gemm_layouts.cc 19.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
/*!
 * \file layout/gemm_layouts.cc
 * \brief Define Layout used in MMA and other operations.
 *
 */

#include <tvm/tir/stmt_functor.h>

#include <cmath>

#include "layout.h"

namespace tvm {
namespace tl {

static IterVar make_itervar(std::string name, PrimExpr dom) {
17
  Var var = Var(name, dom->dtype);
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
  return IterVar(Range(0, dom), var, IterVarType::kDataPar);
}

Fragment makeGemmFragment8x8() {
  IterVar i = make_itervar("i", 8);
  IterVar j = make_itervar("j", 8);
  IterVar rep = make_itervar("rep", 1);
  PrimExpr forward_thread = FloorDiv(j->var, 2) + 4 * i;
  PrimExpr index = FloorMod(j->var, 2);
  return Fragment({i, j}, {index}, forward_thread, rep);
}
/*
From https://github.com/RadeonOpenCompute/amd_matrix_instruction_calculator
./matrix_calculator.py --architecture cdna1 --instruction v_mfma_f32_16x16x16f16
--detail-instruction
*/
Fragment makeGemmFragmentAB16x16CDNA() {
  IterVar i = make_itervar("i", 16);
  IterVar j = make_itervar("j", 16);
  IterVar rep = make_itervar("rep", 1);
  PrimExpr forward_thread = 16 * FloorDiv(j->var, 4) + i;
  PrimExpr index = FloorMod(j->var, 4);
  return Fragment({i, j}, {index}, forward_thread, rep);
}

Fragment makeGemmFragmentAB16x16CDNATransposed() {
  IterVar i = make_itervar("i", 16);
  IterVar j = make_itervar("j", 16);
  IterVar rep = make_itervar("rep", 1);
  PrimExpr forward_thread = 16 * FloorDiv(i->var, 4) + j;
  PrimExpr index = FloorMod(i->var, 4);
  return Fragment({i, j}, {index}, forward_thread, rep);
}

Fragment makeGemmFragmentC16x16CDNA() {
  IterVar i = make_itervar("i", 16);
  IterVar j = make_itervar("j", 16);
  IterVar rep = make_itervar("rep", 1);
  PrimExpr forward_thread = 16 * FloorDiv(j->var, 4) + i;
  PrimExpr index = FloorMod(j->var, 4);
  return Fragment({i, j}, {index}, forward_thread, rep);
}

Fragment makeGemmFragment8x8Transposed() {
  IterVar i = make_itervar("i", 8);
  IterVar j = make_itervar("j", 8);
  IterVar rep = make_itervar("rep", 1);
  PrimExpr forward_thread = FloorDiv(i->var, 2) + 4 * j;
  PrimExpr index = FloorMod(i->var, 2);
  return Fragment({i, j}, {index}, forward_thread, rep);
}

Fragment makeGemmFragment8x16() {
  IterVar i = make_itervar("i", 8);
  IterVar j = make_itervar("j", 16);
  IterVar rep = make_itervar("rep", 1);
  PrimExpr forward_thread = FloorDiv(j->var, 4) + 4 * i;
  PrimExpr index = FloorMod(j->var, 4);
  return Fragment({i, j}, {index}, forward_thread, rep);
}

79
80
Fragment makeGemmFragmentC_F64(const int block_m, const int block_n,
                               const int warp_m, const int warp_n) {
81
82
83
84
85
  ICHECK(block_m % warp_m == 0);
  ICHECK(block_n % warp_n == 0);
  ICHECK(warp_m % 16 == 0);
  ICHECK(warp_n % 16 == 0);
  auto base_layout = makeGemmFragment8x8();
86
87
88
89
  auto warp_layout =
      base_layout->Repeat({block_m / warp_m, block_n / warp_n}, true, false);
  auto block_layout =
      warp_layout->Repeat({warp_m / 8, warp_n / 8}, false, false);
90
91
92
  return block_layout;
}

93
94
Fragment makeGemmFragmentC(const int block_m, const int block_n,
                           const int warp_m, const int warp_n,
95
                           const int element_size) {
96
97
  if (element_size == 64)
    return makeGemmFragmentC_F64(block_m, block_n, warp_m, warp_n);
98
99
100
101
102
  ICHECK(block_m % warp_m == 0);
  ICHECK(block_n % warp_n == 0);
  ICHECK(warp_m % 16 == 0) << "warp_m=" << warp_m;
  ICHECK(warp_n % 16 == 0) << "warp_n=" << warp_n;
  auto base_layout = makeGemmFragment8x8()->Repeat({2, 1}, false);
103
104
105
106
  auto warp_layout =
      base_layout->Repeat({block_m / warp_m, block_n / warp_n}, true, false);
  auto block_layout =
      warp_layout->Repeat({warp_m / 16, warp_n / 8}, false, false);
107
108
109
  return block_layout;
}

