layout_inference.cc 24.3 KB
Newer Older
1
2
3
4
5
/*!
 * \file layout_inference.cc
 * \brief infer the fragment/shared memory layout
 */

6
#include <tvm/ffi/reflection/registry.h>
7
#include <tvm/tir/builtin.h>
8
#include <tvm/tir/index_map.h>
9
10
11
12
13
14
15
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>
#include <tvm/tir/utils.h>

#include <queue>

16
#include "../layout/utils.h"
17
#include "../op/parallel.h"
18
#include "arith/ir_mutator_with_analyzer.h"
19
#include "arith/ir_visitor_with_analyzer.h"
20
#include "common/loop_fusion_utils.h"
21
#include "common/loop_parallel_transform_utils.h"
22
#include "common/union_find.h"
23
24
#include "loop_partition.h"
#include "loop_vectorize.h"
25
26
#include "runtime/thread_storage_scope.h"
#include "tir/transforms/ir_utils.h"
27
28
29
30

namespace tvm {
namespace tl {

31
32
33
using namespace tir;

/*!
34
 * \brief collect the mapping from the buffer var to it allocated buffer
35
 */
36
class ThreadBindingCollector : public StmtExprVisitor {
37
38
public:
  void VisitStmt_(const AttrStmtNode *op) final {
39
40
41
42
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      thread_binding_[iv->var.get()] = iv;
    }
43
44
45
    StmtExprVisitor::VisitStmt_(op);
  }

46
47
  // The thread binding map
  std::unordered_map<const VarNode *, IterVar> thread_binding_;
48
49
};

50
51
using namespace tir;
using arith::IRMutatorWithAnalyzer;
52
using arith::IRVisitorWithAnalyzer;
53
54
55
56
57
58
59

struct LayoutInferenceResult {
  Map<Buffer, Layout> layout_map;
  Map<For, Fragment> for_map;
  Map<For, PrimExpr> predicate_map;
};

60
class BufferUseDefCollector : public IRVisitorWithAnalyzer {
61
public:
62
63
  BufferUseDefCollector(bool skip_thread_partition)
      : skip_thread_partition_(skip_thread_partition) {}
64

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
  void RunInferStep(int cur_infer_id, InferLevel level, bool update_queue,
                    LayoutMap &layout_map, const LayoutMap &strict_layout_map,
                    std::queue<int> &q, std::vector<bool> &in_queue) {
    auto num_infer = infer_list_.size();

    // Range check for cur_infer_id
    ICHECK_GE(cur_infer_id, 0) << "cur_infer_id is negative, which is invalid.";
    ICHECK_LT(cur_infer_id, num_infer)
        << "cur_infer_id " << cur_infer_id << " is out of range, must be < "
        << num_infer << ".";

    // Make sure we can safely access infer_list_[cur_infer_id] and
    // thread_var_vec_[cur_infer_id]
    auto &next = infer_list_[cur_infer_id];
    auto iter_var = thread_var_vec_[cur_infer_id];
    auto thread_bounds = thread_bounds_vec_[cur_infer_id];
    // Double-check that 'next' is valid
    ICHECK(next != nullptr)
        << "infer_list_[" << cur_infer_id << "] is null inside run_infer_step.";

    // Check iter_var->dom and dom->extent
    ICHECK(iter_var.defined())
        << "thread_var_vec_[" << cur_infer_id << "] is not defined.";
    ICHECK(iter_var->dom.defined())
        << "iter_var->dom is not defined for infer_list_[" << cur_infer_id
        << "].";
    ICHECK(iter_var->dom->extent.defined())
        << "iter_var->dom->extent is not defined for infer_list_["
        << cur_infer_id << "].";

    const int64_t *extent_ptr = as_const_int(iter_var->dom->extent);
    ICHECK(extent_ptr != nullptr)
        << "iter_var->dom->extent is not a constant integer, which is "
           "required for layout inference.";

