gemm_layouts.cc 31.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
/*!
 * \file layout/gemm_layouts.cc
 * \brief Define Layout used in MMA and other operations.
 *
 */

#include <tvm/tir/stmt_functor.h>

#include <cmath>

#include "layout.h"

namespace tvm {
namespace tl {

static IterVar make_itervar(std::string name, PrimExpr dom) {
17
  Var var = Var(name, dom->dtype);
18
19
20
  return IterVar(Range(0, dom), var, IterVarType::kDataPar);
}

21
22
23
24
25
26
27
28
29
Fragment makeGemmFragment8x4() {
  IterVar i = make_itervar("i", 8);
  IterVar j = make_itervar("j", 4);
  IterVar rep = make_itervar("rep", 1);
  PrimExpr forward_thread = FloorDiv(j->var, 1) + 4 * i;
  PrimExpr index = FloorMod(j->var, 1);
  return Fragment({i, j}, {index}, forward_thread, rep);
}

30
31
32
33
34
35
36
37
Fragment makeGemmFragment8x8() {
  IterVar i = make_itervar("i", 8);
  IterVar j = make_itervar("j", 8);
  IterVar rep = make_itervar("rep", 1);
  PrimExpr forward_thread = FloorDiv(j->var, 2) + 4 * i;
  PrimExpr index = FloorMod(j->var, 2);
  return Fragment({i, j}, {index}, forward_thread, rep);
}
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

Fragment makeGemmFragment8x16() {
  IterVar i = make_itervar("i", 8);
  IterVar j = make_itervar("j", 16);
  IterVar rep = make_itervar("rep", 1);
  PrimExpr forward_thread = FloorDiv(j->var, 4) + 4 * i;
  PrimExpr index = FloorMod(j->var, 4);
  return Fragment({i, j}, {index}, forward_thread, rep);
}

Fragment makeGemmFragment8x8Transposed() {
  IterVar i = make_itervar("i", 8);
  IterVar j = make_itervar("j", 8);
  IterVar rep = make_itervar("rep", 1);
  PrimExpr forward_thread = FloorDiv(i->var, 2) + 4 * j;
  PrimExpr index = FloorMod(i->var, 2);
  return Fragment({i, j}, {index}, forward_thread, rep);
}

57
58
59
60
61
/*
From https://github.com/RadeonOpenCompute/amd_matrix_instruction_calculator
./matrix_calculator.py --architecture cdna1 --instruction v_mfma_f32_16x16x16f16
--detail-instruction
*/
62
Fragment makeGemmFragmentAB16x16CDNA(const int k_pack) {
63
  IterVar i = make_itervar("i", 16);
64
65
66
67
68
69
70
71
72
  IterVar j = make_itervar("j", 16 * k_pack);
  IterVar rep = make_itervar("rep", 1);
  PrimExpr forward_thread = 16 * FloorDiv(j->var, 4 * k_pack) + i;
  PrimExpr index = FloorMod(j->var, 4 * k_pack);
  return Fragment({i, j}, {index}, forward_thread, rep);
}

Fragment makeGemmFragmentAB16x16CDNATransposed(const int k_pack) {
  IterVar i = make_itervar("i", 16 * k_pack);
73
74
  IterVar j = make_itervar("j", 16);
  IterVar rep = make_itervar("rep", 1);
75
76
  PrimExpr forward_thread = 16 * FloorDiv(i->var, 4 * k_pack) + j;
  PrimExpr index = FloorMod(i->var, 4 * k_pack);
77
78
79
  return Fragment({i, j}, {index}, forward_thread, rep);
}

80
Fragment makeGemmFragmentAB16x32CDNA(const int k_pack) {
81
  IterVar i = make_itervar("i", 16);
82
83
84
85
86
87
88
89
90
  IterVar j = make_itervar("j", 32 * k_pack);
  IterVar rep = make_itervar("rep", 1);
  PrimExpr forward_thread = 16 * FloorDiv(j->var, 8 * k_pack) + i;
  PrimExpr index = FloorMod(j->var, 8 * k_pack);
  return Fragment({i, j}, {index}, forward_thread, rep);
}

Fragment makeGemmFragmentAB16x32CDNATransposed(const int k_pack) {
  IterVar i = make_itervar("i", 32 * k_pack);
91
92
  IterVar j = make_itervar("j", 16);
  IterVar rep = make_itervar("rep", 1);
93
94
  PrimExpr forward_thread = 16 * FloorDiv(i->var, 8 * k_pack) + j;
  PrimExpr index = FloorMod(i->var, 8 * k_pack);
95
96
97
98
99
100
101
102
103
104
105
106
  return Fragment({i, j}, {index}, forward_thread, rep);
}

Fragment makeGemmFragmentC16x16CDNA() {
  IterVar i = make_itervar("i", 16);
  IterVar j = make_itervar("j", 16);
  IterVar rep = make_itervar("rep", 1);
  PrimExpr forward_thread = 16 * FloorDiv(j->var, 4) + i;
  PrimExpr index = FloorMod(j->var, 4);
  return Fragment({i, j}, {index}, forward_thread, rep);
}

