layout_inference.cc 29.2 KB
Newer Older
1
2
3
4
5
/*!
 * \file layout_inference.cc
 * \brief infer the fragment/shared memory layout
 */

6
#include <tvm/ffi/reflection/registry.h>
7
#include <tvm/tir/builtin.h>
8
#include <tvm/tir/index_map.h>
9
10
11
12
13
14
15
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>
#include <tvm/tir/utils.h>

#include <queue>

16
#include "../layout/utils.h"
17
#include "../op/copy.h"
18
#include "../op/parallel.h"
19
#include "../op/region.h"
20

21
#include "arith/ir_mutator_with_analyzer.h"
22
#include "arith/ir_visitor_with_analyzer.h"
23
#include "common/loop_fusion_utils.h"
24
#include "common/loop_parallel_transform_utils.h"
25
#include "common/union_find.h"
26
#include "layout_reducer.h"
27
28
#include "loop_partition.h"
#include "loop_vectorize.h"
29
30
#include "runtime/thread_storage_scope.h"
#include "tir/transforms/ir_utils.h"
31
32
33
34

namespace tvm {
namespace tl {

35
36
37
using namespace tir;

/*!
38
 * \brief collect the mapping from the buffer var to it allocated buffer
39
 */
40
class ThreadBindingCollector : public StmtExprVisitor {
41
42
public:
  void VisitStmt_(const AttrStmtNode *op) final {
43
44
45
46
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      thread_binding_[iv->var.get()] = iv;
    }
47
48
49
    StmtExprVisitor::VisitStmt_(op);
  }

50
51
  // The thread binding map
  std::unordered_map<const VarNode *, IterVar> thread_binding_;
52
53
};

54
55
using namespace tir;
using arith::IRMutatorWithAnalyzer;
56
using arith::IRVisitorWithAnalyzer;
57
58
59
60
61
62
63

struct LayoutInferenceResult {
  Map<Buffer, Layout> layout_map;
  Map<For, Fragment> for_map;
  Map<For, PrimExpr> predicate_map;
};

64
class BufferUseDefCollector : public IRVisitorWithAnalyzer {
65
public:
66
67
  BufferUseDefCollector(bool skip_thread_partition)
      : skip_thread_partition_(skip_thread_partition) {}
68

69
70
  using arith::IRVisitorWithAnalyzer::IRVisitorWithAnalyzer;

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
  void RunInferStep(int cur_infer_id, InferLevel level, bool update_queue,
                    LayoutMap &layout_map, const LayoutMap &strict_layout_map,
                    std::queue<int> &q, std::vector<bool> &in_queue) {
    auto num_infer = infer_list_.size();

    // Range check for cur_infer_id
    ICHECK_GE(cur_infer_id, 0) << "cur_infer_id is negative, which is invalid.";
    ICHECK_LT(cur_infer_id, num_infer)
        << "cur_infer_id " << cur_infer_id << " is out of range, must be < "
        << num_infer << ".";

    // Make sure we can safely access infer_list_[cur_infer_id] and
    // thread_var_vec_[cur_infer_id]
    auto &next = infer_list_[cur_infer_id];
    auto iter_var = thread_var_vec_[cur_infer_id];
    auto thread_bounds = thread_bounds_vec_[cur_infer_id];
87
    auto buffer_oob = buffer_oob_vec_[cur_infer_id];
88
    // Double-check that 'next' is valid
89
90
    ICHECK(next.defined()) << "infer_list_[" << cur_infer_id
                           << "] is null inside run_infer_step.";
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

    // Check iter_var->dom and dom->extent
    ICHECK(iter_var.defined())
        << "thread_var_vec_[" << cur_infer_id << "] is not defined.";
    ICHECK(iter_var->dom.defined())
        << "iter_var->dom is not defined for infer_list_[" << cur_infer_id
        << "].";
    ICHECK(iter_var->dom->extent.defined())
        << "iter_var->dom->extent is not defined for infer_list_["
        << cur_infer_id << "].";

    const int64_t *extent_ptr = as_const_int(iter_var->dom->extent);
    ICHECK(extent_ptr != nullptr)
        << "iter_var->dom->extent is not a constant integer, which is "
           "required for layout inference.";

