gemm_layouts.cc 18.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

/*!
 * \file layout/gemm_layouts.cc
 * \brief Define Layout used in MMA and other operations.
 *
 */

#include <tvm/tir/stmt_functor.h>

#include <cmath>

#include "layout.h"

namespace tvm {
namespace tl {

static IterVar make_itervar(std::string name, PrimExpr dom) {
  Var var = Var(name);
  return IterVar(Range(0, dom), var, IterVarType::kDataPar);
}

Fragment makeGemmFragment8x8() {
  IterVar i = make_itervar("i", 8);
  IterVar j = make_itervar("j", 8);
  IterVar rep = make_itervar("rep", 1);
  PrimExpr forward_thread = FloorDiv(j->var, 2) + 4 * i;
  PrimExpr index = FloorMod(j->var, 2);
  return Fragment({i, j}, {index}, forward_thread, rep);
}
/*
From https://github.com/RadeonOpenCompute/amd_matrix_instruction_calculator
./matrix_calculator.py --architecture cdna1 --instruction v_mfma_f32_16x16x16f16
--detail-instruction
*/
Fragment makeGemmFragmentAB16x16CDNA() {
  IterVar i = make_itervar("i", 16);
  IterVar j = make_itervar("j", 16);
  IterVar rep = make_itervar("rep", 1);
  PrimExpr forward_thread = 16 * FloorDiv(j->var, 4) + i;
  PrimExpr index = FloorMod(j->var, 4);
  return Fragment({i, j}, {index}, forward_thread, rep);
}

Fragment makeGemmFragmentAB16x16CDNATransposed() {
  IterVar i = make_itervar("i", 16);
  IterVar j = make_itervar("j", 16);
  IterVar rep = make_itervar("rep", 1);
  PrimExpr forward_thread = 16 * FloorDiv(i->var, 4) + j;
  PrimExpr index = FloorMod(i->var, 4);
  return Fragment({i, j}, {index}, forward_thread, rep);
}

Fragment makeGemmFragmentC16x16CDNA() {
  IterVar i = make_itervar("i", 16);
  IterVar j = make_itervar("j", 16);
  IterVar rep = make_itervar("rep", 1);
  PrimExpr forward_thread = 16 * FloorDiv(j->var, 4) + i;
  PrimExpr index = FloorMod(j->var, 4);
  return Fragment({i, j}, {index}, forward_thread, rep);
}


Fragment makeGemmFragment8x8Transposed() {
  IterVar i = make_itervar("i", 8);
  IterVar j = make_itervar("j", 8);
  IterVar rep = make_itervar("rep", 1);
  PrimExpr forward_thread = FloorDiv(i->var, 2) + 4 * j;
  PrimExpr index = FloorMod(i->var, 2);
  return Fragment({i, j}, {index}, forward_thread, rep);
}

Fragment makeGemmFragment8x16() {
  IterVar i = make_itervar("i", 8);
  IterVar j = make_itervar("j", 16);
  IterVar rep = make_itervar("rep", 1);
  PrimExpr forward_thread = FloorDiv(j->var, 4) + 4 * i;
  PrimExpr index = FloorMod(j->var, 4);
  return Fragment({i, j}, {index}, forward_thread, rep);
}

Fragment makeGemmFragmentC_F64(const int block_m, const int block_n, const int warp_m,
                               const int warp_n) {
  ICHECK(block_m % warp_m == 0);
  ICHECK(block_n % warp_n == 0);
  ICHECK(warp_m % 16 == 0);
  ICHECK(warp_n % 16 == 0);
  auto base_layout = makeGemmFragment8x8();
  auto warp_layout = base_layout->Repeat({block_m / warp_m, block_n / warp_n}, true, false);
  auto block_layout = warp_layout->Repeat({warp_m / 8, warp_n / 8}, false, false);
  return block_layout;
}