    // Run InferLayout
    auto updates = next->InferLayout(
        LayoutInferArgs{target_, thread_bounds, layout_map}, level);
    // Process the returned updates
    for (const auto &[buffer, layout] : updates) {
      // Basic validity checks
      ICHECK(buffer.defined()) << "InferLayout returned an undefined buffer.";
      ICHECK(layout.defined()) << "InferLayout returned an undefined layout.";

      if (layout_map.count(buffer)) {
        // If new layout contains the old one, update map
        if (buffer.scope() == "local.fragment" &&
            level != InferLevel::kStrict && !strict_layout_map.count(buffer)) {
          // Actually this test has been done in ParallelOp::InferLayout
          // already. Just do it again to avoid missing implementations in other
          // `Operator`s.
          auto dst_layout = layout.as<Fragment>().value();
          auto src_layout = layout_map[buffer].as<Fragment>().value();
          ICHECK(dst_layout->InputDim() == src_layout->InputDim());
          Array<PrimExpr> indices;
          indices.reserve(dst_layout->InputDim());
          arith::Analyzer inner_analyzer;
          for (int i = 0; i < dst_layout->InputDim(); ++i) {
            auto x = InputPlaceholder(i);
            indices.push_back(x);
            // should be literal - literal = 0, any analyzer will work
            ICHECK(is_zero(inner_analyzer.Simplify(
                dst_layout->InputShape()[i] - src_layout->InputShape()[i])));
            inner_analyzer.Bind(x, Range(0, dst_layout->InputShape()[i]));
          }
          if (ProveFragmentContains(src_layout, dst_layout, indices, indices,
                                    inner_analyzer)) {
            layout_map.Set(buffer, layout);
            continue;
          }
        }
        // If already in map, ensure they are structurally equal
        ICHECK(StructuralEqual()(layout, layout_map[buffer]))
            << "Get different layout for " << buffer
            << "\n current layout: " << layout->DebugOutput()
            << "\n previous layout: " << layout_map[buffer]->DebugOutput();
      } else {
        // Otherwise, update map
        layout_map.Set(buffer, layout);
        if (!update_queue)
          continue;

        // Check if buffer exists in use_list_
        if (!use_list_.count(buffer)) {
          LOG(WARNING) << "Layout inference failed for buffer " << buffer
                       << ". "
                       << "The buffer cannot be inferred with current layout "
                          "inference rules.";
          continue;
        }

        // Push back into BFS queue
        for (int idx : use_list_[buffer]) {
          ICHECK_GE(idx, 0)
              << "Index in use_list_ for buffer " << buffer << " is negative.";
          ICHECK_LT(idx, num_infer)
              << "Index in use_list_ for buffer " << buffer
              << " out of range: " << idx << " >= " << num_infer << ".";

          if (!in_queue[idx] && idx != cur_infer_id) {
            in_queue[idx] = true;
            q.push(idx);
          }
        }
      }
    }
  };

  void FinishInferQueue(InferLevel level, LayoutMap &layout_map,
                        const LayoutMap &strict_layout_map, std::queue<int> &q,
                        std::vector<bool> &in_queue) {
    auto num_infer = infer_list_.size();
    while (!q.empty()) {
      int cur_infer_id = q.front();
      q.pop();
      // Range check again, just to be safe
      ICHECK_GE(cur_infer_id, 0);
      ICHECK_LT(cur_infer_id, num_infer);

      in_queue[cur_infer_id] = false;
      RunInferStep(cur_infer_id, level, true, layout_map, strict_layout_map, q,
                   in_queue);
    }
  };

190
  LayoutInferenceResult Run() {
191
192
193
194
195
    // Basic consistency check: infer_list_ and thread_var_vec_ should have the
    // same size
    ICHECK_EQ(infer_list_.size(), thread_var_vec_.size())
        << "Size mismatch: infer_list_ and thread_var_vec_ must match in "
           "length.";
196
197
198
    ICHECK_EQ(thread_bounds_vec_.size(), infer_list_.size())
        << "Size mismatch: thread_bounds_vec_ and infer_list_ must match in "
           "length.";
199
200
201
202
203

    // If needed, you can also check that annotated_layout_map_ is not empty, or
    // anything else relevant to your setup.

