gemm_layouts.cc 24.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
/*!
 * \file layout/gemm_layouts.cc
 * \brief Define Layout used in MMA and other operations.
 *
 */

#include <tvm/tir/stmt_functor.h>

#include <cmath>

#include "layout.h"

namespace tvm {
namespace tl {

static IterVar make_itervar(std::string name, PrimExpr dom) {
17
  Var var = Var(name, dom->dtype);
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
  return IterVar(Range(0, dom), var, IterVarType::kDataPar);
}

Fragment makeGemmFragment8x8() {
  IterVar i = make_itervar("i", 8);
  IterVar j = make_itervar("j", 8);
  IterVar rep = make_itervar("rep", 1);
  PrimExpr forward_thread = FloorDiv(j->var, 2) + 4 * i;
  PrimExpr index = FloorMod(j->var, 2);
  return Fragment({i, j}, {index}, forward_thread, rep);
}
/*
From https://github.com/RadeonOpenCompute/amd_matrix_instruction_calculator
./matrix_calculator.py --architecture cdna1 --instruction v_mfma_f32_16x16x16f16
--detail-instruction
*/
Fragment makeGemmFragmentAB16x16CDNA() {
  IterVar i = make_itervar("i", 16);
  IterVar j = make_itervar("j", 16);
  IterVar rep = make_itervar("rep", 1);
  PrimExpr forward_thread = 16 * FloorDiv(j->var, 4) + i;
  PrimExpr index = FloorMod(j->var, 4);
  return Fragment({i, j}, {index}, forward_thread, rep);
}

Fragment makeGemmFragmentAB16x16CDNATransposed() {
  IterVar i = make_itervar("i", 16);
  IterVar j = make_itervar("j", 16);
  IterVar rep = make_itervar("rep", 1);
  PrimExpr forward_thread = 16 * FloorDiv(i->var, 4) + j;
  PrimExpr index = FloorMod(i->var, 4);
  return Fragment({i, j}, {index}, forward_thread, rep);
}

Fragment makeGemmFragmentC16x16CDNA() {
  IterVar i = make_itervar("i", 16);
  IterVar j = make_itervar("j", 16);
  IterVar rep = make_itervar("rep", 1);
  PrimExpr forward_thread = 16 * FloorDiv(j->var, 4) + i;
  PrimExpr index = FloorMod(j->var, 4);
  return Fragment({i, j}, {index}, forward_thread, rep);
}

Fragment makeGemmFragment8x8Transposed() {
  IterVar i = make_itervar("i", 8);
  IterVar j = make_itervar("j", 8);
  IterVar rep = make_itervar("rep", 1);
  PrimExpr forward_thread = FloorDiv(i->var, 2) + 4 * j;
  PrimExpr index = FloorMod(i->var, 2);
  return Fragment({i, j}, {index}, forward_thread, rep);
}

Fragment makeGemmFragment8x16() {
  IterVar i = make_itervar("i", 8);
  IterVar j = make_itervar("j", 16);
  IterVar rep = make_itervar("rep", 1);
  PrimExpr forward_thread = FloorDiv(j->var, 4) + 4 * i;
  PrimExpr index = FloorMod(j->var, 4);
  return Fragment({i, j}, {index}, forward_thread, rep);
}

79
80
Fragment makeGemmFragmentC_F64(const int block_m, const int block_n,
                               const int warp_m, const int warp_n) {
81
82
83
  ICHECK(block_m % warp_m == 0);
  ICHECK(block_n % warp_n == 0);
  ICHECK(warp_m % 16 == 0);
84
  ICHECK(warp_n % 8 == 0);
85
  auto base_layout = makeGemmFragment8x8();
86
87
88
89
  auto warp_layout =
      base_layout->Repeat({block_m / warp_m, block_n / warp_n}, true, false);
  auto block_layout =
      warp_layout->Repeat({warp_m / 8, warp_n / 8}, false, false);
90
91
92
  return block_layout;
}