Fragment makeGemmFragmentC(const int block_m, const int block_n, const int warp_m, const int warp_n,
                           const int element_size) {
  if (element_size == 64) return makeGemmFragmentC_F64(block_m, block_n, warp_m, warp_n);
  ICHECK(block_m % warp_m == 0);
  ICHECK(block_n % warp_n == 0);
  ICHECK(warp_m % 16 == 0) << "warp_m=" << warp_m;
  ICHECK(warp_n % 16 == 0) << "warp_n=" << warp_n;
  auto base_layout = makeGemmFragment8x8()->Repeat({2, 1}, false);
  auto warp_layout = base_layout->Repeat({block_m / warp_m, block_n / warp_n}, true, false);
  auto block_layout = warp_layout->Repeat({warp_m / 16, warp_n / 8}, false, false);
  return block_layout;
}

Fragment makeGemmFragmentCCDNA(const int block_m, const int block_n, const int warp_m, const int warp_n,
                           const int element_size) {
  if (element_size == 64) LOG(FATAL) << "Not supported";
  ICHECK(block_m % warp_m == 0);
  ICHECK(block_n % warp_n == 0);
  ICHECK(warp_m % 16 == 0) << "warp_m=" << warp_m;
  ICHECK(warp_n % 16 == 0) << "warp_n=" << warp_n;
  auto base_layout = makeGemmFragmentC16x16CDNA()->Repeat({1, 1}, false);
  auto warp_layout = base_layout->Repeat({warp_m / 16, warp_n / 16}, false, true);
  auto block_layout = warp_layout->Repeat({block_m / warp_m, block_n / warp_n}, true, false);
  return block_layout;
}

Fragment makeGemmFragmentCHopper(const int block_m, const int block_n, const int warp_m,
                                 const int warp_n, const int element_size) {
  ICHECK(block_m % warp_m == 0);
  // ICHECK(block_n == warp_n);
  ICHECK(warp_m % 16 == 0);
  auto warp_layout =
      makeGemmFragment8x8()->Repeat({2, warp_n / 8}, false, false);     // 16 x N (1 warp)
  auto block_layout = warp_layout->Repeat({block_m / warp_m, block_n / warp_n}, true, false);  // 16*Y x N (Y warp)
  return block_layout->Repeat({warp_m / 16, 1}, false, false);
}

Fragment makeGemmFragmentA(const int block_m, const int block_n, const int block_k,
                           const int warp_m, const int warp_n, const int element_size) {
  // assume not transposed
  ICHECK(block_m % warp_m == 0);
  ICHECK(block_n % warp_n == 0);
  ICHECK(warp_m % 16 == 0);
  ICHECK(block_k % 16 == 0);
  // Only support 8-bit and 16-bit
  ICHECK(element_size == 8 || element_size == 16);
  if (element_size == 8) {
    auto base_layout = makeGemmFragment8x16()->Repeat({2, 2}, false, false);
    auto warp_layout = base_layout->Repeat({block_m / warp_m, 1}, true)->Replicate(block_n / warp_n);
    auto block_layout = warp_layout->Repeat({warp_m / 16, block_k / 32}, false, false);
    return block_layout;
  } else if (element_size == 16) {
    auto base_layout = makeGemmFragment8x8()->Repeat({2, 2}, false, false);
    auto warp_layout = base_layout->Repeat({block_m / warp_m, 1}, true)->Replicate(block_n / warp_n);
    auto block_layout = warp_layout->Repeat({warp_m / 16, block_k / 16}, false, false);
    return block_layout;
  } else {
    ICHECK(0);
    return Fragment();
  }
}

Fragment makeGemmFragmentACDNA(const int block_m, const int block_n, const int block_k,
                           const int warp_m, const int warp_n, bool transposed) {
  // assume not transposed
  ICHECK(block_m % warp_m == 0);
  ICHECK(block_n % warp_n == 0);
  ICHECK(warp_m % 16 == 0);
  ICHECK(block_k % 16 == 0);
  if (transposed) {
    auto base_layout = makeGemmFragmentAB16x16CDNATransposed()->Repeat({1, 1}, false, false);
    auto warp_layout = base_layout->Repeat({warp_m / 16, block_k / 16}, false, false);
    auto block_layout = warp_layout->Repeat({block_m / warp_m, 1}, true, true)->Replicate(block_n / warp_n);
    return block_layout;
  } else {
    auto base_layout = makeGemmFragmentAB16x16CDNA()->Repeat({1, 1}, false, false);
    auto warp_layout = base_layout->Repeat({warp_m / 16, block_k / 16}, false, false);
    auto block_layout =
        warp_layout->Repeat({block_m / warp_m, 1}, true, true)->Replicate(block_n / warp_n);
    return block_layout;
  }
}


