrimFunc &f) {
    for (const auto &[_, buffer] : f->buffer_map) {
285
286
287
      buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    auto target = f->GetAttr<Target>(tvm::attr::kTarget);
288
289
    ICHECK(target.defined())
        << "Layout_Inference: Require the target attribute";
290
291
292
293
    target_ = target.value();
    this->operator()(f->body);
  }

294
295
private:
  void VisitExpr_(const CallNode *op) final {
296
    IRVisitorWithAnalyzer::VisitExpr_(op);
297
    // Do not analysis the call node to the global function.
298
299
    if (op->op.as<GlobalVarNode>())
      return;
300
301

    auto p = ParseOperator(GetRef<Call>(op), buffer_data_to_buffer_);
302
    if (p.defined()) {
303
      for (const auto &arg : op->args) {
304
305
306
307
        if (auto buffer = getBufferFromAccessPtr(arg)) {
          addToUseList(buffer.value());
        }
      }
308
      infer_list_stmt_.push_back(GetRef<ObjectRef>(op));
309
310
      infer_list_.push_back(std::move(p));
      thread_var_vec_.push_back(thread_var_);
311
312
313
314
      if (analyzer_.const_int_bound.IsBound(thread_var_->var)) {
        auto const_int_bound = analyzer_.const_int_bound(thread_var_);
        auto min_value = const_int_bound->min_value;
        auto max_value = const_int_bound->max_value;
315
        auto extent = max_value - min_value + 1;
316
317
        auto dtype = thread_var_->var.dtype();
        thread_bounds_vec_.push_back(Range::FromMinExtent(
318
            IntImm(dtype, min_value), IntImm(dtype, extent)));
319
320
321
      } else {
        thread_bounds_vec_.push_back(Range::FromMinExtent(0, 1));
      }
322
323
324
    }
  }

325
  Optional<Buffer> getBufferFromAccessPtr(const PrimExpr &expr) {
326
    auto call = expr.as<CallNode>();
327
328
329
330
    if (!call) {
      return std::nullopt;
    }
    if (call->op.same_as(builtin::tvm_access_ptr())) {
331
332
      auto var = call->args[1].as<Var>().value();
      return buffer_data_to_buffer_[var];
333
334
    } else if (call->op.same_as(RegionOp::Get())) {
      return call->args[0].as<BufferLoadNode>()->buffer;
335
    }
336
    return std::nullopt;
337
338
  }

339
  void addToUseList(const Buffer &buffer) {
340
341
342
343
344
345
346
    int infer_idx = infer_list_.size();
    if (use_list_.find(buffer) == use_list_.end()) {
      use_list_[buffer] = {};
    }
    use_list_[buffer].push_back(infer_idx);
  }

347
  void VisitStmt_(const ForNode *op) final {
348
    if (op->kind == ForKind::kParallel) {
349
      auto infer = ParallelOp(GetRef<For>(op));
350
      for (const auto &[buffer, _] : infer->GetIndiceMap()) {
351
352
        addToUseList(buffer);
      }
353
      infer_list_stmt_.push_back(GetRef<ObjectRef>(op));
354
355
      infer_list_.push_back(std::move(infer));
      thread_var_vec_.push_back(thread_var_);
356
357
358
359
      if (thread_var_.defined() &&
          analyzer_.const_int_bound.IsBound(thread_var_->var)) {
        auto const_int_bound = analyzer_.const_int_bound(thread_var_);
        auto dtype = thread_var_->var.dtype();
360
361
        auto extent =
            const_int_bound->max_value - const_int_bound->min_value + 1;
362
        thread_bounds_vec_.push_back(Range::FromMinExtent(
363
            IntImm(dtype, const_int_bound->min_value), IntImm(dtype, extent)));
364
365
366
      } else {
        thread_bounds_vec_.push_back(Range::FromMinExtent(0, 1));
      }
367
    } else {
368
      IRVisitorWithAnalyzer::VisitStmt(op->body);
369
370
371
    }
  }