    // Run InferLayout
108
109
110
111
    auto updates =
        next->InferLayout(LayoutInferArgs{target_, thread_bounds, layout_map,
                                          &analyzer_, buffer_oob},
                          level);
112

113
114
115
116
117
118
119
120
121
122
123
124
    // Process the returned updates
    for (const auto &[buffer, layout] : updates) {
      // Basic validity checks
      ICHECK(buffer.defined()) << "InferLayout returned an undefined buffer.";
      ICHECK(layout.defined()) << "InferLayout returned an undefined layout.";

      if (layout_map.count(buffer)) {
        // If new layout contains the old one, update map
        if (buffer.scope() == "local.fragment" &&
            level != InferLevel::kStrict && !strict_layout_map.count(buffer)) {
          // Actually this test has been done in ParallelOp::InferLayout
          // already. Just do it again to avoid missing implementations in other
125
          // `TileOperator`s.
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
          auto dst_layout = layout.as<Fragment>().value();
          auto src_layout = layout_map[buffer].as<Fragment>().value();
          ICHECK(dst_layout->InputDim() == src_layout->InputDim());
          Array<PrimExpr> indices;
          indices.reserve(dst_layout->InputDim());
          arith::Analyzer inner_analyzer;
          for (int i = 0; i < dst_layout->InputDim(); ++i) {
            auto x = InputPlaceholder(i);
            indices.push_back(x);
            // should be literal - literal = 0, any analyzer will work
            ICHECK(is_zero(inner_analyzer.Simplify(
                dst_layout->InputShape()[i] - src_layout->InputShape()[i])));
            inner_analyzer.Bind(x, Range(0, dst_layout->InputShape()[i]));
          }
          if (ProveFragmentContains(src_layout, dst_layout, indices, indices,
                                    inner_analyzer)) {
            layout_map.Set(buffer, layout);
            continue;
          }
        }
        // If already in map, ensure they are structurally equal
        ICHECK(StructuralEqual()(layout, layout_map[buffer]))
            << "Get different layout for " << buffer
            << "\n current layout: " << layout->DebugOutput()
            << "\n previous layout: " << layout_map[buffer]->DebugOutput();
      } else {
        // Otherwise, update map
        layout_map.Set(buffer, layout);
        if (!update_queue)
          continue;

        // Check if buffer exists in use_list_
        if (!use_list_.count(buffer)) {
          LOG(WARNING) << "Layout inference failed for buffer " << buffer
                       << ". "
                       << "The buffer cannot be inferred with current layout "
                          "inference rules.";
          continue;
        }

        // Push back into BFS queue
        for (int idx : use_list_[buffer]) {
          ICHECK_GE(idx, 0)
              << "Index in use_list_ for buffer " << buffer << " is negative.";
          ICHECK_LT(idx, num_infer)
              << "Index in use_list_ for buffer " << buffer
              << " out of range: " << idx << " >= " << num_infer << ".";

          if (!in_queue[idx] && idx != cur_infer_id) {
            in_queue[idx] = true;
            q.push(idx);
          }
        }
      }
    }
  };

  void FinishInferQueue(InferLevel level, LayoutMap &layout_map,
                        const LayoutMap &strict_layout_map, std::queue<int> &q,
                        std::vector<bool> &in_queue) {
    auto num_infer = infer_list_.size();
    while (!q.empty()) {
      int cur_infer_id = q.front();
      q.pop();
      // Range check again, just to be safe
      ICHECK_GE(cur_infer_id, 0);
      ICHECK_LT(cur_infer_id, num_infer);

      in_queue[cur_infer_id] = false;
      RunInferStep(cur_infer_id, level, true, layout_map, strict_layout_map, q,
                   in_queue);
    }
  };