93
94
Fragment makeGemmFragmentC(const int block_m, const int block_n,
                           const int warp_m, const int warp_n,
95
                           const int element_size) {
96
97
  if (element_size == 64)
    return makeGemmFragmentC_F64(block_m, block_n, warp_m, warp_n);
98
99
100
  ICHECK(block_m % warp_m == 0);
  ICHECK(block_n % warp_n == 0);
  ICHECK(warp_m % 16 == 0) << "warp_m=" << warp_m;
101
  ICHECK(warp_n % 8 == 0) << "warp_n=" << warp_n;
102
  auto base_layout = makeGemmFragment8x8()->Repeat({2, 1}, false);
103
104
105
106
  auto warp_layout =
      base_layout->Repeat({block_m / warp_m, block_n / warp_n}, true, false);
  auto block_layout =
      warp_layout->Repeat({warp_m / 16, warp_n / 8}, false, false);
107
108
109
  return block_layout;
}

110
111
112
113
114
Fragment makeGemmFragmentCCDNA(const int block_m, const int block_n,
                               const int warp_m, const int warp_n,
                               const int element_size) {
  if (element_size == 64)
    LOG(FATAL) << "Not supported";
115
116
117
118
119
  ICHECK(block_m % warp_m == 0);
  ICHECK(block_n % warp_n == 0);
  ICHECK(warp_m % 16 == 0) << "warp_m=" << warp_m;
  ICHECK(warp_n % 16 == 0) << "warp_n=" << warp_n;
  auto base_layout = makeGemmFragmentC16x16CDNA()->Repeat({1, 1}, false);
120
121
122
123
  auto warp_layout =
      base_layout->Repeat({warp_m / 16, warp_n / 16}, false, true);
  auto block_layout =
      warp_layout->Repeat({block_m / warp_m, block_n / warp_n}, true, false);
124
125
126
  return block_layout;
}

127
128
129
Fragment makeGemmFragmentCHopper(const int block_m, const int block_n,
                                 const int warp_m, const int warp_n,
                                 const int element_size) {
130
131
  ICHECK(block_m % warp_m == 0);
  // ICHECK(block_n == warp_n);
132
  ICHECK(warp_m % 16 == 0) << "warp_m=" << warp_m;
133
134
135
136
  auto warp_layout = makeGemmFragment8x8()->Repeat({2, warp_n / 8}, false,
                                                   false); // 16 x N (1 warp)
  auto block_layout = warp_layout->Repeat({block_m / warp_m, block_n / warp_n},
                                          true, false); // 16*Y x N (Y warp)
137
138
139
  return block_layout->Repeat({warp_m / 16, 1}, false, false);
}

140
141
Fragment makeGemmFragmentA(const int block_m, const int block_n,
                           const int block_k, const int warp_m,
142
143
                           const int warp_n, const int element_size,
                           bool transposed) {
144
145
146
147
148
149
  // assume not transposed
  ICHECK(block_m % warp_m == 0);
  ICHECK(block_n % warp_n == 0);
  ICHECK(warp_m % 16 == 0);
  ICHECK(block_k % 16 == 0);
  // Only support 8-bit and 16-bit
150
151
  ICHECK(element_size == 8 || element_size == 16)
      << "element bitwidth=" << element_size;
152
153
154
155
156

  if (transposed) {
    auto base_layout =
        makeGemmFragment8x8Transposed()->Repeat({2, 2}, false, true);
    auto warp_layout = base_layout->Repeat({1, block_m / warp_m}, true, false)
157
158
                           ->Replicate(block_n / warp_n);
    auto block_layout =
159
        warp_layout->Repeat({block_k / 16, warp_m / 16}, false, true);
160
    return block_layout;
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
  } else {
    if (element_size == 8) {
      auto base_layout = makeGemmFragment8x16()->Repeat({2, 2}, false, false);
      auto warp_layout = base_layout->Repeat({block_m / warp_m, 1}, true)
                             ->Replicate(block_n / warp_n);
      auto block_layout =
          warp_layout->Repeat({warp_m / 16, block_k / 32}, false, false);
      return block_layout;
    } else if (element_size == 16) {
      auto base_layout = makeGemmFragment8x8()->Repeat({2, 2}, false, false);
      auto warp_layout = base_layout->Repeat({block_m / warp_m, 1}, true)
                             ->Replicate(block_n / warp_n);
      auto block_layout =
          warp_layout->Repeat({warp_m / 16, block_k / 16}, false, false);
      return block_layout;
    } else {
      ICHECK(0);
      return Fragment();
    }
  }
}