372
  void VisitStmt_(const BlockNode *op) final {
373
374
375
376
    for (auto buffer : op->alloc_buffers) {
      buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    if (op->annotations.count(attr::kLayoutMap)) {
377
      // Check if the layout map is Map<Var, Layout>
378
379
380
      auto map =
          op->annotations.Get(attr::kLayoutMap)->as<Map<Var, Layout>>().value();
      for (const auto &[var, layout] : map) {
381
382
        ICHECK(buffer_data_to_buffer_.count(var))
            << "buffer " << var << " is not found in the block";
383
384
385
386
387
        auto buffer = buffer_data_to_buffer_[var];
        ICHECK(StructuralEqual()(layout->InputShape(), buffer->shape));
        annotated_layout_map_.Set(buffer, layout);
      }
    }
388
    IRVisitorWithAnalyzer::VisitStmt_(op);
389
390
  }

391
  void VisitStmt_(const AttrStmtNode *op) final {
392
393
394
395
396
397
398
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      if (iv->thread_tag == "threadIdx.x") {
        ICHECK(iv->dom->extent.as<IntImmNode>());
        thread_var_ = iv;
      }
    }
399
    IRVisitorWithAnalyzer::VisitStmt_(op);
400
401
402
  }

  Map<Var, Buffer> buffer_data_to_buffer_;
403
  std::vector<ObjectRef> infer_list_stmt_;
404
  std::vector<TileOperator> infer_list_;
405
406
  std::unordered_map<Buffer, std::vector<int>, ObjectPtrHash, ObjectPtrEqual>
      use_list_;
407
408
409
410
  // This is a workaround for cpu backend,
  // we need to define a thread_var for the serial loop.
  IterVar thread_var_ = IterVar(Range::FromMinExtent(0, 1), Var("v_thread"),
                                IterVarType::kDataPar);
411
  std::vector<IterVar> thread_var_vec_;
412
  std::vector<Range> thread_bounds_vec_;
413
414
  Target target_;
  LayoutMap annotated_layout_map_;
415
  bool skip_thread_partition_{false};
416

417
418
  std::vector<TileOperator> BackupInferList() {
    std::vector<TileOperator> back_infer_list;
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
    back_infer_list.reserve(infer_list_.size());
    for (auto &&p : infer_list_) {
      back_infer_list.push_back(p->Clone());
    }
    return back_infer_list;
  }

  void InferInFreeMode(LayoutMap &layout_map,
                       const LayoutMap &strict_layout_map) {
    // Group operators into connected components
    UnionFind<int> uf;
    for (int i = 0; i < infer_list_.size(); i++) {
      uf.MakeSet(i);
    }
    for (const auto &[buffer, infer_indices] : use_list_) {
      if (infer_indices.empty())
        continue;

      // Union all infer_list_ indices that share the same buffer
      int first_idx = infer_indices[0];
      for (size_t i = 1; i < infer_indices.size(); i++) {
        uf.Union(first_idx, infer_indices[i]);
      }
    }
    std::unordered_map<int, std::vector<int>> components;
    for (int i = 0; i < infer_list_.size(); i++) {
      int root = uf.Find(i);
      components[root].push_back(i);
    }
448
    // Create a map from root to buffers
449
450
451
452
453
    std::unordered_map<int, std::vector<Buffer>> components_buffers;
    for (const auto &[buffer, infer_indices] : use_list_) {
      int root = uf.Find(infer_indices[0]);
      components_buffers[root].push_back(buffer);
    }
454
455
    // Keep components_buffers for debug purpose
    (void)components_buffers;
456
457
458
459
460

    // For each component, try each op as root, and determine the least
    // replicated one
    std::queue<int> q;
    std::vector<bool> in_queue(infer_list_.size(), false);
461

462
463
464
465
    for (auto &&[root, members] : components) {
      decltype(infer_list_) best_infer_list;
      LayoutMap best_layout_map;
      int64_t min_reg_num = INT64_MAX;
466