200
  LayoutInferenceResult Run() {
201
202
203
204
205
    // Basic consistency check: infer_list_ and thread_var_vec_ should have the
    // same size
    ICHECK_EQ(infer_list_.size(), thread_var_vec_.size())
        << "Size mismatch: infer_list_ and thread_var_vec_ must match in "
           "length.";
206
207
208
    ICHECK_EQ(thread_bounds_vec_.size(), infer_list_.size())
        << "Size mismatch: thread_bounds_vec_ and infer_list_ must match in "
           "length.";
209
210
211
    ICHECK_EQ(buffer_oob_vec_.size(), infer_list_.size())
        << "Size mismatch: buffer_oob_vec_ and infer_list_ must match in "
           "length.";
212
213
214
215
216

    // If needed, you can also check that annotated_layout_map_ is not empty, or
    // anything else relevant to your setup.

    // Copy the annotated layout map to local variable
217
    Map<Buffer, Layout> layout_map = annotated_layout_map_;
218
    Map<Buffer, Layout> strict_layout_map;
219
220
    int num_infer = infer_list_.size();

221
    // Prepare BFS queue for iterative inference
222
223
    std::queue<int> q;
    std::vector<bool> in_queue(num_infer, true);
224
225
    for (int i = 0; i < num_infer; i++) {
      // Check that each infer_list_ entry is valid
226
      ICHECK(infer_list_[i].defined())
227
228
229
230
231
232
233
          << "infer_list_[" << i
          << "] is null. The inference object is not allocated properly.";

      // Check that each thread_var_vec_ entry is defined
      if (!thread_var_vec_[i].defined() && skip_thread_partition_) {
        thread_var_vec_[i] = thread_var_;
      }
234
      q.push(i);
235
    }
236

237
    // step 1: infer strict layout
238
    for (int i = 0; i < num_infer; i++) {
239
240
      RunInferStep(i, InferLevel::kStrict, false, layout_map, strict_layout_map,
                   q, in_queue);
241
242
    }

243
244
245
246
    for (const auto &[buffer, layout] : layout_map) {
      strict_layout_map.Set(buffer, layout);
    }

247
    // step 2: infer common layout with BFS
248
249
    FinishInferQueue(InferLevel::kCommon, layout_map, strict_layout_map, q,
                     in_queue);
250

251
    // step 3: relax constraints to free and re-run
252
253
    InferInFreeMode(layout_map, strict_layout_map);

254
    // Check that all local.fragment buffers have inferred layouts
255
    for (const auto &[buffer, _] : use_list_) {
256
257
258
259
260
      if (buffer.scope() == "local.fragment") {
        ICHECK_NE(layout_map.count(buffer), 0)
            << "The layout for fragment " << buffer
            << " can not be inferred correctly.";
      }
261
262
    }

263
    // Collect layout info for For nodes
264
265
    Map<For, Fragment> for_map;
    Map<For, PrimExpr> predicate_map;
266
267
268
    ICHECK(infer_list_.size() == thread_var_vec_.size())
        << "infer_list_ and thread_var_vec_ size mismatch";
    for (int i = 0; i < infer_list_.size(); i++) {
269
      TileOperator base_infer = std::move(infer_list_[i]);
270
271
      auto thread_var = thread_var_vec_[i];

272
      // Check if base_infer is valid
273
274
275
      ICHECK(base_infer.defined()) << "Null pointer encountered in "
                                      "infer_list_ while collecting for_map.";
      if (auto for_infer = base_infer.as<ParallelOpNode>()) {
276
        // Check that the loop layout is defined
277
        ICHECK(for_infer->GetLoopLayout().defined())
278
            << "The Layout for Parallel for cannot be inferred correctly:\n"
279
280
            << for_infer->GetRoot();
        for_map.Set(for_infer->GetRoot(), for_infer->GetLoopLayout());
281
        // thread_var_ should be defined if we rely on it
282
283
        ICHECK(thread_var.defined())
            << "thread_var is not defined. Cannot retrieve predicate.";
284