Fragment makeGemmFragmentB(const int block_m, const int block_n,
                           const int block_k, const int warp_m,
                           const int warp_n, bool transposed) {
  // transposed
  ICHECK(warp_n % 8 == 0);
  ICHECK(block_k % 16 == 0);
  if (transposed) {
    auto base_layout = makeGemmFragment8x8()->Repeat({1, 2}, false, false);
191
192
    auto warp_layout = base_layout->Replicate(block_m / warp_m)
                           ->Repeat({block_n / warp_n, 1}, true, false);
193
    auto block_layout =
194
        warp_layout->Repeat({warp_n / 8, block_k / 16}, false, false);
195
196
    return block_layout;
  } else {
197
198
199
200
201
202
203
    auto base_layout =
        makeGemmFragment8x8Transposed()->Repeat({2, 1}, false, false);
    auto warp_layout = base_layout->Replicate(block_m / warp_m)
                           ->Repeat({1, block_n / warp_n}, true);
    auto block_layout =
        warp_layout->Repeat({block_k / 16, warp_n / 8}, false, true);
    return block_layout;
204
205
206
  }
}

207
208
Fragment makeGemmFragmentACDNA(const int block_m, const int block_n,
                               const int block_k, const int warp_m,
209
210
                               const int warp_n, const int element_size,
                               bool transposed) {
211
212
213
214
215
  // assume not transposed
  ICHECK(block_m % warp_m == 0);
  ICHECK(block_n % warp_n == 0);
  ICHECK(warp_m % 16 == 0);
  ICHECK(block_k % 16 == 0);
216
217
  ICHECK(element_size == 8 || element_size == 16)
      << "element bitwidth=" << element_size;
218
  if (transposed) {
219
220
221
    auto base_layout =
        makeGemmFragmentAB16x16CDNATransposed()->Repeat({1, 1}, false, false);
    auto warp_layout =
222
223
        base_layout->Repeat({block_k / 16, warp_m / 16}, false, true);
    auto block_layout = warp_layout->Repeat({1, block_m / warp_m}, true, true)
224
                            ->Replicate(block_n / warp_n);
225
226
    return block_layout;
  } else {
227
228
229
230
231
232
    auto base_layout =
        makeGemmFragmentAB16x16CDNA()->Repeat({1, 1}, false, false);
    auto warp_layout =
        base_layout->Repeat({warp_m / 16, block_k / 16}, false, false);
    auto block_layout = warp_layout->Repeat({block_m / warp_m, 1}, true, true)
                            ->Replicate(block_n / warp_n);
233
234
235
236
237
238
239
240
241
242
243
244
    return block_layout;
  }
}

Fragment makeGemmFragment32x32(int element_size) {
  IterVar i = make_itervar("i", 32);
  IterVar j = make_itervar("j", 32);
  IterVar rep = make_itervar("rep", 1);
  ICHECK(element_size == 16 || element_size == 32);
  if (element_size == 16) {
    PrimExpr thd = FloorMod(i, 4) + FloorDiv(FloorMod(i, 16), 8) * 4 +
                   FloorDiv(FloorMod(j, 16), 8) * 8 + FloorDiv(i, 16) * 16;
245
246
    PrimExpr idx = FloorMod(j, 4) + FloorDiv(j, 16) * 4 +
                   FloorDiv(FloorMod(i, 8), 4) * 8 +
247
248
249
250
                   FloorDiv(FloorMod(j, 8), 4) * 16;
    return Fragment({i, j}, {idx}, thd, rep);
  } else {
    PrimExpr thd = FloorMod(i, 2) + 2 * FloorDiv(FloorMod(j, 4), 2) +
251
252
253
254
255
                   FloorDiv(FloorMod(i, 16), 8) * 4 +
                   FloorDiv(FloorMod(j, 16), 8) * 8 + FloorDiv(i, 16) * 16;
    PrimExpr idx = FloorMod(j, 2) + 2 * FloorDiv(FloorMod(i, 4), 2) +
                   FloorDiv(j, 16) * 4 + FloorDiv(FloorMod(i, 8), 4) * 8 +
                   FloorDiv(FloorMod(j, 8), 4) * 16;
256
257
258
259
    return Fragment({i, j}, {idx}, thd, rep);
  }
}