107
108
Fragment makeGemmFragmentC_F64(const int block_m, const int block_n,
                               const int warp_m, const int warp_n) {
109
110
111
  ICHECK(block_m % warp_m == 0);
  ICHECK(block_n % warp_n == 0);
  ICHECK(warp_m % 16 == 0);
112
  ICHECK(warp_n % 8 == 0);
113
  auto base_layout = makeGemmFragment8x8();
114
115
116
117
  auto warp_layout =
      base_layout->Repeat({block_m / warp_m, block_n / warp_n}, true, false);
  auto block_layout =
      warp_layout->Repeat({warp_m / 8, warp_n / 8}, false, false);
118
119
120
  return block_layout;
}

121
122
Fragment makeGemmFragmentC(const int block_m, const int block_n,
                           const int warp_m, const int warp_n,
123
                           const int element_size) {
124
125
  if (element_size == 64)
    return makeGemmFragmentC_F64(block_m, block_n, warp_m, warp_n);
126
127
128
  ICHECK(block_m % warp_m == 0);
  ICHECK(block_n % warp_n == 0);
  ICHECK(warp_m % 16 == 0) << "warp_m=" << warp_m;
129
  ICHECK(warp_n % 8 == 0) << "warp_n=" << warp_n;
130
  auto base_layout = makeGemmFragment8x8()->Repeat({2, 1}, false);
131
132
133
134
  auto warp_layout =
      base_layout->Repeat({block_m / warp_m, block_n / warp_n}, true, false);
  auto block_layout =
      warp_layout->Repeat({warp_m / 16, warp_n / 8}, false, false);
135
136
137
  return block_layout;
}

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
Fragment makeGemmSparseFragmentC(const int block_m, const int block_n,
                                 const int warp_m, const int warp_n,
                                 const int element_size) {
  if (element_size == 64) {
    ICHECK(false) << "Not supported";
  }
  ICHECK(block_m % warp_m == 0);
  ICHECK(block_n % warp_n == 0);
  ICHECK(warp_m % 16 == 0) << "warp_m=" << warp_m;
  ICHECK(warp_n % 8 == 0) << "warp_n=" << warp_n;
  auto base_layout = makeGemmFragment8x8()->Repeat({2, 1}, false);
  // NOTE: This func wasn't implemented by following the CUTLASS 2 iterator
  // but by inspecting the output, it appears that we first need to
  // repeat the warp layout while avoiding duplicate thread mappings.
  auto warp_layout =
      base_layout->Repeat({warp_m / 16, warp_n / 8}, false, false);
  auto block_layout =
      warp_layout->Repeat({block_m / warp_m, block_n / warp_n}, true, false);
  return block_layout;
}

159
160
161
162
163
Fragment makeGemmFragmentCCDNA(const int block_m, const int block_n,
                               const int warp_m, const int warp_n,
                               const int element_size) {
  if (element_size == 64)
    LOG(FATAL) << "Not supported";
164
165
166
167
168
  ICHECK(block_m % warp_m == 0);
  ICHECK(block_n % warp_n == 0);
  ICHECK(warp_m % 16 == 0) << "warp_m=" << warp_m;
  ICHECK(warp_n % 16 == 0) << "warp_n=" << warp_n;
  auto base_layout = makeGemmFragmentC16x16CDNA()->Repeat({1, 1}, false);
169
170
171
172
  auto warp_layout =
      base_layout->Repeat({warp_m / 16, warp_n / 16}, false, true);
  auto block_layout =
      warp_layout->Repeat({block_m / warp_m, block_n / warp_n}, true, false);
173
174
175
  return block_layout;
}

176
177
178
Fragment makeGemmFragmentCHopper(const int block_m, const int block_n,
                                 const int warp_m, const int warp_n,
                                 const int element_size) {
179
180
  ICHECK(block_m % warp_m == 0);
  // ICHECK(block_n == warp_n);
181
  ICHECK(warp_m % 16 == 0) << "warp_m=" << warp_m;
182
183
184
185
  auto warp_layout = makeGemmFragment8x8()->Repeat({2, warp_n / 8}, false,
                                                   false); // 16 x N (1 warp)
  auto block_layout = warp_layout->Repeat({block_m / warp_m, block_n / warp_n},
                                          true, false); // 16*Y x N (Y warp)
186
187
188
  return block_layout->Repeat({warp_m / 16, 1}, false, false);
}