285
        if (auto predicate = for_infer->GetPredicate(thread_var->var)) {
286
          predicate_map.Set(for_infer->GetRoot(), predicate.value());
287
        }
288
289
290
291
292
293
      }
    }

    return {layout_map, for_map, predicate_map};
  }

294
295
  void Collect(const PrimFunc &f) {
    for (const auto &[_, buffer] : f->buffer_map) {
296
297
298
      buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    auto target = f->GetAttr<Target>(tvm::attr::kTarget);
299
300
    ICHECK(target.defined())
        << "Layout_Inference: Require the target attribute";
301
302
303
304
    target_ = target.value();
    this->operator()(f->body);
  }

305
306
private:
  void VisitExpr_(const CallNode *op) final {
307
    IRVisitorWithAnalyzer::VisitExpr_(op);
308
    // Do not analysis the call node to the global function.
309
310
    if (op->op.as<GlobalVarNode>())
      return;
311
312

    auto p = ParseOperator(GetRef<Call>(op), buffer_data_to_buffer_);
313
    if (p.defined()) {
314
      for (const auto &arg : op->args) {
315
316
317
318
        if (auto buffer = getBufferFromAccessPtr(arg)) {
          addToUseList(buffer.value());
        }
      }
319
      // Compute thread_var_ and thread_bounds_
320
      thread_var_vec_.push_back(thread_var_);
321
322
323
324
      if (analyzer_.const_int_bound.IsBound(thread_var_->var)) {
        auto const_int_bound = analyzer_.const_int_bound(thread_var_);
        auto min_value = const_int_bound->min_value;
        auto max_value = const_int_bound->max_value;
325
        auto extent = max_value - min_value + 1;
326
327
        auto dtype = thread_var_->var.dtype();
        thread_bounds_vec_.push_back(Range::FromMinExtent(
328
            IntImm(dtype, min_value), IntImm(dtype, extent)));
329
330
331
      } else {
        thread_bounds_vec_.push_back(Range::FromMinExtent(0, 1));
      }
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

      // Compute buffer oob for each buffer in the op
      if (const auto *copy = p.as<CopyNode>()) {
        auto src_tensor = copy->src;
        auto dst_tensor = copy->dst;
        auto src_range = copy->src_range;
        auto dst_range = copy->dst_range;
        bool src_oob = false;
        bool dst_oob = false;
        for (size_t i = 0; i < src_range.size(); i++) {
          if (!analyzer_.CanProve(src_range[i]->min + src_range[i]->extent <=
                                      src_tensor->shape[i],
                                  arith::ProofStrength::kSymbolicBound)) {
            src_oob = true;
            break;
          }
        }
        for (size_t i = 0; i < dst_range.size(); i++) {
          if (!analyzer_.CanProve(dst_range[i]->min + dst_range[i]->extent <=
                                      dst_tensor->shape[i],
                                  arith::ProofStrength::kSymbolicBound)) {
            dst_oob = true;
            break;
          }
        }
        buffer_oob_vec_.push_back(src_oob || dst_oob);
      } else {
        buffer_oob_vec_.push_back(false);
      }

      // Add the tile operator to infer_list_
      infer_list_stmt_.push_back(GetRef<ObjectRef>(op));
      infer_list_.push_back(std::move(p));
365
366
367
    }
  }

368
  Optional<Buffer> getBufferFromAccessPtr(const PrimExpr &expr) {
369
    auto call = expr.as<CallNode>();
370
371
372
373
    if (!call) {
      return std::nullopt;
    }
    if (call->op.same_as(builtin::tvm_access_ptr())) {
374
375
      auto var = call->args[1].as<Var>().value();
      return buffer_data_to_buffer_[var];
376
377
    } else if (call->op.same_as(RegionOp::Get())) {
      return call->args[0].as<BufferLoadNode>()->buffer;
378
    }
379
    return std::nullopt;
380
381
  }

382
  void addToUseList(const Buffer &buffer) {
383
384
385
386
387
388
389
    int infer_idx = infer_list_.size();
    if (use_list_.find(buffer) == use_list_.end()) {
      use_list_[buffer] = {};
    }
    use_list_[buffer].push_back(infer_idx);
  }