    // Copy the annotated layout map to local variable
204
    Map<Buffer, Layout> layout_map = annotated_layout_map_;
205
    Map<Buffer, Layout> strict_layout_map;
206
207
    int num_infer = infer_list_.size();

208
    // Prepare BFS queue for iterative inference
209
210
    std::queue<int> q;
    std::vector<bool> in_queue(num_infer, true);
211
212
213
214
215
216
217
218
219
220
    for (int i = 0; i < num_infer; i++) {
      // Check that each infer_list_ entry is valid
      ICHECK(infer_list_[i] != nullptr)
          << "infer_list_[" << i
          << "] is null. The inference object is not allocated properly.";

      // Check that each thread_var_vec_ entry is defined
      if (!thread_var_vec_[i].defined() && skip_thread_partition_) {
        thread_var_vec_[i] = thread_var_;
      }
221
      q.push(i);
222
    }
223

224
    // step 1: infer strict layout
225
    for (int i = 0; i < num_infer; i++) {
226
227
      RunInferStep(i, InferLevel::kStrict, false, layout_map, strict_layout_map,
                   q, in_queue);
228
229
    }

230
231
232
233
    for (const auto &[buffer, layout] : layout_map) {
      strict_layout_map.Set(buffer, layout);
    }

234
    // step 2: infer common layout with BFS
235
236
    FinishInferQueue(InferLevel::kCommon, layout_map, strict_layout_map, q,
                     in_queue);
237

238
    // step 3: relax constraints to free and re-run
239
240
    InferInFreeMode(layout_map, strict_layout_map);

241
    // Check that all local.fragment buffers have inferred layouts
242
    for (const auto &[buffer, _] : use_list_) {
243
244
245
246
247
      if (buffer.scope() == "local.fragment") {
        ICHECK_NE(layout_map.count(buffer), 0)
            << "The layout for fragment " << buffer
            << " can not be inferred correctly.";
      }
248
249
    }

250
    // Collect layout info for For nodes
251
252
    Map<For, Fragment> for_map;
    Map<For, PrimExpr> predicate_map;
253
254
255
256
257
258
    ICHECK(infer_list_.size() == thread_var_vec_.size())
        << "infer_list_ and thread_var_vec_ size mismatch";
    for (int i = 0; i < infer_list_.size(); i++) {
      std::unique_ptr<Operator> base_infer = std::move(infer_list_[i]);
      auto thread_var = thread_var_vec_[i];

259
260
261
      // Check if base_infer is valid
      ICHECK(base_infer != nullptr) << "Null pointer encountered in "
                                       "infer_list_ while collecting for_map.";
262
      if (auto for_infer = dynamic_cast<ParallelOp *>(base_infer.get())) {
263
        // Check that the loop layout is defined
264
        ICHECK(for_infer->GetLoopLayout().defined())
265
            << "The Layout for Parallel for cannot be inferred correctly:\n"
266
267
            << for_infer->GetRoot();
        for_map.Set(for_infer->GetRoot(), for_infer->GetLoopLayout());
268
        // thread_var_ should be defined if we rely on it
269
270
        ICHECK(thread_var.defined())
            << "thread_var is not defined. Cannot retrieve predicate.";
271

272
        if (auto predicate = for_infer->GetPredicate(thread_var->var)) {
273
          predicate_map.Set(for_infer->GetRoot(), predicate.value());
274
        }
275
276
277
278
279
280
      }
    }

    return {layout_map, for_map, predicate_map};
  }

281
282
  void Collect(const PrimFunc &f) {
    for (const auto &[_, buffer] : f->buffer_map) {
283
284
285
      buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    auto target = f->GetAttr<Target>(tvm::attr::kTarget);
286
287
    ICHECK(target.defined())
        << "Layout_Inference: Require the target attribute";
288
289
290
291
    target_ = target.value();
    this->operator()(f->body);
  }