110
111
112
113
114
Fragment makeGemmFragmentCCDNA(const int block_m, const int block_n,
                               const int warp_m, const int warp_n,
                               const int element_size) {
  if (element_size == 64)
    LOG(FATAL) << "Not supported";
115
116
117
118
119
  ICHECK(block_m % warp_m == 0);
  ICHECK(block_n % warp_n == 0);
  ICHECK(warp_m % 16 == 0) << "warp_m=" << warp_m;
  ICHECK(warp_n % 16 == 0) << "warp_n=" << warp_n;
  auto base_layout = makeGemmFragmentC16x16CDNA()->Repeat({1, 1}, false);
120
121
122
123
  auto warp_layout =
      base_layout->Repeat({warp_m / 16, warp_n / 16}, false, true);
  auto block_layout =
      warp_layout->Repeat({block_m / warp_m, block_n / warp_n}, true, false);
124
125
126
  return block_layout;
}

127
128
129
Fragment makeGemmFragmentCHopper(const int block_m, const int block_n,
                                 const int warp_m, const int warp_n,
                                 const int element_size) {
130
131
  ICHECK(block_m % warp_m == 0);
  // ICHECK(block_n == warp_n);
132
  ICHECK(warp_m % 16 == 0) << "warp_m=" << warp_m;
133
134
135
136
  auto warp_layout = makeGemmFragment8x8()->Repeat({2, warp_n / 8}, false,
                                                   false); // 16 x N (1 warp)
  auto block_layout = warp_layout->Repeat({block_m / warp_m, block_n / warp_n},
                                          true, false); // 16*Y x N (Y warp)
137
138
139
  return block_layout->Repeat({warp_m / 16, 1}, false, false);
}

140
141
142
Fragment makeGemmFragmentA(const int block_m, const int block_n,
                           const int block_k, const int warp_m,
                           const int warp_n, const int element_size) {
143
144
145
146
147
148
149
150
151
  // assume not transposed
  ICHECK(block_m % warp_m == 0);
  ICHECK(block_n % warp_n == 0);
  ICHECK(warp_m % 16 == 0);
  ICHECK(block_k % 16 == 0);
  // Only support 8-bit and 16-bit
  ICHECK(element_size == 8 || element_size == 16);
  if (element_size == 8) {
    auto base_layout = makeGemmFragment8x16()->Repeat({2, 2}, false, false);
152
153
154
155
    auto warp_layout = base_layout->Repeat({block_m / warp_m, 1}, true)
                           ->Replicate(block_n / warp_n);
    auto block_layout =
        warp_layout->Repeat({warp_m / 16, block_k / 32}, false, false);
156
157
158
    return block_layout;
  } else if (element_size == 16) {
    auto base_layout = makeGemmFragment8x8()->Repeat({2, 2}, false, false);
159
160
161
162
    auto warp_layout = base_layout->Repeat({block_m / warp_m, 1}, true)
                           ->Replicate(block_n / warp_n);
    auto block_layout =
        warp_layout->Repeat({warp_m / 16, block_k / 16}, false, false);
163
164
165
166
167
168
169
    return block_layout;
  } else {
    ICHECK(0);
    return Fragment();
  }
}

170
171
172
Fragment makeGemmFragmentACDNA(const int block_m, const int block_n,
                               const int block_k, const int warp_m,
                               const int warp_n, bool transposed) {
173
174
175
176
177
178
  // assume not transposed
  ICHECK(block_m % warp_m == 0);
  ICHECK(block_n % warp_n == 0);
  ICHECK(warp_m % 16 == 0);
  ICHECK(block_k % 16 == 0);
  if (transposed) {
179
180
181
182
183
184
    auto base_layout =
        makeGemmFragmentAB16x16CDNATransposed()->Repeat({1, 1}, false, false);
    auto warp_layout =
        base_layout->Repeat({warp_m / 16, block_k / 16}, false, false);
    auto block_layout = warp_layout->Repeat({block_m / warp_m, 1}, true, true)
                            ->Replicate(block_n / warp_n);
185
186
    return block_layout;
  } else {
187
188
189
190
191
192
    auto base_layout =
        makeGemmFragmentAB16x16CDNA()->Repeat({1, 1}, false, false);
    auto warp_layout =
        base_layout->Repeat({warp_m / 16, block_k / 16}, false, false);
    auto block_layout = warp_layout->Repeat({block_m / warp_m, 1}, true, true)
                            ->Replicate(block_n / warp_n);
193
194
195
196
    return block_layout;
  }
}