390
  void VisitStmt_(const ForNode *op) final {
391
    if (op->kind == ForKind::kParallel) {
392
      auto infer = ParallelOp(GetRef<For>(op));
393
      for (const auto &[buffer, _] : infer->GetIndiceMap()) {
394
395
        addToUseList(buffer);
      }
396
      infer_list_stmt_.push_back(GetRef<ObjectRef>(op));
397
398
      infer_list_.push_back(std::move(infer));
      thread_var_vec_.push_back(thread_var_);
399
400
401
402
      if (thread_var_.defined() &&
          analyzer_.const_int_bound.IsBound(thread_var_->var)) {
        auto const_int_bound = analyzer_.const_int_bound(thread_var_);
        auto dtype = thread_var_->var.dtype();
403
404
        auto extent =
            const_int_bound->max_value - const_int_bound->min_value + 1;
405
        thread_bounds_vec_.push_back(Range::FromMinExtent(
406
            IntImm(dtype, const_int_bound->min_value), IntImm(dtype, extent)));
407
408
409
      } else {
        thread_bounds_vec_.push_back(Range::FromMinExtent(0, 1));
      }
410
      buffer_oob_vec_.push_back(false);
411
    } else {
412
      IRVisitorWithAnalyzer::VisitStmt(op->body);
413
414
415
    }
  }

416
  void VisitStmt_(const BlockNode *op) final {
417
418
419
420
    for (auto buffer : op->alloc_buffers) {
      buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    if (op->annotations.count(attr::kLayoutMap)) {
421
      // Check if the layout map is Map<Var, Layout>
422
423
424
      auto map =
          op->annotations.Get(attr::kLayoutMap)->as<Map<Var, Layout>>().value();
      for (const auto &[var, layout] : map) {
425
426
        ICHECK(buffer_data_to_buffer_.count(var))
            << "buffer " << var << " is not found in the block";
427
428
429
430
431
        auto buffer = buffer_data_to_buffer_[var];
        ICHECK(StructuralEqual()(layout->InputShape(), buffer->shape));
        annotated_layout_map_.Set(buffer, layout);
      }
    }
432
    IRVisitorWithAnalyzer::VisitStmt_(op);
433
434
  }

435
  void VisitStmt_(const AttrStmtNode *op) final {
436
437
438
439
440
441
442
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      if (iv->thread_tag == "threadIdx.x") {
        ICHECK(iv->dom->extent.as<IntImmNode>());
        thread_var_ = iv;
      }
    }
443
    IRVisitorWithAnalyzer::VisitStmt_(op);
444
445
446
  }

  Map<Var, Buffer> buffer_data_to_buffer_;
447
  std::vector<ObjectRef> infer_list_stmt_;
448
  std::vector<TileOperator> infer_list_;
449
450
  std::unordered_map<Buffer, std::vector<int>, ObjectPtrHash, ObjectPtrEqual>
      use_list_;
451
452
453
454
  // This is a workaround for cpu backend,
  // we need to define a thread_var for the serial loop.
  IterVar thread_var_ = IterVar(Range::FromMinExtent(0, 1), Var("v_thread"),
                                IterVarType::kDataPar);
455
  std::vector<IterVar> thread_var_vec_;
456
  std::vector<Range> thread_bounds_vec_;
457
  std::vector<bool> buffer_oob_vec_;
458
459
  Target target_;
  LayoutMap annotated_layout_map_;
460
  bool skip_thread_partition_{false};
461

462
463
  std::vector<TileOperator> BackupInferList() {
    std::vector<TileOperator> back_infer_list;
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
    back_infer_list.reserve(infer_list_.size());
    for (auto &&p : infer_list_) {
      back_infer_list.push_back(p->Clone());
    }
    return back_infer_list;
  }

  void InferInFreeMode(LayoutMap &layout_map,
                       const LayoutMap &strict_layout_map) {
    // Group operators into connected components
    UnionFind<int> uf;
    for (int i = 0; i < infer_list_.size(); i++) {
      uf.MakeSet(i);
    }
    for (const auto &[buffer, infer_indices] : use_list_) {
      if (infer_indices.empty())
        continue;