189
190
Fragment makeGemmFragmentA(const int block_m, const int block_n,
                           const int block_k, const int warp_m,
191
192
                           const int warp_n, const int element_size,
                           bool transposed) {
193
194
195
196
197
198
  // assume not transposed
  ICHECK(block_m % warp_m == 0);
  ICHECK(block_n % warp_n == 0);
  ICHECK(warp_m % 16 == 0);
  ICHECK(block_k % 16 == 0);
  // Only support 8-bit and 16-bit
199
200
  ICHECK(element_size == 8 || element_size == 16 || element_size == 32)
      << "unsupported element bitwidth=" << element_size;
201
202
203
204
205

  if (transposed) {
    auto base_layout =
        makeGemmFragment8x8Transposed()->Repeat({2, 2}, false, true);
    auto warp_layout = base_layout->Repeat({1, block_m / warp_m}, true, false)
206
207
                           ->Replicate(block_n / warp_n);
    auto block_layout =
208
        warp_layout->Repeat({block_k / 16, warp_m / 16}, false, true);
209
    return block_layout;
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
  } else {
    if (element_size == 8) {
      auto base_layout = makeGemmFragment8x16()->Repeat({2, 2}, false, false);
      auto warp_layout = base_layout->Repeat({block_m / warp_m, 1}, true)
                             ->Replicate(block_n / warp_n);
      auto block_layout =
          warp_layout->Repeat({warp_m / 16, block_k / 32}, false, false);
      return block_layout;
    } else if (element_size == 16) {
      auto base_layout = makeGemmFragment8x8()->Repeat({2, 2}, false, false);
      auto warp_layout = base_layout->Repeat({block_m / warp_m, 1}, true)
                             ->Replicate(block_n / warp_n);
      auto block_layout =
          warp_layout->Repeat({warp_m / 16, block_k / 16}, false, false);
      return block_layout;
225
226
227
228
229
230
231
    } else if (element_size == 32) {
      auto base_layout = makeGemmFragment8x4()->Repeat({2, 2}, false, false);
      auto warp_layout = base_layout->Repeat({block_m / warp_m, 1}, true)
                             ->Replicate(block_n / warp_n);
      auto block_layout =
          warp_layout->Repeat({warp_m / 16, block_k / 8}, false, false);
      return block_layout;
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
    } else {
      ICHECK(0);
      return Fragment();
    }
  }
}

Fragment makeGemmFragmentB(const int block_m, const int block_n,
                           const int block_k, const int warp_m,
                           const int warp_n, bool transposed) {
  // transposed
  ICHECK(warp_n % 8 == 0);
  ICHECK(block_k % 16 == 0);
  if (transposed) {
    auto base_layout = makeGemmFragment8x8()->Repeat({1, 2}, false, false);
247
248
    auto warp_layout = base_layout->Replicate(block_m / warp_m)
                           ->Repeat({block_n / warp_n, 1}, true, false);
249
    auto block_layout =
250
        warp_layout->Repeat({warp_n / 8, block_k / 16}, false, false);
251
252
    return block_layout;
  } else {
253
254
255
256
257
258
259
    auto base_layout =
        makeGemmFragment8x8Transposed()->Repeat({2, 1}, false, false);
    auto warp_layout = base_layout->Replicate(block_m / warp_m)
                           ->Repeat({1, block_n / warp_n}, true);
    auto block_layout =
        warp_layout->Repeat({block_k / 16, warp_n / 8}, false, true);
    return block_layout;
260
261
262
  }
}

263
264
Fragment makeGemmFragmentACDNA(const int block_m, const int block_n,
                               const int block_k, const int warp_m,
265
                               const int warp_n, const int element_size,
266
                               const int k_pack, bool transposed) {
267
268
269
270
  // assume not transposed
  ICHECK(block_m % warp_m == 0);
  ICHECK(block_n % warp_n == 0);
  ICHECK(warp_m % 16 == 0);
271
272
  const int mfma_k = k_pack * (element_size == 16 ? 16 : 32);
  ICHECK(block_k % mfma_k == 0);
273
274
  ICHECK(element_size == 8 || element_size == 16)
      << "element bitwidth=" << element_size;
275
  if (transposed) {
276
    auto base_layout =
277
278
279
280
281
        element_size == 16
            ? makeGemmFragmentAB16x16CDNATransposed(k_pack)->Repeat(
                  {1, 1}, false, false)
            : makeGemmFragmentAB16x32CDNATransposed(k_pack)->Repeat(
                  {1, 1}, false, false);
282
    auto warp_layout =
283
        base_layout->Repeat({block_k / mfma_k, warp_m / 16}, false, true);
284
    auto block_layout = warp_layout->Repeat({1, block_m / warp_m}, true, true)
285
                            ->Replicate(block_n / warp_n);
286
287
    return block_layout;
  } else {
288
    auto base_layout =
289
290
291
        element_size == 16
            ? makeGemmFragmentAB16x16CDNA(k_pack)->Repeat({1, 1}, false, false)
            : makeGemmFragmentAB16x32CDNA(k_pack)->Repeat({1, 1}, false, false);
292
    auto warp_layout =
293
        base_layout->Repeat({warp_m / 16, block_k / mfma_k}, false, false);
294
295
    auto block_layout = warp_layout->Repeat({block_m / warp_m, 1}, true, true)
                            ->Replicate(block_n / warp_n);
296
297
298
299
300
301
302
303
304
305
306
307
    return block_layout;
  }
}