260
261
262
Fragment makeGemmVoltaFragmentC(const int block_m, const int block_n,
                                const int warp_m, const int warp_n,
                                int element_size) {
263
264
265
266
267
  ICHECK(block_m % warp_m == 0);
  ICHECK(block_n % warp_n == 0);
  ICHECK(warp_m % 32 == 0);
  ICHECK(warp_n % 32 == 0);
  auto base_layout = makeGemmFragment32x32(element_size);
268
269
270
271
  auto warp_layout =
      base_layout->Repeat({warp_m / 32, warp_n / 32}, false, false);
  auto block_layout =
      warp_layout->Repeat({block_m / warp_m, block_n / warp_n}, true);
272
273
274
  return block_layout;
}

275
276
277
Fragment makeGemmVoltaFragmentA(const int block_m, const int block_n,
                                const int block_k, const int warp_m,
                                const int warp_n) {
278
279
280
281
282
283
284
285
286
  // assume not transposed
  ICHECK(block_m % warp_m == 0);
  ICHECK(block_n % warp_n == 0);
  ICHECK(warp_m % 32 == 0);
  ICHECK(block_k % 4 == 0);
  // this is a special case
  IterVar i = make_itervar("i", 32);
  IterVar j = make_itervar("j", 4);
  IterVar rep = make_itervar("rep", 2);
287
288
  PrimExpr thd = FloorDiv(FloorMod(i, 16), 8) * 4 + 16 * FloorDiv(i, 16) +
                 FloorMod(i, 4) + 8 * rep;
289
290
  PrimExpr idx = j + FloorDiv(FloorMod(i, 8), 4) * 4;
  Fragment base_layout = Fragment({i, j}, {idx}, thd, rep);
291
292
293
294
  auto warp_layout =
      base_layout->Repeat({warp_m / 32, block_k / 4}, false, false);
  auto block_layout = warp_layout->Replicate(block_n / warp_n)
                          ->Repeat({block_m / warp_m, 1}, true);
295
296
297
  return block_layout;
}

298
299
300
PrimExpr xor2x2(const PrimExpr &i, const PrimExpr &j) {
  return FloorMod(i + j, 2);
}
301

302
PrimExpr xor4x4(const PrimExpr &i, const PrimExpr &j) {
303
304
305
306
307
308
309
  PrimExpr i0 = FloorMod(i, 2);
  PrimExpr j0 = FloorMod(j, 2);
  PrimExpr i1 = FloorDiv(i, 2);
  PrimExpr j1 = FloorDiv(j, 2);
  return 2 * xor2x2(i1, j1) + xor2x2(i0, j0);
}

310
PrimExpr xor8x8(const PrimExpr &i, const PrimExpr j) {
311
312
313
314
315
316
317
  PrimExpr i0 = FloorMod(i, 2);
  PrimExpr j0 = FloorMod(j, 2);
  PrimExpr i1 = FloorDiv(i, 2);
  PrimExpr j1 = FloorDiv(j, 2);
  return 2 * xor4x4(i1, j1) + xor2x2(i0, j0);
}