      // Union all infer_list_ indices that share the same buffer
      int first_idx = infer_indices[0];
      for (size_t i = 1; i < infer_indices.size(); i++) {
        uf.Union(first_idx, infer_indices[i]);
      }
    }
    std::unordered_map<int, std::vector<int>> components;
    for (int i = 0; i < infer_list_.size(); i++) {
      int root = uf.Find(i);
      components[root].push_back(i);
    }
493
    // Create a map from root to buffers
494
495
496
497
498
    std::unordered_map<int, std::vector<Buffer>> components_buffers;
    for (const auto &[buffer, infer_indices] : use_list_) {
      int root = uf.Find(infer_indices[0]);
      components_buffers[root].push_back(buffer);
    }
499
500
    // Keep components_buffers for debug purpose
    (void)components_buffers;
501
502
503
504
505

    // For each component, try each op as root, and determine the least
    // replicated one
    std::queue<int> q;
    std::vector<bool> in_queue(infer_list_.size(), false);
506

507
508
509
510
    for (auto &&[root, members] : components) {
      decltype(infer_list_) best_infer_list;
      LayoutMap best_layout_map;
      int64_t min_reg_num = INT64_MAX;
511

512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
      for (int attempt_infer_root : members) {
        // backup infer_list_ in class member
        auto back_infer_list = BackupInferList();
        // create temporarily used layout_map, new handle so that it copies on
        // write
        LayoutMap tmp_layout_map = layout_map;
        // infer from attempt_infer_root in free mode
        bool do_update = true;
        try {
          RunInferStep(attempt_infer_root, InferLevel::kFree, true,
                       tmp_layout_map, strict_layout_map, q, in_queue);
          FinishInferQueue(InferLevel::kFree, tmp_layout_map, strict_layout_map,
                           q, in_queue);
          // Silly workaround: we have no clue if single root will iterate over
          // the entire component, since the InferLayout implementations have
          // complicated conditioning inside and we know nothing about it.
          // This would constantly result in incomplete layouts for buffers in
          // this component. Instead of trying all combinations of root
          // selection order, we simply go through all other loops in order
          // after the first search from attempt_infer_root.
          for (int other_infer_root : members) {
            if (other_infer_root != attempt_infer_root) {
              RunInferStep(other_infer_root, InferLevel::kFree, true,
                           tmp_layout_map, strict_layout_map, q, in_queue);
              // must also be kFree here to avoid conflicts.
              FinishInferQueue(InferLevel::kFree, tmp_layout_map,
                               strict_layout_map, q, in_queue);
            }
          }
        } catch (LayoutConflictException e) {
          // such an order fails, try others
          do_update = false;
        } catch (NormalizeIterException e) {
          // such an order encounters iterators that is not normalizable, try
          // others e.g. i * 576 % 2048
          do_update = false;
        }

        if (do_update) {
          // compute total register number
          int64_t reg_num = 0;
          for (auto &&[buffer, layout] : tmp_layout_map) {
            if (auto frag = layout.as<Fragment>()) {
              int64_t frag_reg_num = 1;
              for (auto i : frag.value()->OutputShape()) {
                auto pci = as_const_int(i);
                ICHECK(pci != nullptr);
                frag_reg_num *= *pci;
              }
              reg_num += frag_reg_num;
            }
          }
          // if it's any better, update the best_* storage
          if (reg_num < min_reg_num) {
            best_infer_list = std::move(infer_list_);
            best_layout_map = tmp_layout_map;
            min_reg_num = reg_num;
          }
        }
        // recover stateful infer_list_, head on next
        infer_list_ = std::move(back_infer_list);
      }
      if (min_reg_num < INT64_MAX) {
        // now apply the best plan for this component
        infer_list_ = std::move(best_infer_list);
        layout_map = best_layout_map;
      }
    }
  }
581
582
583
};

class LayoutInferencer : public IRMutatorWithAnalyzer {
584
public:
585
  static PrimFunc Substitute(PrimFunc f, bool skip_thread_partition = false) {
586
    arith::Analyzer analyzer;
587
    PrimFuncNode *fptr = f.CopyOnWrite();
588
    fptr->body = ParallelLoopFuser::Fuse(f->body);
589
    BufferUseDefCollector collector(skip_thread_partition);
590
591
    collector.Collect(f);
    auto result = collector.Run();
592
    LayoutInferencer substituter(result, skip_thread_partition, &analyzer);
593
594
595
596
    fptr->body = substituter.VisitStmt(f->body);
    return f;
  }