467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
      for (int attempt_infer_root : members) {
        // backup infer_list_ in class member
        auto back_infer_list = BackupInferList();
        // create temporarily used layout_map, new handle so that it copies on
        // write
        LayoutMap tmp_layout_map = layout_map;
        // infer from attempt_infer_root in free mode
        bool do_update = true;
        try {
          RunInferStep(attempt_infer_root, InferLevel::kFree, true,
                       tmp_layout_map, strict_layout_map, q, in_queue);
          FinishInferQueue(InferLevel::kFree, tmp_layout_map, strict_layout_map,
                           q, in_queue);
          // Silly workaround: we have no clue if single root will iterate over
          // the entire component, since the InferLayout implementations have
          // complicated conditioning inside and we know nothing about it.
          // This would constantly result in incomplete layouts for buffers in
          // this component. Instead of trying all combinations of root
          // selection order, we simply go through all other loops in order
          // after the first search from attempt_infer_root.
          for (int other_infer_root : members) {
            if (other_infer_root != attempt_infer_root) {
              RunInferStep(other_infer_root, InferLevel::kFree, true,
                           tmp_layout_map, strict_layout_map, q, in_queue);
              // must also be kFree here to avoid conflicts.
              FinishInferQueue(InferLevel::kFree, tmp_layout_map,
                               strict_layout_map, q, in_queue);
            }
          }
        } catch (LayoutConflictException e) {
          // such an order fails, try others
          do_update = false;
        } catch (NormalizeIterException e) {
          // such an order encounters iterators that is not normalizable, try
          // others e.g. i * 576 % 2048
          do_update = false;
        }

        if (do_update) {
          // compute total register number
          int64_t reg_num = 0;
          for (auto &&[buffer, layout] : tmp_layout_map) {
            if (auto frag = layout.as<Fragment>()) {
              int64_t frag_reg_num = 1;
              for (auto i : frag.value()->OutputShape()) {
                auto pci = as_const_int(i);
                ICHECK(pci != nullptr);
                frag_reg_num *= *pci;
              }
              reg_num += frag_reg_num;
            }
          }
          // if it's any better, update the best_* storage
          if (reg_num < min_reg_num) {
            best_infer_list = std::move(infer_list_);
            best_layout_map = tmp_layout_map;
            min_reg_num = reg_num;
          }
        }
        // recover stateful infer_list_, head on next
        infer_list_ = std::move(back_infer_list);
      }
      if (min_reg_num < INT64_MAX) {
        // now apply the best plan for this component
        infer_list_ = std::move(best_infer_list);
        layout_map = best_layout_map;
      }
    }
  }
536
537
538
};

class LayoutInferencer : public IRMutatorWithAnalyzer {
539
public:
540
  static PrimFunc Substitute(PrimFunc f, bool skip_thread_partition = false) {
541
    arith::Analyzer analyzer;
542
    PrimFuncNode *fptr = f.CopyOnWrite();
543
    fptr->body = ParallelLoopFuser::Fuse(f->body);
544
    BufferUseDefCollector collector(skip_thread_partition);
545
546
    collector.Collect(f);
    auto result = collector.Run();
547
    LayoutInferencer substituter(result, skip_thread_partition, &analyzer);
548
549
550
551
    fptr->body = substituter.VisitStmt(f->body);
    return f;
  }

552
553
private:
  LayoutInferencer(const LayoutInferenceResult result,
554
555
556
                   bool skip_thread_partition, arith::Analyzer *analyzer)
      : arith::IRMutatorWithAnalyzer(analyzer), result_(result),
        skip_thread_partition_(skip_thread_partition){};
557