197
198
199
Fragment makeGemmFragmentB(const int block_m, const int block_n,
                           const int block_k, const int warp_m,
                           const int warp_n) {
200
201
202
  // transposed
  ICHECK(warp_n % 8 == 0);
  ICHECK(block_k % 16 == 0);
203
204
205
206
207
208
  auto base_layout =
      makeGemmFragment8x8Transposed()->Repeat({2, 1}, false, false);
  auto warp_layout = base_layout->Replicate(block_m / warp_m)
                         ->Repeat({1, block_n / warp_n}, true);
  auto block_layout =
      warp_layout->Repeat({block_k / 16, warp_n / 8}, false, true);
209
210
211
212
213
214
215
216
217
218
219
  return block_layout;
}

Fragment makeGemmFragment32x32(int element_size) {
  IterVar i = make_itervar("i", 32);
  IterVar j = make_itervar("j", 32);
  IterVar rep = make_itervar("rep", 1);
  ICHECK(element_size == 16 || element_size == 32);
  if (element_size == 16) {
    PrimExpr thd = FloorMod(i, 4) + FloorDiv(FloorMod(i, 16), 8) * 4 +
                   FloorDiv(FloorMod(j, 16), 8) * 8 + FloorDiv(i, 16) * 16;
220
221
    PrimExpr idx = FloorMod(j, 4) + FloorDiv(j, 16) * 4 +
                   FloorDiv(FloorMod(i, 8), 4) * 8 +
222
223
224
225
                   FloorDiv(FloorMod(j, 8), 4) * 16;
    return Fragment({i, j}, {idx}, thd, rep);
  } else {
    PrimExpr thd = FloorMod(i, 2) + 2 * FloorDiv(FloorMod(j, 4), 2) +
226
227
228
229
230
                   FloorDiv(FloorMod(i, 16), 8) * 4 +
                   FloorDiv(FloorMod(j, 16), 8) * 8 + FloorDiv(i, 16) * 16;
    PrimExpr idx = FloorMod(j, 2) + 2 * FloorDiv(FloorMod(i, 4), 2) +
                   FloorDiv(j, 16) * 4 + FloorDiv(FloorMod(i, 8), 4) * 8 +
                   FloorDiv(FloorMod(j, 8), 4) * 16;
231
232
233
234
    return Fragment({i, j}, {idx}, thd, rep);
  }
}

235
236
237
Fragment makeGemmVoltaFragmentC(const int block_m, const int block_n,
                                const int warp_m, const int warp_n,
                                int element_size) {
238
239
240
241
242
  ICHECK(block_m % warp_m == 0);
  ICHECK(block_n % warp_n == 0);
  ICHECK(warp_m % 32 == 0);
  ICHECK(warp_n % 32 == 0);
  auto base_layout = makeGemmFragment32x32(element_size);
243
244
245
246
  auto warp_layout =
      base_layout->Repeat({warp_m / 32, warp_n / 32}, false, false);
  auto block_layout =
      warp_layout->Repeat({block_m / warp_m, block_n / warp_n}, true);
247
248
249
  return block_layout;
}

250
251
252
Fragment makeGemmVoltaFragmentA(const int block_m, const int block_n,
                                const int block_k, const int warp_m,
                                const int warp_n) {
253
254
255
256
257
258
259
260
261
  // assume not transposed
  ICHECK(block_m % warp_m == 0);
  ICHECK(block_n % warp_n == 0);
  ICHECK(warp_m % 32 == 0);
  ICHECK(block_k % 4 == 0);
  // this is a special case
  IterVar i = make_itervar("i", 32);
  IterVar j = make_itervar("j", 4);
  IterVar rep = make_itervar("rep", 2);
262
263
  PrimExpr thd = FloorDiv(FloorMod(i, 16), 8) * 4 + 16 * FloorDiv(i, 16) +
                 FloorMod(i, 4) + 8 * rep;
264
265
  PrimExpr idx = j + FloorDiv(FloorMod(i, 8), 4) * 4;
  Fragment base_layout = Fragment({i, j}, {idx}, thd, rep);
266
267
268
269
  auto warp_layout =
      base_layout->Repeat({warp_m / 32, block_k / 4}, false, false);
  auto block_layout = warp_layout->Replicate(block_n / warp_n)
                          ->Repeat({block_m / warp_m, 1}, true);
270
271
272
  return block_layout;
}