292
293
private:
  void VisitExpr_(const CallNode *op) final {
294
    IRVisitorWithAnalyzer::VisitExpr_(op);
295
    // Do not analysis the call node to the global function.
296
297
    if (op->op.as<GlobalVarNode>())
      return;
298
299
300

    auto p = ParseOperator(GetRef<Call>(op), buffer_data_to_buffer_);
    if (p != nullptr) {
301
      for (const auto &arg : op->args) {
302
303
304
305
        if (auto buffer = getBufferFromAccessPtr(arg)) {
          addToUseList(buffer.value());
        }
      }
306
      infer_list_stmt_.push_back(GetRef<ObjectRef>(op));
307
308
      infer_list_.push_back(std::move(p));
      thread_var_vec_.push_back(thread_var_);
309
310
311
312
      if (analyzer_.const_int_bound.IsBound(thread_var_->var)) {
        auto const_int_bound = analyzer_.const_int_bound(thread_var_);
        auto min_value = const_int_bound->min_value;
        auto max_value = const_int_bound->max_value;
313
        auto extent = max_value - min_value + 1;
314
315
        auto dtype = thread_var_->var.dtype();
        thread_bounds_vec_.push_back(Range::FromMinExtent(
316
            IntImm(dtype, min_value), IntImm(dtype, extent)));
317
318
319
      } else {
        thread_bounds_vec_.push_back(Range::FromMinExtent(0, 1));
      }
320
321
322
    }
  }

323
  Optional<Buffer> getBufferFromAccessPtr(const PrimExpr &expr) {
324
    auto call = expr.as<CallNode>();
325
326
327
328
    if (!call) {
      return std::nullopt;
    }
    if (call->op.same_as(builtin::tvm_access_ptr())) {
329
330
      auto var = call->args[1].as<Var>().value();
      return buffer_data_to_buffer_[var];
331
332
    } else if (call->op.same_as(RegionOp::Get())) {
      return call->args[0].as<BufferLoadNode>()->buffer;
333
    }
334
    return std::nullopt;
335
336
  }

337
  void addToUseList(const Buffer &buffer) {
338
339
340
341
342
343
344
    int infer_idx = infer_list_.size();
    if (use_list_.find(buffer) == use_list_.end()) {
      use_list_[buffer] = {};
    }
    use_list_[buffer].push_back(infer_idx);
  }

345
  void VisitStmt_(const ForNode *op) final {
346
347
    if (op->kind == ForKind::kParallel) {
      auto infer = std::make_unique<ParallelOp>(GetRef<For>(op));
348
      for (const auto &[buffer, _] : infer->GetIndiceMap()) {
349
350
        addToUseList(buffer);
      }
351
      infer_list_stmt_.push_back(GetRef<ObjectRef>(op));
352
353
      infer_list_.push_back(std::move(infer));
      thread_var_vec_.push_back(thread_var_);
354
355
356
357
      if (thread_var_.defined() &&
          analyzer_.const_int_bound.IsBound(thread_var_->var)) {
        auto const_int_bound = analyzer_.const_int_bound(thread_var_);
        auto dtype = thread_var_->var.dtype();
358
359
        auto extent =
            const_int_bound->max_value - const_int_bound->min_value + 1;
360
        thread_bounds_vec_.push_back(Range::FromMinExtent(
361
            IntImm(dtype, const_int_bound->min_value), IntImm(dtype, extent)));
362
363
364
      } else {
        thread_bounds_vec_.push_back(Range::FromMinExtent(0, 1));
      }
365
    } else {
366
      IRVisitorWithAnalyzer::VisitStmt(op->body);
367
368
369
    }
  }