558
  Stmt VisitStmt_(const BlockNode *op) final {
559
560
561
562
563
564
565
566
567
568
569
570
571
    Block block = Downcast<Block>(IRMutatorWithAnalyzer::VisitStmt_(op));

    for (auto buffer : block->alloc_buffers) {
      if (buffer.scope() == "local.framgent") {
        ICHECK(result_.layout_map.count(buffer))
            << "Cannot inference fragment layout for " << buffer;
      }
    }
    auto block_ptr = block.CopyOnWrite();
    block_ptr->annotations.Set(attr::kLayoutMap, result_.layout_map);
    return block;
  }

572
  Stmt VisitStmt_(const ForNode *op) final {
573
574
    For for_node = Downcast<For>(IRMutatorWithAnalyzer::VisitStmt_(op));
    if (result_.for_map.count(GetRef<For>(op))) {
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
      auto root = GetRef<For>(op);
      // This check is a workaround to support T.Parallel for local buffers.
      // For example:
      //   for i in T.Parallel(1024):
      //     A_local[i] = A_global[i]
      // Here, A_local is a register-local buffer held independently by each
      // thread, so explicit thread binding is not required.
      //
      // We use PostOrderVisit to detect whether the buffer store targets a
      // "local" buffer, which indicates register usage and justifies skipping
      // thread binding.
      bool is_register_store = false;
      PostOrderVisit(root, [&](const ObjectRef &obj) {
        if (const auto *store = obj.as<BufferStoreNode>()) {
          if (store->buffer.scope() == "local") {
            is_register_store = true;
          }
        }
      });

595
      auto loop_layout = result_.for_map[root];
596
      bool parallel_loop = !is_register_store && !skip_thread_partition_;
597

598
      if (parallel_loop) {
599
600
601
        for_node =
            PartitionLoop(for_node, thread_var_->var, analyzer_, loop_layout);
      }
602
      // If none thread bindings are provided, partition the loop
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
      bool has_non_local = false;
      PostOrderVisit(for_node->body, [&](const ObjectRef &obj) {
        if (const auto *load = obj.as<BufferLoadNode>()) {
          String scope = load->buffer.scope();
          if (scope != "local" && scope != "local.fragment") {
            has_non_local = true;
          }
        } else if (const auto *store = obj.as<BufferStoreNode>()) {
          String scope = store->buffer.scope();
          if (scope != "local" && scope != "local.fragment") {
            has_non_local = true;
          }
        }
      });

      if (has_non_local) {
        for_node = VectorizeLoop(for_node);
      }
621

622
623
      if (result_.predicate_map.count(root) && parallel_loop) {
        return IfThenElse(result_.predicate_map[root], for_node);
624
625
626
627
628
629
630
      } else {
        return for_node;
      }
    }
    return for_node;
  }

631
  Stmt VisitStmt_(const AttrStmtNode *op) final {
632
633
634
635
636
637
638
639
640
641
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      ICHECK_NE(iv->thread_tag.length(), 0U);
      if (iv->thread_tag == "threadIdx.x") {
        thread_var_ = iv;
      }
    }
    return IRMutatorWithAnalyzer::VisitStmt_(op);
  }

642
private:
643
  const LayoutInferenceResult result_;
644
645
  IterVar thread_var_ = IterVar(Range::FromMinExtent(0, 1), Var("v_thread"),
                                IterVarType::kDataPar);
646
  bool skip_thread_partition_{false};
647
648
649
650
651
};

tvm::transform::Pass LayoutInference() {
  using namespace tir::transform;
  auto pass_func = [=](PrimFunc f, IRModule m, PassContext ctx) {
652
    f.CopyOnWrite()->body = ParallelLoopTransformer::Substitute(f->body);
653
    ThreadBindingCollector collector;
654
    collector(f->body);
655
656
    bool has_thread_binding = collector.thread_binding_.size() > 0;
    bool skip_thread_partition = !has_thread_binding;
657
    return LayoutInferencer::Substitute(std::move(f), skip_thread_partition);
658
659
660
661
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.LayoutInference", {});
}

662
663
664
665
TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.LayoutInference", LayoutInference);
});
666

667
668
} // namespace tl
} // namespace tvm