273
274
275
PrimExpr xor2x2(const PrimExpr &i, const PrimExpr &j) {
  return FloorMod(i + j, 2);
}
276

277
PrimExpr xor4x4(const PrimExpr &i, const PrimExpr &j) {
278
279
280
281
282
283
284
  PrimExpr i0 = FloorMod(i, 2);
  PrimExpr j0 = FloorMod(j, 2);
  PrimExpr i1 = FloorDiv(i, 2);
  PrimExpr j1 = FloorDiv(j, 2);
  return 2 * xor2x2(i1, j1) + xor2x2(i0, j0);
}

285
PrimExpr xor8x8(const PrimExpr &i, const PrimExpr j) {
286
287
288
289
290
291
292
293
294
295
296
297
  PrimExpr i0 = FloorMod(i, 2);
  PrimExpr j0 = FloorMod(j, 2);
  PrimExpr i1 = FloorDiv(i, 2);
  PrimExpr j1 = FloorDiv(j, 2);
  return 2 * xor4x4(i1, j1) + xor2x2(i0, j0);
}

Layout makeHalfBankSwizzleLayout(int stride, int continuous, int element_size) {
  // Swizzle 2 bit
  Var i = InputPlaceholder(0);
  Var j = InputPlaceholder(1);
  int vector_size = 128 / element_size;
298
299
300
  ICHECK(stride % 8 == 0) << "stride=" << stride;
  ICHECK(continuous % (vector_size * 4) == 0)
      << "continuous=" << continuous << ", vector_size=" << vector_size;
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
  PrimExpr ts = FloorDiv(i, 8);
  PrimExpr s = FloorMod(i, 8);
  PrimExpr tc = FloorDiv(FloorDiv(j, vector_size), 4);
  PrimExpr c = FloorMod(FloorDiv(j, vector_size), 4);
  PrimExpr vec = FloorMod(j, vector_size);
  PrimExpr c_swizzle = xor4x4(c, FloorDiv(s, 2));
  PrimExpr index = vec + (c_swizzle + s * 4) * vector_size;
  return Layout(Array<PrimExpr>{stride, continuous}, {tc, ts, index});
}

Layout makeFullBankSwizzleLayout(int stride, int continuous, int element_size) {
  // Swizzle 3 bit
  Var i = InputPlaceholder(0);
  Var j = InputPlaceholder(1);
  int vector_size = 128 / element_size;
  ICHECK(stride % 8 == 0);
  ICHECK(continuous % (vector_size * 8) == 0);
  PrimExpr ts = FloorDiv(i, 8);
  PrimExpr s = FloorMod(i, 8);
  PrimExpr tc = FloorDiv(FloorDiv(j, vector_size), 8);
  PrimExpr c = FloorMod(FloorDiv(j, vector_size), 8);
  PrimExpr vec = FloorMod(j, vector_size);
  PrimExpr c_swizzle = xor8x8(c, s);
  PrimExpr index = vec + (c_swizzle + s * 8) * vector_size;
  return Layout(Array<PrimExpr>{stride, continuous}, {tc, ts, index});
}

328
329
330
331
// Detail implementation please ref to
// bitblas::tl::mfma_layout::make_mfma_swizzle_layout
Layout makeMatrixCoreSwizzleLayout(int stride, int continuous, int element_size,
                                   int kPack = 1) {
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
  const int numBanks = 32;
  const int bankBitWidth = 32;
  const int SIMDWidth = 16;
  const int vecSize = 4 * kPack;
  const int innerDimLength = continuous;
  const int typeWidthInBit = element_size;

  const int elemsPerOneBanksRow = (numBanks * bankBitWidth) / typeWidthInBit;
  const int perPhase = std::max(1, elemsPerOneBanksRow / innerDimLength);
  const int maxPhase = std::min(SIMDWidth / perPhase, innerDimLength / vecSize);