370
  void VisitStmt_(const BlockNode *op) final {
371
372
373
374
    for (auto buffer : op->alloc_buffers) {
      buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    if (op->annotations.count(attr::kLayoutMap)) {
375
      // Check if the layout map is Map<Var, Layout>
376
377
378
      auto map =
          op->annotations.Get(attr::kLayoutMap)->as<Map<Var, Layout>>().value();
      for (const auto &[var, layout] : map) {
379
380
        ICHECK(buffer_data_to_buffer_.count(var))
            << "buffer " << var << " is not found in the block";
381
382
383
384
385
        auto buffer = buffer_data_to_buffer_[var];
        ICHECK(StructuralEqual()(layout->InputShape(), buffer->shape));
        annotated_layout_map_.Set(buffer, layout);
      }
    }
386
    IRVisitorWithAnalyzer::VisitStmt_(op);
387
388
  }

389
  void VisitStmt_(const AttrStmtNode *op) final {
390
391
392
393
394
395
396
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      if (iv->thread_tag == "threadIdx.x") {
        ICHECK(iv->dom->extent.as<IntImmNode>());
        thread_var_ = iv;
      }
    }
397
    IRVisitorWithAnalyzer::VisitStmt_(op);
398
399
400
  }

  Map<Var, Buffer> buffer_data_to_buffer_;
401
  std::vector<ObjectRef> infer_list_stmt_;
402
  std::vector<std::unique_ptr<Operator>> infer_list_;
403
404
  std::unordered_map<Buffer, std::vector<int>, ObjectPtrHash, ObjectPtrEqual>
      use_list_;
405
406
407
408
  // This is a workaround for cpu backend,
  // we need to define a thread_var for the serial loop.
  IterVar thread_var_ = IterVar(Range::FromMinExtent(0, 1), Var("v_thread"),
                                IterVarType::kDataPar);
409
  std::vector<IterVar> thread_var_vec_;
410
  std::vector<Range> thread_bounds_vec_;
411
412
  Target target_;
  LayoutMap annotated_layout_map_;
413
  bool skip_thread_partition_{false};
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529

  std::vector<std::unique_ptr<Operator>> BackupInferList() {
    std::vector<std::unique_ptr<Operator>> back_infer_list;
    back_infer_list.reserve(infer_list_.size());
    for (auto &&p : infer_list_) {
      back_infer_list.push_back(p->Clone());
    }
    return back_infer_list;
  }

  void InferInFreeMode(LayoutMap &layout_map,
                       const LayoutMap &strict_layout_map) {
    // Group operators into connected components
    UnionFind<int> uf;
    for (int i = 0; i < infer_list_.size(); i++) {
      uf.MakeSet(i);
    }
    for (const auto &[buffer, infer_indices] : use_list_) {
      if (infer_indices.empty())
        continue;

      // Union all infer_list_ indices that share the same buffer
      int first_idx = infer_indices[0];
      for (size_t i = 1; i < infer_indices.size(); i++) {
        uf.Union(first_idx, infer_indices[i]);
      }
    }
    std::unordered_map<int, std::vector<int>> components;
    for (int i = 0; i < infer_list_.size(); i++) {
      int root = uf.Find(i);
      components[root].push_back(i);
    }
    std::unordered_map<int, std::vector<Buffer>> components_buffers;
    for (const auto &[buffer, infer_indices] : use_list_) {
      int root = uf.Find(infer_indices[0]);
      components_buffers[root].push_back(buffer);
    }