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
// Layout swizzling for 32 bytes
Layout makeQuarterBankSwizzleLayout(int stride, int continuous,
                                    int element_size) {
  // Swizzle 1 bit
  Var i = InputPlaceholder(0);
  Var j = InputPlaceholder(1);
  int vector_size = 128 / element_size;
  ICHECK(stride % 8 == 0) << "stride=" << stride;
  ICHECK(continuous % (vector_size * 2) == 0)
      << "continuous=" << continuous << ", vector_size=" << vector_size;
  PrimExpr ts = FloorDiv(i, 8);
  PrimExpr s = FloorMod(i, 8);
  PrimExpr tc = FloorDiv(FloorDiv(j, vector_size), 2);
  PrimExpr c = FloorMod(FloorDiv(j, vector_size), 2);
  PrimExpr vec = FloorMod(j, vector_size);
  PrimExpr c_swizzle = xor2x2(c, FloorDiv(s, 4));
  PrimExpr index = vec + (c_swizzle + s * 2) * vector_size;
  return Layout(Array<PrimExpr>{stride, continuous}, {tc, ts, index});
}

// Layout swizzling for 64 bytes
339
340
341
342
343
Layout makeHalfBankSwizzleLayout(int stride, int continuous, int element_size) {
  // Swizzle 2 bit
  Var i = InputPlaceholder(0);
  Var j = InputPlaceholder(1);
  int vector_size = 128 / element_size;
344
345
346
  ICHECK(stride % 8 == 0) << "stride=" << stride;
  ICHECK(continuous % (vector_size * 4) == 0)
      << "continuous=" << continuous << ", vector_size=" << vector_size;
347
348
349
350
351
352
353
354
355
356
  PrimExpr ts = FloorDiv(i, 8);
  PrimExpr s = FloorMod(i, 8);
  PrimExpr tc = FloorDiv(FloorDiv(j, vector_size), 4);
  PrimExpr c = FloorMod(FloorDiv(j, vector_size), 4);
  PrimExpr vec = FloorMod(j, vector_size);
  PrimExpr c_swizzle = xor4x4(c, FloorDiv(s, 2));
  PrimExpr index = vec + (c_swizzle + s * 4) * vector_size;
  return Layout(Array<PrimExpr>{stride, continuous}, {tc, ts, index});
}

357
// Layout swizzling for 128 bytes
358
359
360
361
362
Layout makeFullBankSwizzleLayout(int stride, int continuous, int element_size) {
  // Swizzle 3 bit
  Var i = InputPlaceholder(0);
  Var j = InputPlaceholder(1);
  int vector_size = 128 / element_size;
363
364
365
  ICHECK(stride % 8 == 0) << "stride=" << stride;
  ICHECK(continuous % (vector_size * 8) == 0)
      << "continuous=" << continuous << ", vector_size=" << vector_size;
366
367
368
369
370
371
372
373
374
375
  PrimExpr ts = FloorDiv(i, 8);
  PrimExpr s = FloorMod(i, 8);
  PrimExpr tc = FloorDiv(FloorDiv(j, vector_size), 8);
  PrimExpr c = FloorMod(FloorDiv(j, vector_size), 8);
  PrimExpr vec = FloorMod(j, vector_size);
  PrimExpr c_swizzle = xor8x8(c, s);
  PrimExpr index = vec + (c_swizzle + s * 8) * vector_size;
  return Layout(Array<PrimExpr>{stride, continuous}, {tc, ts, index});
}

376
377
378
379
// Detail implementation please ref to
// bitblas::tl::mfma_layout::make_mfma_swizzle_layout
Layout makeMatrixCoreSwizzleLayout(int stride, int continuous, int element_size,
                                   int kPack = 1) {
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
  const int numBanks = 32;
  const int bankBitWidth = 32;
  const int SIMDWidth = 16;
  const int vecSize = 4 * kPack;
  const int innerDimLength = continuous;
  const int typeWidthInBit = element_size;

  const int elemsPerOneBanksRow = (numBanks * bankBitWidth) / typeWidthInBit;
  const int perPhase = std::max(1, elemsPerOneBanksRow / innerDimLength);
  const int maxPhase = std::min(SIMDWidth / perPhase, innerDimLength / vecSize);