Fragment makeGemmFragment32x32(int element_size) {
  IterVar i = make_itervar("i", 32);
  IterVar j = make_itervar("j", 32);
  IterVar rep = make_itervar("rep", 1);
  ICHECK(element_size == 16 || element_size == 32);
  if (element_size == 16) {
    PrimExpr thd = FloorMod(i, 4) + FloorDiv(FloorMod(i, 16), 8) * 4 +
                   FloorDiv(FloorMod(j, 16), 8) * 8 + FloorDiv(i, 16) * 16;
308
309
    PrimExpr idx = FloorMod(j, 4) + FloorDiv(j, 16) * 4 +
                   FloorDiv(FloorMod(i, 8), 4) * 8 +
310
311
312
313
                   FloorDiv(FloorMod(j, 8), 4) * 16;
    return Fragment({i, j}, {idx}, thd, rep);
  } else {
    PrimExpr thd = FloorMod(i, 2) + 2 * FloorDiv(FloorMod(j, 4), 2) +
314
315
316
317
318
                   FloorDiv(FloorMod(i, 16), 8) * 4 +
                   FloorDiv(FloorMod(j, 16), 8) * 8 + FloorDiv(i, 16) * 16;
    PrimExpr idx = FloorMod(j, 2) + 2 * FloorDiv(FloorMod(i, 4), 2) +
                   FloorDiv(j, 16) * 4 + FloorDiv(FloorMod(i, 8), 4) * 8 +
                   FloorDiv(FloorMod(j, 8), 4) * 16;
319
320
321
322
    return Fragment({i, j}, {idx}, thd, rep);
  }
}

323
324
325
Fragment makeGemmVoltaFragmentC(const int block_m, const int block_n,
                                const int warp_m, const int warp_n,
                                int element_size) {
326
327
328
329
330
  ICHECK(block_m % warp_m == 0);
  ICHECK(block_n % warp_n == 0);
  ICHECK(warp_m % 32 == 0);
  ICHECK(warp_n % 32 == 0);
  auto base_layout = makeGemmFragment32x32(element_size);
331
332
333
334
  auto warp_layout =
      base_layout->Repeat({warp_m / 32, warp_n / 32}, false, false);
  auto block_layout =
      warp_layout->Repeat({block_m / warp_m, block_n / warp_n}, true);
335
336
337
  return block_layout;
}

338
339
340
Fragment makeGemmVoltaFragmentA(const int block_m, const int block_n,
                                const int block_k, const int warp_m,
                                const int warp_n) {
341
342
343
344
345
346
347
348
349
  // assume not transposed
  ICHECK(block_m % warp_m == 0);
  ICHECK(block_n % warp_n == 0);
  ICHECK(warp_m % 32 == 0);
  ICHECK(block_k % 4 == 0);
  // this is a special case
  IterVar i = make_itervar("i", 32);
  IterVar j = make_itervar("j", 4);
  IterVar rep = make_itervar("rep", 2);
350
351
  PrimExpr thd = FloorDiv(FloorMod(i, 16), 8) * 4 + 16 * FloorDiv(i, 16) +
                 FloorMod(i, 4) + 8 * rep;
352
353
  PrimExpr idx = j + FloorDiv(FloorMod(i, 8), 4) * 4;
  Fragment base_layout = Fragment({i, j}, {idx}, thd, rep);
354
355
356
357
  auto warp_layout =
      base_layout->Repeat({warp_m / 32, block_k / 4}, false, false);
  auto block_layout = warp_layout->Replicate(block_n / warp_n)
                          ->Repeat({block_m / warp_m, 1}, true);
358
359
360
  return block_layout;
}

361
362
363
PrimExpr xor2x2(const PrimExpr &i, const PrimExpr &j) {
  return FloorMod(i + j, 2);
}
364

365
PrimExpr xor4x4(const PrimExpr &i, const PrimExpr &j) {
366
367
368
369
370
371
372
  PrimExpr i0 = FloorMod(i, 2);
  PrimExpr j0 = FloorMod(j, 2);
  PrimExpr i1 = FloorDiv(i, 2);
  PrimExpr j1 = FloorDiv(j, 2);
  return 2 * xor2x2(i1, j1) + xor2x2(i0, j0);
}

373
PrimExpr xor8x8(const PrimExpr &i, const PrimExpr j) {
374
375
376
377
378
379
380
  PrimExpr i0 = FloorMod(i, 2);
  PrimExpr j0 = FloorMod(j, 2);
  PrimExpr i1 = FloorDiv(i, 2);
  PrimExpr j1 = FloorDiv(j, 2);
  return 2 * xor4x4(i1, j1) + xor2x2(i0, j0);
}