597
private:
598
  LayoutInferencer(const LayoutInferenceResult &result,
599
600
601
                   bool skip_thread_partition, arith::Analyzer *analyzer)
      : arith::IRMutatorWithAnalyzer(analyzer), result_(result),
        skip_thread_partition_(skip_thread_partition){};
602

603
604
  using arith::IRMutatorWithAnalyzer::IRMutatorWithAnalyzer;

605
606
607
608
609
610
611
612
613
614
615
616
617
618
  /**
   * @brief Visit and mutate a Block node to attach inferred layout information.
   *
   * Converts the visited Block via the base visitor, asserts that every buffer
   * allocated with scope "local.framgent" has an inferred layout in
   * result_.layout_map, and attaches result_.layout_map to the Block's
   * annotations under attr::kLayoutMap.
   *
   * If any "local.framgent" buffer lacks an entry in result_.layout_map an
   * ICHECK will fail with the offending buffer printed.
   *
   * @return Stmt The (possibly modified) Block statement with the layout-map
   * annotation set.
   */
619
  Stmt VisitStmt_(const BlockNode *op) final {
620
621
622
623
624
625
626
627
628
629
630
631
632
    Block block = Downcast<Block>(IRMutatorWithAnalyzer::VisitStmt_(op));

    for (auto buffer : block->alloc_buffers) {
      if (buffer.scope() == "local.framgent") {
        ICHECK(result_.layout_map.count(buffer))
            << "Cannot inference fragment layout for " << buffer;
      }
    }
    auto block_ptr = block.CopyOnWrite();
    block_ptr->annotations.Set(attr::kLayoutMap, result_.layout_map);
    return block;
  }

633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
  /**
   * @brief Visit and transform For nodes according to inferred layout
   * information.
   *
   * If the For node is present in result_.for_map, this method applies
   * loop-level layout-driven transformations: it optionally partitions the loop
   * across the thread index, vectorizes the loop body, and wraps the loop with
   * a predicate if one was inferred for the loop root.
   *
   * Detailed behavior:
   * - Reads reducer information from the For node's attr::kReducerInfo
   * annotation (if present) to detect reduction targets.
   * - Detects register-local buffer stores (buffers with scope "local") in the
   *   original loop body; if only register-local stores are present the loop is
   *   treated as a register-local scenario and is not partitioned across
   * threads.
   * - Obtains the loop layout from result_.for_map[root] and, unless the loop
   * is register-local or skip_thread_partition_ is set, partitions the loop via
   *   PartitionLoop using thread_var_ and analyzer_.
   * - Scans the transformed loop body to determine whether it accesses any
   *   non-local buffers (scopes other than "local" or "local.fragment").
   * - Scans the transformed loop body to detect reducers (based on
   * reducer_info). If a reducer is present the loop is NOT vectorized
   * (reduction axes are excluded from vectorization as a conservative
   * workaround).
   * - If the loop has non-local accesses and no reducer, the loop is vectorized
   *   via VectorizeLoop.
   * - If a predicate exists in result_.predicate_map for the loop root and the
   *   loop was partitioned, the method returns an IfThenElse surrounding the
   *   (possibly partitioned/vectorized) loop with that predicate; otherwise it
   *   returns the transformed For.
   *
   * @return The possibly transformed For statement (or an IfThenElse wrapping
   * it)
   */
668
  Stmt VisitStmt_(const ForNode *op) final {
669
670
671
672
673
674
    Map<Var, ReducerInfo> reducer_info;
    if (op->annotations.count(attr::kReducerInfo))
      reducer_info = op->annotations.Get(attr::kReducerInfo)
                         ->as<Map<Var, ReducerInfo>>()
                         .value();