  IterVar row = make_itervar("row", stride);
  IterVar col = make_itervar("col", continuous);
  PrimExpr phase = FloorMod(row / perPhase, maxPhase);
  PrimExpr colOffSwizzled = ((col / vecSize) ^ phase) * vecSize;
  PrimExpr colOffOrdered = FloorMod(col, vecSize);
  PrimExpr colOff = colOffSwizzled + colOffOrdered;

  return Layout(Array{row, col}, {row, colOff});
}

Layout makeGemmABLayoutF64_Kinner(int stride, int continuous) {
  // Swizzle<2, 0, 4>
  Var i = InputPlaceholder(0);
  Var j = InputPlaceholder(1);
  PrimExpr tc = FloorDiv(j, 16);
  PrimExpr ts = FloorDiv(i, 4);
  PrimExpr c = FloorMod(j, 16);
  PrimExpr s = FloorMod(i, 4);
  PrimExpr swizzled_c = FloorDiv(c, 4) * 4 + xor4x4(FloorMod(c, 4), s);
  PrimExpr index = swizzled_c + s * 16;
  return Layout(Array<PrimExpr>{stride, continuous}, {tc, ts, index});
}

Layout makeGemmABLayoutF64_Kouter(int stride, int continuous) {
  // Swizzle<2, 2, 2>
  Var i = InputPlaceholder(0);
  Var j = InputPlaceholder(1);
  PrimExpr tc = FloorDiv(j, 16);
  PrimExpr ts = FloorDiv(i, 4);
  PrimExpr c = FloorMod(j, 16);
  PrimExpr s = FloorMod(i, 4);
  PrimExpr swizzled_c = FloorMod(c, 4) + xor4x4(FloorDiv(c, 4), s) * 4;
  PrimExpr index = swizzled_c + s * 16;
  return Layout(Array<PrimExpr>{stride, continuous}, {tc, ts, index});
}

// The Default Layout for Tensor Access
Layout makeGemmLayoutLinear(int stride, int continuous) {
  IterVar i = make_itervar("i", stride);
  IterVar j = make_itervar("j", continuous);
  return Layout(Array{i, j}, {i * continuous + j});
}

Layout makeGemmABLayoutPadded(int stride, int continuous, int element_size) {
  IterVar i = make_itervar("i", stride);
  IterVar j = make_itervar("j", continuous);
  int padded = continuous;
  // Add 128 bits padding when the last dim is a multiple of 256 bits
391
392
  if ((element_size * continuous) % 256 == 0)
    padded += 128 / element_size;
393
394
395
396
397
398
399
400
401
402
  return Layout(Array{i, j}, {i * padded + j});
}

Layout MakeGemmVoltaABLayoutCrosswise(int stride, int continuous) {
  ICHECK(stride % 32 == 0 && continuous % 32 == 0);
  IterVar i = make_itervar("i", stride);
  IterVar j = make_itervar("j", continuous);
  PrimExpr vec_contiguous_idx = FloorDiv(j, 4);
  PrimExpr vec_strided_within_tile = FloorMod(vec_contiguous_idx, 8);

403
404
405
406
407
408
409
410
411
412
413
  PrimExpr bit2 =
      FloorMod(FloorDiv(FloorMod(i, 32), 16) + FloorDiv(FloorMod(i, 16), 8) +
                   FloorDiv(vec_strided_within_tile, 4),
               2);
  PrimExpr bit1 = xor2x2(FloorDiv(FloorMod(i, 8), 4),
                         FloorDiv(FloorMod(vec_strided_within_tile, 4), 2));
  PrimExpr permuted_vec_contiguous =
      FloorDiv(i, 16) * 16 + FloorMod(i, 4) * 4 + bit2 * 2 + bit1;

  PrimExpr offset = FloorMod(j, 4) + permuted_vec_contiguous * 4 +
                    vec_contiguous_idx * stride * 4;
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
  return Layout(Array{i, j}, {offset});
}

Layout MakeGemmVoltaALayoutCongruous(int stride, int continuous) {
  ICHECK(stride % 4 == 0 && continuous % 64 == 0);
  IterVar i = make_itervar("i", stride);
  IterVar j = make_itervar("j", continuous);
  PrimExpr vec_contiguous_idx = FloorDiv(j, 8);
  PrimExpr vec_strided_idx = i;
  PrimExpr tile_contiguous_idx = FloorDiv(vec_contiguous_idx, 8);
  PrimExpr tile_strided_idx = FloorDiv(vec_strided_idx, 4);
  PrimExpr tile_contiguous_residual = FloorMod(vec_contiguous_idx, 8);
  PrimExpr tile_strided_residual = FloorMod(vec_strided_idx, 4);