  IterVar row = make_itervar("row", stride);
  IterVar col = make_itervar("col", continuous);
  PrimExpr phase = FloorMod(row / perPhase, maxPhase);
  PrimExpr colOffSwizzled = ((col / vecSize) ^ phase) * vecSize;
  PrimExpr colOffOrdered = FloorMod(col, vecSize);
  PrimExpr colOff = colOffSwizzled + colOffOrdered;

  return Layout(Array{row, col}, {row, colOff});
}

Layout makeGemmABLayoutF64_Kinner(int stride, int continuous) {
  // Swizzle<2, 0, 4>
  Var i = InputPlaceholder(0);
  Var j = InputPlaceholder(1);
  PrimExpr tc = FloorDiv(j, 16);
  PrimExpr ts = FloorDiv(i, 4);
  PrimExpr c = FloorMod(j, 16);
  PrimExpr s = FloorMod(i, 4);
  PrimExpr swizzled_c = FloorDiv(c, 4) * 4 + xor4x4(FloorMod(c, 4), s);
  PrimExpr index = swizzled_c + s * 16;
  return Layout(Array<PrimExpr>{stride, continuous}, {tc, ts, index});
}

Layout makeGemmABLayoutF64_Kouter(int stride, int continuous) {
  // Swizzle<2, 2, 2>
  Var i = InputPlaceholder(0);
  Var j = InputPlaceholder(1);
  PrimExpr tc = FloorDiv(j, 16);
  PrimExpr ts = FloorDiv(i, 4);
  PrimExpr c = FloorMod(j, 16);
  PrimExpr s = FloorMod(i, 4);
  PrimExpr swizzled_c = FloorMod(c, 4) + xor4x4(FloorDiv(c, 4), s) * 4;
  PrimExpr index = swizzled_c + s * 16;
  return Layout(Array<PrimExpr>{stride, continuous}, {tc, ts, index});
}

// The Default Layout for Tensor Access
Layout makeGemmLayoutLinear(int stride, int continuous) {
  IterVar i = make_itervar("i", stride);
  IterVar j = make_itervar("j", continuous);
  return Layout(Array{i, j}, {i * continuous + j});
}

Layout makeGemmABLayoutPadded(int stride, int continuous, int element_size) {
  IterVar i = make_itervar("i", stride);
  IterVar j = make_itervar("j", continuous);
  int padded = continuous;
  // Add 128 bits padding when the last dim is a multiple of 256 bits
439
440
  if ((element_size * continuous) % 256 == 0)
    padded += 128 / element_size;
441
442
443
444
445
446
447
448
449
450
  return Layout(Array{i, j}, {i * padded + j});
}

Layout MakeGemmVoltaABLayoutCrosswise(int stride, int continuous) {
  ICHECK(stride % 32 == 0 && continuous % 32 == 0);
  IterVar i = make_itervar("i", stride);
  IterVar j = make_itervar("j", continuous);
  PrimExpr vec_contiguous_idx = FloorDiv(j, 4);
  PrimExpr vec_strided_within_tile = FloorMod(vec_contiguous_idx, 8);

451
452
453
454
455
456
457
458
459
460
461
  PrimExpr bit2 =
      FloorMod(FloorDiv(FloorMod(i, 32), 16) + FloorDiv(FloorMod(i, 16), 8) +
                   FloorDiv(vec_strided_within_tile, 4),
               2);
  PrimExpr bit1 = xor2x2(FloorDiv(FloorMod(i, 8), 4),
                         FloorDiv(FloorMod(vec_strided_within_tile, 4), 2));
  PrimExpr permuted_vec_contiguous =
      FloorDiv(i, 16) * 16 + FloorMod(i, 4) * 4 + bit2 * 2 + bit1;

  PrimExpr offset = FloorMod(j, 4) + permuted_vec_contiguous * 4 +
                    vec_contiguous_idx * stride * 4;
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
  return Layout(Array{i, j}, {offset});
}