381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
// Layout swizzling for 32 bytes
Layout makeQuarterBankSwizzleLayout(int stride, int continuous,
                                    int element_size) {
  // Swizzle 1 bit
  Var i = InputPlaceholder(0);
  Var j = InputPlaceholder(1);
  int vector_size = 128 / element_size;
  ICHECK(stride % 8 == 0) << "stride=" << stride;
  ICHECK(continuous % (vector_size * 2) == 0)
      << "continuous=" << continuous << ", vector_size=" << vector_size;
  PrimExpr ts = FloorDiv(i, 8);
  PrimExpr s = FloorMod(i, 8);
  PrimExpr tc = FloorDiv(FloorDiv(j, vector_size), 2);
  PrimExpr c = FloorMod(FloorDiv(j, vector_size), 2);
  PrimExpr vec = FloorMod(j, vector_size);
  PrimExpr c_swizzle = xor2x2(c, FloorDiv(s, 4));
  PrimExpr index = vec + (c_swizzle + s * 2) * vector_size;
  return Layout(Array<PrimExpr>{stride, continuous}, {tc, ts, index});
}

// Layout swizzling for 64 bytes
402
403
404
405
406
Layout makeHalfBankSwizzleLayout(int stride, int continuous, int element_size) {
  // Swizzle 2 bit
  Var i = InputPlaceholder(0);
  Var j = InputPlaceholder(1);
  int vector_size = 128 / element_size;
407
408
409
  ICHECK(stride % 8 == 0) << "stride=" << stride;
  ICHECK(continuous % (vector_size * 4) == 0)
      << "continuous=" << continuous << ", vector_size=" << vector_size;
410
411
412
413
414
415
416
417
418
419
  PrimExpr ts = FloorDiv(i, 8);
  PrimExpr s = FloorMod(i, 8);
  PrimExpr tc = FloorDiv(FloorDiv(j, vector_size), 4);
  PrimExpr c = FloorMod(FloorDiv(j, vector_size), 4);
  PrimExpr vec = FloorMod(j, vector_size);
  PrimExpr c_swizzle = xor4x4(c, FloorDiv(s, 2));
  PrimExpr index = vec + (c_swizzle + s * 4) * vector_size;
  return Layout(Array<PrimExpr>{stride, continuous}, {tc, ts, index});
}

420
// Layout swizzling for 128 bytes
421
422
423
424
425
Layout makeFullBankSwizzleLayout(int stride, int continuous, int element_size) {
  // Swizzle 3 bit
  Var i = InputPlaceholder(0);
  Var j = InputPlaceholder(1);
  int vector_size = 128 / element_size;
426
427
428
  ICHECK(stride % 8 == 0) << "stride=" << stride;
  ICHECK(continuous % (vector_size * 8) == 0)
      << "continuous=" << continuous << ", vector_size=" << vector_size;
429
430
431
432
433
434
435
436
437
438
  PrimExpr ts = FloorDiv(i, 8);
  PrimExpr s = FloorMod(i, 8);
  PrimExpr tc = FloorDiv(FloorDiv(j, vector_size), 8);
  PrimExpr c = FloorMod(FloorDiv(j, vector_size), 8);
  PrimExpr vec = FloorMod(j, vector_size);
  PrimExpr c_swizzle = xor8x8(c, s);
  PrimExpr index = vec + (c_swizzle + s * 8) * vector_size;
  return Layout(Array<PrimExpr>{stride, continuous}, {tc, ts, index});
}

439
440
441
442
// Detail implementation please ref to
// bitblas::tl::mfma_layout::make_mfma_swizzle_layout
Layout makeMatrixCoreSwizzleLayout(int stride, int continuous, int element_size,
                                   int kPack = 1) {
443
444
445
  const int numBanks = 32;
  const int bankBitWidth = 32;
  const int SIMDWidth = 16;
446
  const int vecSize = (64 / element_size) * kPack;
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
  const int innerDimLength = continuous;
  const int typeWidthInBit = element_size;

  const int elemsPerOneBanksRow = (numBanks * bankBitWidth) / typeWidthInBit;
  const int perPhase = std::max(1, elemsPerOneBanksRow / innerDimLength);
  const int maxPhase = std::min(SIMDWidth / perPhase, innerDimLength / vecSize);

  IterVar row = make_itervar("row", stride);
  IterVar col = make_itervar("col", continuous);
  PrimExpr phase = FloorMod(row / perPhase, maxPhase);
  PrimExpr colOffSwizzled = ((col / vecSize) ^ phase) * vecSize;
  PrimExpr colOffOrdered = FloorMod(col, vecSize);
  PrimExpr colOff = colOffSwizzled + colOffOrdered;

  return Layout(Array{row, col}, {row, colOff});
}

Layout makeGemmABLayoutF64_Kinner(int stride, int continuous) {
  // Swizzle<2, 0, 4>
  Var i = InputPlaceholder(0);
  Var j = InputPlaceholder(1);
  PrimExpr tc = FloorDiv(j, 16);
  PrimExpr ts = FloorDiv(i, 4);
  PrimExpr c = FloorMod(j, 16);
  PrimExpr s = FloorMod(i, 4);
  PrimExpr swizzled_c = FloorDiv(c, 4) * 4 + xor4x4(FloorMod(c, 4), s);
  PrimExpr index = swizzled_c + s * 16;
  return Layout(Array<PrimExpr>{stride, continuous}, {tc, ts, index});
}