Fragment makeGemmFragmentB(const int block_m, const int block_n, const int block_k,
                           const int warp_m, const int warp_n) {
  // transposed
  ICHECK(warp_n % 8 == 0);
  ICHECK(block_k % 16 == 0);
  auto base_layout = makeGemmFragment8x8Transposed()->Repeat({2, 1}, false, false);
  auto warp_layout = base_layout->Replicate(block_m / warp_m)->Repeat({1, block_n / warp_n}, true);
  auto block_layout = warp_layout->Repeat({block_k / 16, warp_n / 8}, false, true);
  return block_layout;
}

Fragment makeGemmFragment32x32(int element_size) {
  IterVar i = make_itervar("i", 32);
  IterVar j = make_itervar("j", 32);
  IterVar rep = make_itervar("rep", 1);
  ICHECK(element_size == 16 || element_size == 32);
  if (element_size == 16) {
    PrimExpr thd = FloorMod(i, 4) + FloorDiv(FloorMod(i, 16), 8) * 4 +
                   FloorDiv(FloorMod(j, 16), 8) * 8 + FloorDiv(i, 16) * 16;
    PrimExpr idx = FloorMod(j, 4) + FloorDiv(j, 16) * 4 + FloorDiv(FloorMod(i, 8), 4) * 8 +
                   FloorDiv(FloorMod(j, 8), 4) * 16;
    return Fragment({i, j}, {idx}, thd, rep);
  } else {
    PrimExpr thd = FloorMod(i, 2) + 2 * FloorDiv(FloorMod(j, 4), 2) +
                   FloorDiv(FloorMod(i, 16), 8) * 4 + FloorDiv(FloorMod(j, 16), 8) * 8 +
                   FloorDiv(i, 16) * 16;
    PrimExpr idx = FloorMod(j, 2) + 2 * FloorDiv(FloorMod(i, 4), 2) + FloorDiv(j, 16) * 4 +
                   FloorDiv(FloorMod(i, 8), 4) * 8 + FloorDiv(FloorMod(j, 8), 4) * 16;
    return Fragment({i, j}, {idx}, thd, rep);
  }
}

Fragment makeGemmVoltaFragmentC(const int block_m, const int block_n, const int warp_m,
                                const int warp_n, int element_size) {
  ICHECK(block_m % warp_m == 0);
  ICHECK(block_n % warp_n == 0);
  ICHECK(warp_m % 32 == 0);
  ICHECK(warp_n % 32 == 0);
  auto base_layout = makeGemmFragment32x32(element_size);
  auto warp_layout = base_layout->Repeat({warp_m / 32, warp_n / 32}, false, false);
  auto block_layout = warp_layout->Repeat({block_m / warp_m, block_n / warp_n}, true);
  return block_layout;
}

Fragment makeGemmVoltaFragmentA(const int block_m, const int block_n, const int block_k,
                                const int warp_m, const int warp_n) {
  // assume not transposed
  ICHECK(block_m % warp_m == 0);
  ICHECK(block_n % warp_n == 0);
  ICHECK(warp_m % 32 == 0);
  ICHECK(block_k % 4 == 0);
  // this is a special case
  IterVar i = make_itervar("i", 32);
  IterVar j = make_itervar("j", 4);
  IterVar rep = make_itervar("rep", 2);
  PrimExpr thd = FloorDiv(FloorMod(i, 16), 8) * 4 + 16 * FloorDiv(i, 16) + FloorMod(i, 4) + 8 * rep;
  PrimExpr idx = j + FloorDiv(FloorMod(i, 8), 4) * 4;
  Fragment base_layout = Fragment({i, j}, {idx}, thd, rep);
  auto warp_layout = base_layout->Repeat({warp_m / 32, block_k / 4}, false, false);
  auto block_layout = warp_layout->Replicate(block_n / warp_n)->Repeat({block_m / warp_m, 1}, true);
  return block_layout;
}