    // For each component, try each op as root, and determine the least
    // replicated one
    std::queue<int> q;
    std::vector<bool> in_queue(infer_list_.size(), false);
    for (auto &&[root, members] : components) {
      decltype(infer_list_) best_infer_list;
      LayoutMap best_layout_map;
      int64_t min_reg_num = INT64_MAX;
      for (int attempt_infer_root : members) {
        // backup infer_list_ in class member
        auto back_infer_list = BackupInferList();
        // create temporarily used layout_map, new handle so that it copies on
        // write
        LayoutMap tmp_layout_map = layout_map;
        // infer from attempt_infer_root in free mode
        bool do_update = true;
        try {
          RunInferStep(attempt_infer_root, InferLevel::kFree, true,
                       tmp_layout_map, strict_layout_map, q, in_queue);
          FinishInferQueue(InferLevel::kFree, tmp_layout_map, strict_layout_map,
                           q, in_queue);

          // Silly workaround: we have no clue if single root will iterate over
          // the entire component, since the InferLayout implementations have
          // complicated conditioning inside and we know nothing about it.
          // This would constantly result in incomplete layouts for buffers in
          // this component. Instead of trying all combinations of root
          // selection order, we simply go through all other loops in order
          // after the first search from attempt_infer_root.
          for (int other_infer_root : members) {
            if (other_infer_root != attempt_infer_root) {
              RunInferStep(other_infer_root, InferLevel::kFree, true,
                           tmp_layout_map, strict_layout_map, q, in_queue);
              // must also be kFree here to avoid conflicts.
              FinishInferQueue(InferLevel::kFree, tmp_layout_map,
                               strict_layout_map, q, in_queue);
            }
          }
        } catch (LayoutConflictException e) {
          // such an order fails, try others
          do_update = false;
        } catch (NormalizeIterException e) {
          // such an order encounters iterators that is not normalizable, try
          // others e.g. i * 576 % 2048
          do_update = false;
        }

        if (do_update) {
          // compute total register number
          int64_t reg_num = 0;
          for (auto &&[buffer, layout] : tmp_layout_map) {
            if (auto frag = layout.as<Fragment>()) {
              int64_t frag_reg_num = 1;
              for (auto i : frag.value()->OutputShape()) {
                auto pci = as_const_int(i);
                ICHECK(pci != nullptr);
                frag_reg_num *= *pci;
              }
              reg_num += frag_reg_num;
            }
          }
          // if it's any better, update the best_* storage
          if (reg_num < min_reg_num) {
            best_infer_list = std::move(infer_list_);
            best_layout_map = tmp_layout_map;
            min_reg_num = reg_num;
          }
        }
        // recover stateful infer_list_, head on next
        infer_list_ = std::move(back_infer_list);
      }
      if (min_reg_num < INT64_MAX) {
        // now apply the best plan for this component
        infer_list_ = std::move(best_infer_list);
        layout_map = best_layout_map;
      }
    }
  }
530
531
532
};

class LayoutInferencer : public IRMutatorWithAnalyzer {
533
public:
534
  static PrimFunc Substitute(PrimFunc f, bool skip_thread_partition = false) {
535
    arith::Analyzer analyzer;
536
    PrimFuncNode *fptr = f.CopyOnWrite();
537
    fptr->body = ParallelLoopFuser::Fuse(f->body);
538
    BufferUseDefCollector collector(skip_thread_partition);
539
540
    collector.Collect(f);
    auto result = collector.Run();
541
    LayoutInferencer substituter(result, skip_thread_partition, &analyzer);
542
543
544
545
    fptr->body = substituter.VisitStmt(f->body);
    return f;
  }

546
547
private:
  LayoutInferencer(const LayoutInferenceResult result,
548
549
550
                   bool skip_thread_partition, arith::Analyzer *analyzer)
      : arith::IRMutatorWithAnalyzer(analyzer), result_(result),
        skip_thread_partition_(skip_thread_partition){};
551