Layout makeGemmABLayoutF64_Kouter(int stride, int continuous) {
  // Swizzle<2, 2, 2>
  Var i = InputPlaceholder(0);
  Var j = InputPlaceholder(1);
  PrimExpr tc = FloorDiv(j, 16);
  PrimExpr ts = FloorDiv(i, 4);
  PrimExpr c = FloorMod(j, 16);
  PrimExpr s = FloorMod(i, 4);
  PrimExpr swizzled_c = FloorMod(c, 4) + xor4x4(FloorDiv(c, 4), s) * 4;
  PrimExpr index = swizzled_c + s * 16;
  return Layout(Array<PrimExpr>{stride, continuous}, {tc, ts, index});
}

// The Default Layout for Tensor Access
Layout makeGemmLayoutLinear(int stride, int continuous) {
  IterVar i = make_itervar("i", stride);
  IterVar j = make_itervar("j", continuous);
  return Layout(Array{i, j}, {i * continuous + j});
}

Layout makeGemmABLayoutPadded(int stride, int continuous, int element_size) {
  IterVar i = make_itervar("i", stride);
  IterVar j = make_itervar("j", continuous);
  int padded = continuous;
  // Add 128 bits padding when the last dim is a multiple of 256 bits
502
503
  if ((element_size * continuous) % 256 == 0)
    padded += 128 / element_size;
504
505
506
507
508
509
510
511
512
513
  return Layout(Array{i, j}, {i * padded + j});
}

Layout MakeGemmVoltaABLayoutCrosswise(int stride, int continuous) {
  ICHECK(stride % 32 == 0 && continuous % 32 == 0);
  IterVar i = make_itervar("i", stride);
  IterVar j = make_itervar("j", continuous);
  PrimExpr vec_contiguous_idx = FloorDiv(j, 4);
  PrimExpr vec_strided_within_tile = FloorMod(vec_contiguous_idx, 8);

514
515
516
517
518
519
520
521
522
523
524
  PrimExpr bit2 =
      FloorMod(FloorDiv(FloorMod(i, 32), 16) + FloorDiv(FloorMod(i, 16), 8) +
                   FloorDiv(vec_strided_within_tile, 4),
               2);
  PrimExpr bit1 = xor2x2(FloorDiv(FloorMod(i, 8), 4),
                         FloorDiv(FloorMod(vec_strided_within_tile, 4), 2));
  PrimExpr permuted_vec_contiguous =
      FloorDiv(i, 16) * 16 + FloorMod(i, 4) * 4 + bit2 * 2 + bit1;

  PrimExpr offset = FloorMod(j, 4) + permuted_vec_contiguous * 4 +
                    vec_contiguous_idx * stride * 4;
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
  return Layout(Array{i, j}, {offset});
}

Layout MakeGemmVoltaALayoutCongruous(int stride, int continuous) {
  ICHECK(stride % 4 == 0 && continuous % 64 == 0);
  IterVar i = make_itervar("i", stride);
  IterVar j = make_itervar("j", continuous);
  PrimExpr vec_contiguous_idx = FloorDiv(j, 8);
  PrimExpr vec_strided_idx = i;
  PrimExpr tile_contiguous_idx = FloorDiv(vec_contiguous_idx, 8);
  PrimExpr tile_strided_idx = FloorDiv(vec_strided_idx, 4);
  PrimExpr tile_contiguous_residual = FloorMod(vec_contiguous_idx, 8);
  PrimExpr tile_strided_residual = FloorMod(vec_strided_idx, 4);

  PrimExpr permuted_strided_within_tile = FloorDiv(tile_contiguous_residual, 2);
  PrimExpr permuted_contiguous_within_tile =
      FloorMod(tile_contiguous_residual, 2) * 4 +
      xor4x4(tile_strided_residual, permuted_strided_within_tile);

544
545
  PrimExpr element_strided =
      permuted_strided_within_tile + tile_strided_idx * 4;
546
  PrimExpr element_contiguous =
547
548
      FloorMod(j, 8) +
      (permuted_contiguous_within_tile + tile_contiguous_idx * 8) * 8;
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
  PrimExpr offset = element_strided * continuous + element_contiguous;
  return Layout(Array{i, j}, {offset});
}

Layout MakeGemmVoltaBLayoutCongruous(int stride, int continuous) {
  ICHECK(stride % 4 == 0 && continuous % 64 == 0);
  IterVar i = make_itervar("i", stride);
  IterVar j = make_itervar("j", continuous);
  PrimExpr vec_contiguous_idx = FloorDiv(j, 8);
  PrimExpr vec_strided_idx = i;
  PrimExpr tile_contiguous_idx = FloorDiv(vec_contiguous_idx, 8);
  PrimExpr tile_strided_idx = FloorDiv(vec_strided_idx, 4);
  PrimExpr tile_contiguous_residual = FloorMod(vec_contiguous_idx, 8);
  PrimExpr tile_strided_residual = FloorMod(vec_strided_idx, 4);

  PrimExpr permuted_strided_within_tile = FloorMod(tile_contiguous_residual, 4);
  PrimExpr permuted_contiguous_within_tile =
      FloorDiv(tile_contiguous_residual, 4) * 4 +
      xor4x4(tile_strided_residual, permuted_strided_within_tile);