675
676
    For for_node = Downcast<For>(IRMutatorWithAnalyzer::VisitStmt_(op));
    if (result_.for_map.count(GetRef<For>(op))) {
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
      auto root = GetRef<For>(op);
      // This check is a workaround to support T.Parallel for local buffers.
      // For example:
      //   for i in T.Parallel(1024):
      //     A_local[i] = A_global[i]
      // Here, A_local is a register-local buffer held independently by each
      // thread, so explicit thread binding is not required.
      //
      // We use PostOrderVisit to detect whether the buffer store targets a
      // "local" buffer, which indicates register usage and justifies skipping
      // thread binding.
      bool is_register_store = false;
      PostOrderVisit(root, [&](const ObjectRef &obj) {
        if (const auto *store = obj.as<BufferStoreNode>()) {
          if (store->buffer.scope() == "local") {
            is_register_store = true;
          }
        }
      });

697
      auto loop_layout = result_.for_map[root];
698
      bool parallel_loop = !is_register_store && !skip_thread_partition_;
699

700
      if (parallel_loop) {
701
702
703
        for_node =
            PartitionLoop(for_node, thread_var_->var, analyzer_, loop_layout);
      }
704
      // If none thread bindings are provided, partition the loop
705
706
707
708
709
710
711
712
713
714
715
716
717
718
      bool has_non_local = false;
      PostOrderVisit(for_node->body, [&](const ObjectRef &obj) {
        if (const auto *load = obj.as<BufferLoadNode>()) {
          String scope = load->buffer.scope();
          if (scope != "local" && scope != "local.fragment") {
            has_non_local = true;
          }
        } else if (const auto *store = obj.as<BufferStoreNode>()) {
          String scope = store->buffer.scope();
          if (scope != "local" && scope != "local.fragment") {
            has_non_local = true;
          }
        }
      });
719
720
721
722
723
724
725
726
727
      // Workaround: if reducer is presented, don't vectorize loop
      // Best solution should be isolate reduction axis out of vectorization
      bool has_reducer = false;
      PostOrderVisit(for_node->body, [&](const ObjectRef &obj) {
        if (!has_reducer)
          if (const auto *store = obj.as<BufferStoreNode>()) {
            has_reducer = reducer_info.count(store->buffer->data) != 0;
          }
      });
728

729
      if (has_non_local && !has_reducer) {
730
731
        for_node = VectorizeLoop(for_node);
      }
732

733
734
      if (result_.predicate_map.count(root) && parallel_loop) {
        return IfThenElse(result_.predicate_map[root], for_node);
735
736
737
738
739
740
741
      } else {
        return for_node;
      }
    }
    return for_node;
  }

742
  Stmt VisitStmt_(const AttrStmtNode *op) final {
743
744
745
746
747
748
749
750
751
752
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      ICHECK_NE(iv->thread_tag.length(), 0U);
      if (iv->thread_tag == "threadIdx.x") {
        thread_var_ = iv;
      }
    }
    return IRMutatorWithAnalyzer::VisitStmt_(op);
  }

753
private:
754
  const LayoutInferenceResult result_;
755
756
  IterVar thread_var_ = IterVar(Range::FromMinExtent(0, 1), Var("v_thread"),
                                IterVarType::kDataPar);
757
  bool skip_thread_partition_{false};
758
759
760
761
};

tvm::transform::Pass LayoutInference() {
  using namespace tir::transform;
762
  auto pass_func = [=](PrimFunc f, const IRModule &m, const PassContext &ctx) {
763
    f.CopyOnWrite()->body = ParallelLoopTransformer::Substitute(f->body);
764
    ThreadBindingCollector collector;
765
    collector(f->body);
766
    bool has_thread_binding = !collector.thread_binding_.empty();
767
    bool skip_thread_partition = !has_thread_binding;
768
    return LayoutInferencer::Substitute(std::move(f), skip_thread_partition);
769
770
771
772
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.LayoutInference", {});
}

773
774
775
776
TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.LayoutInference", LayoutInference);
});
777

778
779
} // namespace tl
} // namespace tvm