PrimExpr xor2x2(const PrimExpr& i, const PrimExpr& j) { return FloorMod(i + j, 2); }

PrimExpr xor4x4(const PrimExpr& i, const PrimExpr& j) {
  PrimExpr i0 = FloorMod(i, 2);
  PrimExpr j0 = FloorMod(j, 2);
  PrimExpr i1 = FloorDiv(i, 2);
  PrimExpr j1 = FloorDiv(j, 2);
  return 2 * xor2x2(i1, j1) + xor2x2(i0, j0);
}

PrimExpr xor8x8(const PrimExpr& i, const PrimExpr j) {
  PrimExpr i0 = FloorMod(i, 2);
  PrimExpr j0 = FloorMod(j, 2);
  PrimExpr i1 = FloorDiv(i, 2);
  PrimExpr j1 = FloorDiv(j, 2);
  return 2 * xor4x4(i1, j1) + xor2x2(i0, j0);
}

Layout makeHalfBankSwizzleLayout(int stride, int continuous, int element_size) {
  // Swizzle 2 bit
  Var i = InputPlaceholder(0);
  Var j = InputPlaceholder(1);
  int vector_size = 128 / element_size;
  ICHECK(stride % 8 == 0);
  ICHECK(continuous % (vector_size * 4) == 0);
  PrimExpr ts = FloorDiv(i, 8);
  PrimExpr s = FloorMod(i, 8);
  PrimExpr tc = FloorDiv(FloorDiv(j, vector_size), 4);
  PrimExpr c = FloorMod(FloorDiv(j, vector_size), 4);
  PrimExpr vec = FloorMod(j, vector_size);
  PrimExpr c_swizzle = xor4x4(c, FloorDiv(s, 2));
  PrimExpr index = vec + (c_swizzle + s * 4) * vector_size;
  return Layout(Array<PrimExpr>{stride, continuous}, {tc, ts, index});
}

Layout makeFullBankSwizzleLayout(int stride, int continuous, int element_size) {
  // Swizzle 3 bit
  Var i = InputPlaceholder(0);
  Var j = InputPlaceholder(1);
  int vector_size = 128 / element_size;
  ICHECK(stride % 8 == 0);
  ICHECK(continuous % (vector_size * 8) == 0);
  PrimExpr ts = FloorDiv(i, 8);
  PrimExpr s = FloorMod(i, 8);
  PrimExpr tc = FloorDiv(FloorDiv(j, vector_size), 8);
  PrimExpr c = FloorMod(FloorDiv(j, vector_size), 8);
  PrimExpr vec = FloorMod(j, vector_size);
  PrimExpr c_swizzle = xor8x8(c, s);
  PrimExpr index = vec + (c_swizzle + s * 8) * vector_size;
  return Layout(Array<PrimExpr>{stride, continuous}, {tc, ts, index});
}

// Detail implementation please ref to bitblas::tl::mfma_layout::make_mfma_swizzle_layout
Layout makeMatrixCoreSwizzleLayout(int stride, int continuous, int element_size, int kPack=1) {
  const int numBanks = 32;
  const int bankBitWidth = 32;
  const int SIMDWidth = 16;
  const int vecSize = 4 * kPack;
  const int innerDimLength = continuous;
  const int typeWidthInBit = element_size;

  const int elemsPerOneBanksRow = (numBanks * bankBitWidth) / typeWidthInBit;
  const int perPhase = std::max(1, elemsPerOneBanksRow / innerDimLength);
  const int maxPhase = std::min(SIMDWidth / perPhase, innerDimLength / vecSize);