569
570
  PrimExpr element_strided =
      permuted_strided_within_tile + tile_strided_idx * 4;
571
  PrimExpr element_contiguous =
572
573
      FloorMod(j, 8) +
      (permuted_contiguous_within_tile + tile_contiguous_idx * 8) * 8;
574
575
576
577
  PrimExpr offset = element_strided * continuous + element_contiguous;
  return Layout(Array{i, j}, {offset});
}

578
579
580
581
582
583
584
585
Layout makeGemmVoltaABLayout(int stride, int continuous, bool is_a,
                             int kfactor) {
  if (kfactor == 2)
    return MakeGemmVoltaABLayoutCrosswise(stride, continuous);
  if (is_a && continuous % 64 == 0)
    return MakeGemmVoltaALayoutCongruous(stride, continuous);
  if (!is_a && continuous % 64 == 0)
    return MakeGemmVoltaBLayoutCongruous(stride, continuous);
586
587
588
  return makeGemmABLayoutPadded(stride, continuous, 16);
}

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
// ref:
// https://github.com/nvidia/cutlass/blob/ad7b2f5e84fcfa124cb02b91d5bd26d238c0459e/include/cutlass/layout/tensor_op_multiplicand_sm75.h#L54
// Althought the four settings (T or NT) used distinct layouts in CUTLASS, they
// appeared to result in the same mem layout
Layout makeTensorOpMultiplicand(int mat_stride, int mat_continuous,
                                int elementsize, int crosswise) {
  /// This layout is optimized for 128b accesses
  static int const kAccessSize = 128;
  int kCrosswise = crosswise;

  int kElementSize = elementsize;
  int kElementsPerAccess = kAccessSize / kElementSize;

  /// Contiguous dimension of the tile shape matches one shared memory cache
  /// line - 128B.  For 128bit access size, it equals to 8 accesses.
  int kTileShapeContiguous = 128 / (kAccessSize / 8);

  int kFactor = kTileShapeContiguous * kElementsPerAccess / kCrosswise;

  ICHECK(kFactor > 0)
      << "kCrosswise should be no large than one shared memory cache line.";

  /// The strided dimension needs to be at least (WarpSize(32) /
  /// kTileShapeContiguous) for a warp to access.  To ensure conflict free
  /// access, it also needs to be at least (kTileShapeContiguous / kFactor).
  /// See comments below
  /// Fundamental tile shape in units of vectors to guarantee bank conflict free
  /// shared memory load/store.
  /// For kFactor = 1, TileShape = <8, 8>
  /// For kFactor > 1, TileShape = <8, 4>
  int kTileShapeStride =
      ((kTileShapeContiguous / kFactor) > (32 / kTileShapeContiguous))
          ? (kTileShapeContiguous / kFactor)
          : (32 / kTileShapeContiguous);

  const int kPartitionShapeContiguous = 4;
  const int kPartitionShapeStride = 4;

  // NOTE: it's always row major for tl
  IterVar i = make_itervar("i", mat_stride);
  IterVar j = make_itervar("j", mat_continuous);

  PrimExpr vec_contiguous_idx = FloorDiv(j, kElementsPerAccess);
  PrimExpr vec_strided_idx = FloorDiv(i, kFactor);

  // Compute the fundamental tile being accessed
  PrimExpr tile_contiguous_idx =
      FloorDiv(vec_contiguous_idx, FloorDiv(kTileShapeContiguous, kFactor));

  PrimExpr tile_contiguous_residual =
      FloorMod(vec_contiguous_idx, FloorDiv(kTileShapeContiguous, kFactor)) +
      (FloorMod(i, kFactor) * FloorDiv(kTileShapeContiguous, kFactor));
  PrimExpr tile_strided_residual = FloorMod(vec_strided_idx, kTileShapeStride);

  // Compute the 'partition' within the fundamental tile
  PrimExpr partition_contiguous_idx =
      FloorDiv(tile_contiguous_residual, kPartitionShapeContiguous);
  PrimExpr partition_strided_idx =
      FloorDiv(tile_strided_residual, kPartitionShapeStride);

  PrimExpr partition_contiguous_residual =
      FloorMod(tile_contiguous_residual, kPartitionShapeContiguous);
  PrimExpr partition_strided_residual =
      FloorMod(tile_strided_residual, kPartitionShapeStride);

  //
  // Then swizzle
  //

  PrimExpr permuted_vec_contiguous_within_partition = xor4x4(
      partition_contiguous_residual, FloorMod(partition_strided_residual, 4));

  PrimExpr permuted_partition_contiguous_within_tile =
      xor2x2(partition_contiguous_idx, FloorMod(partition_strided_idx, 2));