  PrimExpr permuted_strided_within_tile = FloorDiv(tile_contiguous_residual, 2);
  PrimExpr permuted_contiguous_within_tile =
      FloorMod(tile_contiguous_residual, 2) * 4 +
      xor4x4(tile_strided_residual, permuted_strided_within_tile);

433
434
  PrimExpr element_strided =
      permuted_strided_within_tile + tile_strided_idx * 4;
435
  PrimExpr element_contiguous =
436
437
      FloorMod(j, 8) +
      (permuted_contiguous_within_tile + tile_contiguous_idx * 8) * 8;
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
  PrimExpr offset = element_strided * continuous + element_contiguous;
  return Layout(Array{i, j}, {offset});
}

Layout MakeGemmVoltaBLayoutCongruous(int stride, int continuous) {
  ICHECK(stride % 4 == 0 && continuous % 64 == 0);
  IterVar i = make_itervar("i", stride);
  IterVar j = make_itervar("j", continuous);
  PrimExpr vec_contiguous_idx = FloorDiv(j, 8);
  PrimExpr vec_strided_idx = i;
  PrimExpr tile_contiguous_idx = FloorDiv(vec_contiguous_idx, 8);
  PrimExpr tile_strided_idx = FloorDiv(vec_strided_idx, 4);
  PrimExpr tile_contiguous_residual = FloorMod(vec_contiguous_idx, 8);
  PrimExpr tile_strided_residual = FloorMod(vec_strided_idx, 4);

  PrimExpr permuted_strided_within_tile = FloorMod(tile_contiguous_residual, 4);
  PrimExpr permuted_contiguous_within_tile =
      FloorDiv(tile_contiguous_residual, 4) * 4 +
      xor4x4(tile_strided_residual, permuted_strided_within_tile);

458
459
  PrimExpr element_strided =
      permuted_strided_within_tile + tile_strided_idx * 4;
460
  PrimExpr element_contiguous =
461
462
      FloorMod(j, 8) +
      (permuted_contiguous_within_tile + tile_contiguous_idx * 8) * 8;
463
464
465
466
  PrimExpr offset = element_strided * continuous + element_contiguous;
  return Layout(Array{i, j}, {offset});
}

467
468
469
470
471
472
473
474
Layout makeGemmVoltaABLayout(int stride, int continuous, bool is_a,
                             int kfactor) {
  if (kfactor == 2)
    return MakeGemmVoltaABLayoutCrosswise(stride, continuous);
  if (is_a && continuous % 64 == 0)
    return MakeGemmVoltaALayoutCongruous(stride, continuous);
  if (!is_a && continuous % 64 == 0)
    return MakeGemmVoltaBLayoutCongruous(stride, continuous);
475
476
477
  return makeGemmABLayoutPadded(stride, continuous, 16);
}

478
479
Layout makeGemmABLayout(int mat_stride, int mat_continuous, int continuity,
                        int element_size, int kfactor) {
480
  if (element_size == 64) {
481
482
483
484
485
    if (kfactor == 1 && continuity % 16 == 0) // float64 KxN
      return makeGemmABLayoutF64_Kouter(mat_stride, mat_continuous);
    if (kfactor == 2 && continuity % 16 == 0) // float64 NxK
      return makeGemmABLayoutF64_Kinner(mat_stride, mat_continuous);
    return makeGemmABLayoutPadded(mat_stride, mat_continuous, element_size);
486
487
  }
  int vector_size = 128 / element_size;
488
  if (kfactor == 1 && element_size == 8) // int8 KxN
489
490
491
492
493
    return makeGemmABLayoutPadded(mat_stride, mat_continuous, element_size);
  else if (continuity % (vector_size * 8) == 0)
    return makeFullBankSwizzleLayout(mat_stride, mat_continuous, element_size);
  else if (continuity % (vector_size * 4) == 0)
    return makeHalfBankSwizzleLayout(mat_stride, mat_continuous, element_size);
494
  else {
495
    return makeGemmABLayoutPadded(mat_stride, mat_continuous, element_size);
496
497
498
  }
}

499
500
Layout makeGemmABLayoutCDNA(int stride, int continuous, int element_size,
                            int kPack) {
501
502
503
504
505
506
507
  int vector_size = 128 / element_size;
  if (continuous % (vector_size * 4) == 0)
    return makeMatrixCoreSwizzleLayout(stride, continuous, element_size, kPack);
  else {
    return makeGemmABLayoutPadded(stride, continuous, element_size);
  }
}
508
509
} // namespace tl
} // namespace tvm