  IterVar row = make_itervar("row", stride);
  IterVar col = make_itervar("col", continuous);
  PrimExpr phase = FloorMod(row / perPhase, maxPhase);
  PrimExpr colOffSwizzled = ((col / vecSize) ^ phase) * vecSize;
  PrimExpr colOffOrdered = FloorMod(col, vecSize);
  PrimExpr colOff = colOffSwizzled + colOffOrdered;

  return Layout(Array{row, col}, {row, colOff});
}

Layout makeGemmABLayoutF64_Kinner(int stride, int continuous) {
  // Swizzle<2, 0, 4>
  Var i = InputPlaceholder(0);
  Var j = InputPlaceholder(1);
  PrimExpr tc = FloorDiv(j, 16);
  PrimExpr ts = FloorDiv(i, 4);
  PrimExpr c = FloorMod(j, 16);
  PrimExpr s = FloorMod(i, 4);
  PrimExpr swizzled_c = FloorDiv(c, 4) * 4 + xor4x4(FloorMod(c, 4), s);
  PrimExpr index = swizzled_c + s * 16;
  return Layout(Array<PrimExpr>{stride, continuous}, {tc, ts, index});
}

Layout makeGemmABLayoutF64_Kouter(int stride, int continuous) {
  // Swizzle<2, 2, 2>
  Var i = InputPlaceholder(0);
  Var j = InputPlaceholder(1);
  PrimExpr tc = FloorDiv(j, 16);
  PrimExpr ts = FloorDiv(i, 4);
  PrimExpr c = FloorMod(j, 16);
  PrimExpr s = FloorMod(i, 4);
  PrimExpr swizzled_c = FloorMod(c, 4) + xor4x4(FloorDiv(c, 4), s) * 4;
  PrimExpr index = swizzled_c + s * 16;
  return Layout(Array<PrimExpr>{stride, continuous}, {tc, ts, index});
}

// The Default Layout for Tensor Access
Layout makeGemmLayoutLinear(int stride, int continuous) {
  IterVar i = make_itervar("i", stride);
  IterVar j = make_itervar("j", continuous);
  return Layout(Array{i, j}, {i * continuous + j});
}

Layout makeGemmABLayoutPadded(int stride, int continuous, int element_size) {
  IterVar i = make_itervar("i", stride);
  IterVar j = make_itervar("j", continuous);
  int padded = continuous;
  // Add 128 bits padding when the last dim is a multiple of 256 bits
  if ((element_size * continuous) % 256 == 0) padded += 128 / element_size;
  return Layout(Array{i, j}, {i * padded + j});
}

Layout MakeGemmVoltaABLayoutCrosswise(int stride, int continuous) {
  ICHECK(stride % 32 == 0 && continuous % 32 == 0);
  IterVar i = make_itervar("i", stride);
  IterVar j = make_itervar("j", continuous);
  PrimExpr vec_contiguous_idx = FloorDiv(j, 4);
  PrimExpr vec_strided_within_tile = FloorMod(vec_contiguous_idx, 8);

  PrimExpr bit2 = FloorMod(FloorDiv(FloorMod(i, 32), 16) + FloorDiv(FloorMod(i, 16), 8) +
                               FloorDiv(vec_strided_within_tile, 4),
                           2);
  PrimExpr bit1 =
      xor2x2(FloorDiv(FloorMod(i, 8), 4), FloorDiv(FloorMod(vec_strided_within_tile, 4), 2));
  PrimExpr permuted_vec_contiguous = FloorDiv(i, 16) * 16 + FloorMod(i, 4) * 4 + bit2 * 2 + bit1;

  PrimExpr offset = FloorMod(j, 4) + permuted_vec_contiguous * 4 + vec_contiguous_idx * stride * 4;
  return Layout(Array{i, j}, {offset});
}

Layout MakeGemmVoltaALayoutCongruous(int stride, int continuous) {
  ICHECK(stride % 4 == 0 && continuous % 64 == 0);
  IterVar i = make_itervar("i", stride);
  IterVar j = make_itervar("j", continuous);
  PrimExpr vec_contiguous_idx = FloorDiv(j, 8);
  PrimExpr vec_strided_idx = i;
  PrimExpr tile_contiguous_idx = FloorDiv(vec_contiguous_idx, 8);
  PrimExpr tile_strided_idx = FloorDiv(vec_strided_idx, 4);
  PrimExpr tile_contiguous_residual = FloorMod(vec_contiguous_idx, 8);
  PrimExpr tile_strided_residual = FloorMod(vec_strided_idx, 4);