  //
  // Compute final element location
  //

  PrimExpr element_contiguous =
      (tile_contiguous_idx * kTileShapeContiguous +
       permuted_partition_contiguous_within_tile * kPartitionShapeContiguous +
       permuted_vec_contiguous_within_partition) *
          kElementsPerAccess +
      FloorMod(j, kElementsPerAccess);

  const PrimExpr &element_strided = vec_strided_idx;

  const int stride = mat_continuous;

  return Layout(Array{i, j},
                {element_contiguous + element_strided * stride * kFactor});
}

Layout makeGemmSparseAmpereABLayout(int mat_stride, int mat_continuous,
                                    int elementsize) {
  int kCrosswise = std::min(mat_continuous, (1024 / elementsize));
  return makeTensorOpMultiplicand(mat_stride, mat_continuous, elementsize,
                                  kCrosswise);
}

690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
/*!
 * \brief Creates a memory layout for GEMM's A or B matrices.
 *
 * This function selects an appropriate memory layout based on the matrix
 * dimensions, element size, continuity, and a k-factor. It aims to optimize
 * memory access patterns, potentially using swizzling techniques or specialized
 * layouts for different data types and hardware characteristics.
 *
 * \param mat_stride The leading dimension of the matrix (e.g., K for a
 * row-major M x K matrix). This is the number of elements to skip to get to the
 * same column in the next row (row-major) or to the same row in the next column
 * (column-major). \param mat_continuous The length of the dimension stored
 * contiguously in memory (e.g., K for a row-major M x K matrix, or M for a
 * column-major M x K matrix). \param continuity The size of the dimension that
 * is continuous from the perspective of memory bank access. This is used to
 * select specific swizzling strategies. It might be the same as mat_continuous
 *                   or different based on tiling or hardware details.
 * \param element_size The size of each element in the matrix, in bits (e.g., 8,
 * 16, 32, 64). \param kfactor An integer factor that influences layout
 * selection, particularly for fp64 and int8 types. It often relates to how the
 * K dimension of the GEMM (M x K * K x N) is handled or tiled.
 *                - For fp64 (element_size == 64):
 *                  - kfactor == 1 often implies K is in the "outer" loop (e.g.,
 * KxN matrix).
 *                  - kfactor == 2 often implies K is in the "inner" loop (e.g.,
 * NxK matrix).
 *                - For int8 (element_size == 8):
 *                  - kfactor == 1 uses a padded layout.
 * \return A Layout object representing the chosen memory layout.
 */
720
721
Layout makeGemmABLayout(int mat_stride, int mat_continuous, int continuity,
                        int element_size, int kfactor) {
722
  if (element_size == 64) {
723
724
725
726
727
    if (kfactor == 1 && continuity % 16 == 0) // float64 KxN
      return makeGemmABLayoutF64_Kouter(mat_stride, mat_continuous);
    if (kfactor == 2 && continuity % 16 == 0) // float64 NxK
      return makeGemmABLayoutF64_Kinner(mat_stride, mat_continuous);
    return makeGemmABLayoutPadded(mat_stride, mat_continuous, element_size);
728
729
  }
  int vector_size = 128 / element_size;
730
  if (kfactor == 1 && element_size == 8) // int8 KxN
731
    return makeGemmABLayoutPadded(mat_stride, mat_continuous, element_size);
732
  else if (mat_continuous % (vector_size * 8) == 0)
733
    return makeFullBankSwizzleLayout(mat_stride, mat_continuous, element_size);
734
  else if (mat_continuous % (vector_size * 4) == 0)
735
    return makeHalfBankSwizzleLayout(mat_stride, mat_continuous, element_size);
736
  else {
737
    return makeGemmABLayoutPadded(mat_stride, mat_continuous, element_size);
738
739
740
  }
}

741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
Layout makeGemmABLayoutHopper(int mat_stride, int mat_continuous,
                              int continuity, int element_size, int kfactor) {
  if (element_size == 64) {
    if (kfactor == 1 && continuity % 16 == 0) // float64 KxN
      return makeGemmABLayoutF64_Kouter(mat_stride, mat_continuous);
    if (kfactor == 2 && continuity % 16 == 0) // float64 NxK
      return makeGemmABLayoutF64_Kinner(mat_stride, mat_continuous);
    return makeQuarterBankSwizzleLayout(mat_stride, mat_continuous,
                                        element_size);
  }
  int vector_size = 128 / element_size;
  if (kfactor == 1 && element_size == 8) // int8 KxN
    return makeQuarterBankSwizzleLayout(mat_stride, mat_continuous,
                                        element_size);
  else if (mat_continuous % (vector_size * 8) == 0)
    return makeFullBankSwizzleLayout(mat_stride, mat_continuous, element_size);
  else if (mat_continuous % (vector_size * 4) == 0)
    return makeHalfBankSwizzleLayout(mat_stride, mat_continuous, element_size);
  else
    return makeQuarterBankSwizzleLayout(mat_stride, mat_continuous,
                                        element_size);
}

764
765
Layout makeGemmABLayoutCDNA(int stride, int continuous, int element_size,
                            int kPack) {
766
  return makeMatrixCoreSwizzleLayout(stride, continuous, element_size, kPack);
767
}
768
769
} // namespace tl
} // namespace tvm