Layout MakeGemmVoltaALayoutCongruous(int stride, int continuous) {
  ICHECK(stride % 4 == 0 && continuous % 64 == 0);
  IterVar i = make_itervar("i", stride);
  IterVar j = make_itervar("j", continuous);
  PrimExpr vec_contiguous_idx = FloorDiv(j, 8);
  PrimExpr vec_strided_idx = i;
  PrimExpr tile_contiguous_idx = FloorDiv(vec_contiguous_idx, 8);
  PrimExpr tile_strided_idx = FloorDiv(vec_strided_idx, 4);
  PrimExpr tile_contiguous_residual = FloorMod(vec_contiguous_idx, 8);
  PrimExpr tile_strided_residual = FloorMod(vec_strided_idx, 4);

  PrimExpr permuted_strided_within_tile = FloorDiv(tile_contiguous_residual, 2);
  PrimExpr permuted_contiguous_within_tile =
      FloorMod(tile_contiguous_residual, 2) * 4 +
      xor4x4(tile_strided_residual, permuted_strided_within_tile);

481
482
  PrimExpr element_strided =
      permuted_strided_within_tile + tile_strided_idx * 4;
483
  PrimExpr element_contiguous =
484
485
      FloorMod(j, 8) +
      (permuted_contiguous_within_tile + tile_contiguous_idx * 8) * 8;
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
  PrimExpr offset = element_strided * continuous + element_contiguous;
  return Layout(Array{i, j}, {offset});
}

Layout MakeGemmVoltaBLayoutCongruous(int stride, int continuous) {
  ICHECK(stride % 4 == 0 && continuous % 64 == 0);
  IterVar i = make_itervar("i", stride);
  IterVar j = make_itervar("j", continuous);
  PrimExpr vec_contiguous_idx = FloorDiv(j, 8);
  PrimExpr vec_strided_idx = i;
  PrimExpr tile_contiguous_idx = FloorDiv(vec_contiguous_idx, 8);
  PrimExpr tile_strided_idx = FloorDiv(vec_strided_idx, 4);
  PrimExpr tile_contiguous_residual = FloorMod(vec_contiguous_idx, 8);
  PrimExpr tile_strided_residual = FloorMod(vec_strided_idx, 4);

  PrimExpr permuted_strided_within_tile = FloorMod(tile_contiguous_residual, 4);
  PrimExpr permuted_contiguous_within_tile =
      FloorDiv(tile_contiguous_residual, 4) * 4 +
      xor4x4(tile_strided_residual, permuted_strided_within_tile);

506
507
  PrimExpr element_strided =
      permuted_strided_within_tile + tile_strided_idx * 4;
508
  PrimExpr element_contiguous =
509
510
      FloorMod(j, 8) +
      (permuted_contiguous_within_tile + tile_contiguous_idx * 8) * 8;
511
512
513
514
  PrimExpr offset = element_strided * continuous + element_contiguous;
  return Layout(Array{i, j}, {offset});
}

515
516
517
518
519
520
521
522
Layout makeGemmVoltaABLayout(int stride, int continuous, bool is_a,
                             int kfactor) {
  if (kfactor == 2)
    return MakeGemmVoltaABLayoutCrosswise(stride, continuous);
  if (is_a && continuous % 64 == 0)
    return MakeGemmVoltaALayoutCongruous(stride, continuous);
  if (!is_a && continuous % 64 == 0)
    return MakeGemmVoltaBLayoutCongruous(stride, continuous);
523
524
525
  return makeGemmABLayoutPadded(stride, continuous, 16);
}