  PrimExpr permuted_strided_within_tile = FloorDiv(tile_contiguous_residual, 2);
  PrimExpr permuted_contiguous_within_tile =
      FloorMod(tile_contiguous_residual, 2) * 4 +
      xor4x4(tile_strided_residual, permuted_strided_within_tile);

  PrimExpr element_strided = permuted_strided_within_tile + tile_strided_idx * 4;
  PrimExpr element_contiguous =
      FloorMod(j, 8) + (permuted_contiguous_within_tile + tile_contiguous_idx * 8) * 8;
  PrimExpr offset = element_strided * continuous + element_contiguous;
  return Layout(Array{i, j}, {offset});
}

Layout MakeGemmVoltaBLayoutCongruous(int stride, int continuous) {
  ICHECK(stride % 4 == 0 && continuous % 64 == 0);
  IterVar i = make_itervar("i", stride);
  IterVar j = make_itervar("j", continuous);
  PrimExpr vec_contiguous_idx = FloorDiv(j, 8);
  PrimExpr vec_strided_idx = i;
  PrimExpr tile_contiguous_idx = FloorDiv(vec_contiguous_idx, 8);
  PrimExpr tile_strided_idx = FloorDiv(vec_strided_idx, 4);
  PrimExpr tile_contiguous_residual = FloorMod(vec_contiguous_idx, 8);
  PrimExpr tile_strided_residual = FloorMod(vec_strided_idx, 4);

  PrimExpr permuted_strided_within_tile = FloorMod(tile_contiguous_residual, 4);
  PrimExpr permuted_contiguous_within_tile =
      FloorDiv(tile_contiguous_residual, 4) * 4 +
      xor4x4(tile_strided_residual, permuted_strided_within_tile);

  PrimExpr element_strided = permuted_strided_within_tile + tile_strided_idx * 4;
  PrimExpr element_contiguous =
      FloorMod(j, 8) + (permuted_contiguous_within_tile + tile_contiguous_idx * 8) * 8;
  PrimExpr offset = element_strided * continuous + element_contiguous;
  return Layout(Array{i, j}, {offset});
}

Layout makeGemmVoltaABLayout(int stride, int continuous, bool is_a, int kfactor) {
  if (kfactor == 2) return MakeGemmVoltaABLayoutCrosswise(stride, continuous);
  if (is_a && continuous % 64 == 0) return MakeGemmVoltaALayoutCongruous(stride, continuous);
  if (!is_a && continuous % 64 == 0) return MakeGemmVoltaBLayoutCongruous(stride, continuous);
  return makeGemmABLayoutPadded(stride, continuous, 16);
}

Layout makeGemmABLayout(int stride, int continuous, int element_size, int kfactor) {
  if (element_size == 64) {
    if (kfactor == 1 && continuous % 16 == 0)  // float64 KxN
      return makeGemmABLayoutF64_Kouter(stride, continuous);
    if (kfactor == 2 && continuous % 16 == 0)  // float64 NxK
      return makeGemmABLayoutF64_Kinner(stride, continuous);
    return makeGemmABLayoutPadded(stride, continuous, element_size);
  }
  int vector_size = 128 / element_size;
  if (kfactor == 1 && element_size == 8)  // int8 KxN
    return makeGemmABLayoutPadded(stride, continuous, element_size);
  else if (continuous % (vector_size * 8) == 0)
    return makeFullBankSwizzleLayout(stride, continuous, element_size);
  else if (continuous % (vector_size * 4) == 0)
    return makeHalfBankSwizzleLayout(stride, continuous, element_size);
  else {
    return makeGemmABLayoutPadded(stride, continuous, element_size);
  }
}

Layout makeGemmABLayoutCDNA(int stride, int continuous, int element_size, int kPack) {
  int vector_size = 128 / element_size;
  if (continuous % (vector_size * 4) == 0)
    return makeMatrixCoreSwizzleLayout(stride, continuous, element_size, kPack);
  else {
    return makeGemmABLayoutPadded(stride, continuous, element_size);
  }
}
}  // namespace tl
}  // namespace tvm