552
  Stmt VisitStmt_(const BlockNode *op) final {
553
554
555
556
557
558
559
560
561
562
563
564
565
    Block block = Downcast<Block>(IRMutatorWithAnalyzer::VisitStmt_(op));

    for (auto buffer : block->alloc_buffers) {
      if (buffer.scope() == "local.framgent") {
        ICHECK(result_.layout_map.count(buffer))
            << "Cannot inference fragment layout for " << buffer;
      }
    }
    auto block_ptr = block.CopyOnWrite();
    block_ptr->annotations.Set(attr::kLayoutMap, result_.layout_map);
    return block;
  }

566
  Stmt VisitStmt_(const ForNode *op) final {
567
568
    For for_node = Downcast<For>(IRMutatorWithAnalyzer::VisitStmt_(op));
    if (result_.for_map.count(GetRef<For>(op))) {
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
      auto root = GetRef<For>(op);
      // This check is a workaround to support T.Parallel for local buffers.
      // For example:
      //   for i in T.Parallel(1024):
      //     A_local[i] = A_global[i]
      // Here, A_local is a register-local buffer held independently by each
      // thread, so explicit thread binding is not required.
      //
      // We use PostOrderVisit to detect whether the buffer store targets a
      // "local" buffer, which indicates register usage and justifies skipping
      // thread binding.
      bool is_register_store = false;
      PostOrderVisit(root, [&](const ObjectRef &obj) {
        if (const auto *store = obj.as<BufferStoreNode>()) {
          if (store->buffer.scope() == "local") {
            is_register_store = true;
          }
        }
      });

589
      auto loop_layout = result_.for_map[root];
590
      bool parallel_loop = !is_register_store && !skip_thread_partition_;
591

592
      if (parallel_loop) {
593
594
595
        for_node =
            PartitionLoop(for_node, thread_var_->var, analyzer_, loop_layout);
      }
596
      // If none thread bindings are provided, partition the loop
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
      bool has_non_local = false;
      PostOrderVisit(for_node->body, [&](const ObjectRef &obj) {
        if (const auto *load = obj.as<BufferLoadNode>()) {
          String scope = load->buffer.scope();
          if (scope != "local" && scope != "local.fragment") {
            has_non_local = true;
          }
        } else if (const auto *store = obj.as<BufferStoreNode>()) {
          String scope = store->buffer.scope();
          if (scope != "local" && scope != "local.fragment") {
            has_non_local = true;
          }
        }
      });

      if (has_non_local) {
        for_node = VectorizeLoop(for_node);
      }
615

616
617
      if (result_.predicate_map.count(root) && parallel_loop) {
        return IfThenElse(result_.predicate_map[root], for_node);
618
619
620
621
622
623
624
      } else {
        return for_node;
      }
    }
    return for_node;
  }

625
  Stmt VisitStmt_(const AttrStmtNode *op) final {
626
627
628
629
630
631
632
633
634
635
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      ICHECK_NE(iv->thread_tag.length(), 0U);
      if (iv->thread_tag == "threadIdx.x") {
        thread_var_ = iv;
      }
    }
    return IRMutatorWithAnalyzer::VisitStmt_(op);
  }

636
private:
637
  const LayoutInferenceResult result_;
638
639
  IterVar thread_var_ = IterVar(Range::FromMinExtent(0, 1), Var("v_thread"),
                                IterVarType::kDataPar);
640
  bool skip_thread_partition_{false};
641
642
643
644
645
};

tvm::transform::Pass LayoutInference() {
  using namespace tir::transform;
  auto pass_func = [=](PrimFunc f, IRModule m, PassContext ctx) {
646
    f.CopyOnWrite()->body = ParallelLoopTransformer::Substitute(f->body);
647
    ThreadBindingCollector collector;
648
    collector(f->body);
649
650
    bool has_thread_binding = collector.thread_binding_.size() > 0;
    bool skip_thread_partition = !has_thread_binding;
651
    return LayoutInferencer::Substitute(std::move(f), skip_thread_partition);
652
653
654
655
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.LayoutInference", {});
}

656
657
658
659
TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.LayoutInference", LayoutInference);
});
660

661
662
} // namespace tl
} // namespace tvm