526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
/*!
 * \brief Creates a memory layout for GEMM's A or B matrices.
 *
 * This function selects an appropriate memory layout based on the matrix
 * dimensions, element size, continuity, and a k-factor. It aims to optimize
 * memory access patterns, potentially using swizzling techniques or specialized
 * layouts for different data types and hardware characteristics.
 *
 * \param mat_stride The leading dimension of the matrix (e.g., K for a
 * row-major M x K matrix). This is the number of elements to skip to get to the
 * same column in the next row (row-major) or to the same row in the next column
 * (column-major). \param mat_continuous The length of the dimension stored
 * contiguously in memory (e.g., K for a row-major M x K matrix, or M for a
 * column-major M x K matrix). \param continuity The size of the dimension that
 * is continuous from the perspective of memory bank access. This is used to
 * select specific swizzling strategies. It might be the same as mat_continuous
 *                   or different based on tiling or hardware details.
 * \param element_size The size of each element in the matrix, in bits (e.g., 8,
 * 16, 32, 64). \param kfactor An integer factor that influences layout
 * selection, particularly for fp64 and int8 types. It often relates to how the
 * K dimension of the GEMM (M x K * K x N) is handled or tiled.
 *                - For fp64 (element_size == 64):
 *                  - kfactor == 1 often implies K is in the "outer" loop (e.g.,
 * KxN matrix).
 *                  - kfactor == 2 often implies K is in the "inner" loop (e.g.,
 * NxK matrix).
 *                - For int8 (element_size == 8):
 *                  - kfactor == 1 uses a padded layout.
 * \return A Layout object representing the chosen memory layout.
 */
556
557
Layout makeGemmABLayout(int mat_stride, int mat_continuous, int continuity,
                        int element_size, int kfactor) {
558
  if (element_size == 64) {
559
560
561
562
563
    if (kfactor == 1 && continuity % 16 == 0) // float64 KxN
      return makeGemmABLayoutF64_Kouter(mat_stride, mat_continuous);
    if (kfactor == 2 && continuity % 16 == 0) // float64 NxK
      return makeGemmABLayoutF64_Kinner(mat_stride, mat_continuous);
    return makeGemmABLayoutPadded(mat_stride, mat_continuous, element_size);
564
565
  }
  int vector_size = 128 / element_size;
566
  if (kfactor == 1 && element_size == 8) // int8 KxN
567
    return makeGemmABLayoutPadded(mat_stride, mat_continuous, element_size);
568
  else if (mat_continuous % (vector_size * 8) == 0)
569
    return makeFullBankSwizzleLayout(mat_stride, mat_continuous, element_size);
570
  else if (mat_continuous % (vector_size * 4) == 0)
571
    return makeHalfBankSwizzleLayout(mat_stride, mat_continuous, element_size);
572
  else {
573
    return makeGemmABLayoutPadded(mat_stride, mat_continuous, element_size);
574
575
576
  }
}

577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
Layout makeGemmABLayoutHopper(int mat_stride, int mat_continuous,
                              int continuity, int element_size, int kfactor) {
  if (element_size == 64) {
    if (kfactor == 1 && continuity % 16 == 0) // float64 KxN
      return makeGemmABLayoutF64_Kouter(mat_stride, mat_continuous);
    if (kfactor == 2 && continuity % 16 == 0) // float64 NxK
      return makeGemmABLayoutF64_Kinner(mat_stride, mat_continuous);
    return makeQuarterBankSwizzleLayout(mat_stride, mat_continuous,
                                        element_size);
  }
  int vector_size = 128 / element_size;
  if (kfactor == 1 && element_size == 8) // int8 KxN
    return makeQuarterBankSwizzleLayout(mat_stride, mat_continuous,
                                        element_size);
  else if (mat_continuous % (vector_size * 8) == 0)
    return makeFullBankSwizzleLayout(mat_stride, mat_continuous, element_size);
  else if (mat_continuous % (vector_size * 4) == 0)
    return makeHalfBankSwizzleLayout(mat_stride, mat_continuous, element_size);
  else
    return makeQuarterBankSwizzleLayout(mat_stride, mat_continuous,
                                        element_size);
}

600
601
Layout makeGemmABLayoutCDNA(int stride, int continuous, int element_size,
                            int kPack) {
602
603
604
605
606
607
608
  int vector_size = 128 / element_size;
  if (continuous % (vector_size * 4) == 0)
    return makeMatrixCoreSwizzleLayout(stride, continuous, element_size, kPack);
  else {
    return makeGemmABLayoutPadded(stride, continuous, element_size);
  }
}
609
610
} // namespace tl
} // namespace tvm