example_gqa_bwd.py 23.9 KB
Newer Older
1
2
3
4
5
6
7
import torch
import torch.nn.functional as F
import tilelang
import tilelang.language as T
import argparse


8
9
10
11
@tilelang.jit(
    out_idx=[3, 4], pass_configs={
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
    })
12
def flashattn_fwd(batch, heads, seq_len, dim_qk, dim_v, is_causal, block_M, block_N, groups=1):
13
14
15
16
17
18
19
20
21
22
    scale = (1.0 / dim_qk)**0.5 * 1.44269504  # log2(e)
    head_kv = heads // groups
    q_shape = [batch, seq_len, heads, dim_qk]
    k_shape = [batch, seq_len, head_kv, dim_qk]
    v_shape = [batch, seq_len, head_kv, dim_v]
    dtype = "float16"
    accum_dtype = "float"

    @T.prim_func
    def flash_fwd(
23
24
25
26
27
            Q: T.Tensor(q_shape, dtype),  # type: ignore
            K: T.Tensor(k_shape, dtype),  # type: ignore
            V: T.Tensor(v_shape, dtype),  # type: ignore
            Output: T.Tensor([batch, seq_len, heads, dim_v], dtype),  # type: ignore
            lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
28
    ):
29
        with T.Kernel(T.ceildiv(seq_len, block_M), heads, batch, threads=256) as (bx, by, bz):
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
            Q_shared = T.alloc_shared([block_M, dim_qk], dtype)
            K_shared = T.alloc_shared([block_N, dim_qk], dtype)
            V_shared = T.alloc_shared([block_N, dim_v], dtype)
            acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
            acc_o = T.alloc_fragment([block_M, dim_v], accum_dtype)
            scores_max = T.alloc_fragment([block_M], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
            scores_scale = T.alloc_fragment([block_M], accum_dtype)
            scores_sum = T.alloc_fragment([block_M], accum_dtype)
            logsum = T.alloc_fragment([block_M], accum_dtype)

            T.annotate_layout({Q_shared: tilelang.layout.make_swizzled_layout(Q_shared)})
            T.copy(Q[bz, bx * block_M:(bx + 1) * block_M, by, :], Q_shared)
            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))
            loop_range = (
                T.ceildiv(
49
                    (bx + 1) * block_M, block_N) if is_causal else T.ceildiv(seq_len, block_N))
50
51
            for k in T.Pipelined(loop_range, num_stages=1):
                T.copy(K[bz, k * block_N:(k + 1) * block_N, by // groups, :], K_shared)
52
                if is_causal:
53
54
55
56
                    for i, j in T.Parallel(block_M, block_N):
                        acc_s[i, j] = T.if_then_else(bx * block_M + i >= k * block_N + j, 0,
                                                     -T.infinity(acc_s.dtype))
                else:
57
58
59
                    for i, j in T.Parallel(block_M, block_N):
                        acc_s[i, j] = T.if_then_else(k * block_N + j >= seq_len,
                                                     -T.infinity(acc_s.dtype), 0)
60
61
62
63
                T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
                T.copy(V[bz, k * block_N:(k + 1) * block_N, by // groups, :], V_shared)
                T.copy(scores_max, scores_max_prev)
                T.reduce_max(acc_s, scores_max, dim=1, clear=False)
64
65
                for i in T.Parallel(block_M):
                    scores_max[i] = T.max(scores_max[i], scores_max_prev[i])
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
                for i in T.Parallel(block_M):
                    scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
                for i, j in T.Parallel(block_M, dim_v):
                    acc_o[i, j] *= scores_scale[i]
                for i, j in T.Parallel(block_M, block_N):
                    acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
                T.copy(acc_s, acc_s_cast)
                T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)
                T.reduce_sum(acc_s, scores_sum, dim=1)
                for i in T.Parallel(block_M):
                    logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
            for i, j in T.Parallel(block_M, dim_v):
                acc_o[i, j] /= logsum[i]
            T.copy(acc_o, Output[bz, bx * block_M:(bx + 1) * block_M, by, :])
            for i in T.Parallel(block_M):
                logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale
            T.copy(logsum, lse[bz, by, bx * block_M:(bx + 1) * block_M])

    return flash_fwd


87
88
89
90
@tilelang.jit(
    out_idx=[2], pass_configs={
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
    })
91
92
93
94
95
96
97
98
def flashattn_bwd_preprocess(batch, heads, seq_len, dim_v):
    dtype = "float16"
    accum_dtype = "float"
    shape = [batch, seq_len, heads, dim_v]
    blk = 32

    @T.prim_func
    def flash_bwd_prep(
99
100
101
            O: T.Tensor(shape, dtype),  # type: ignore
            dO: T.Tensor(shape, dtype),  # type: ignore
            Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    ):
        with T.Kernel(heads, T.ceildiv(seq_len, blk), batch) as (bx, by, bz):
            o = T.alloc_fragment([blk, blk], dtype)
            do = T.alloc_fragment([blk, blk], dtype)
            acc = T.alloc_fragment([blk, blk], accum_dtype)
            delta = T.alloc_fragment([blk], accum_dtype)
            T.clear(acc)
            for k in range(T.ceildiv(dim_v, blk)):
                T.copy(O[bz, by * blk:(by + 1) * blk, bx, k * blk:(k + 1) * blk], o)
                T.copy(dO[bz, by * blk:(by + 1) * blk, bx, k * blk:(k + 1) * blk], do)
                for i, j in T.Parallel(blk, blk):
                    acc[i, j] += o[i, j] * do[i, j]
            T.reduce_sum(acc, delta, 1)
            T.copy(delta, Delta[bz, bx, by * blk:(by + 1) * blk])

    return flash_bwd_prep


def make_dq_layout(dQ):
    # atomicAdd can not be vectorized, so we need to reorder dq to match the 8x8 gemm fragment
    return T.Layout(dQ.shape,
                    lambda b, l, h, d: [b, l // 8, h, d // 8, (d % 2), 4 * (l % 8) + (d % 8) // 2])


126
127
128
129
@tilelang.jit(
    out_idx=[1], pass_configs={
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
    })
130
131
132
133
134
135
136
137
def flashattn_bwd_postprocess(batch, heads, seq_len, dim_qk):
    dtype = "float16"
    accum_dtype = "float"
    shape = [batch, seq_len, heads, dim_qk]
    blk = 64

    @T.prim_func
    def flash_bwd_post(
138
139
            dQ: T.Tensor(shape, accum_dtype),  # type: ignore
            dQ_out: T.Tensor(shape, dtype),  # type: ignore
140
141
142
143
144
145
146
147
148
149
150
    ):
        with T.Kernel(T.ceildiv(seq_len, blk), heads, batch, threads=128) as (bx, by, bz):
            T.annotate_layout({dQ: make_dq_layout(dQ)})
            T.copy(
                dQ[bz, bx * blk:(bx + 1) * blk, by, :],
                dQ_out[bz, bx * blk:(bx + 1) * blk, by, :],
            )

    return flash_bwd_post


151
152
153
@tilelang.jit(pass_configs={
    tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
})
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
def flashattn_bwd_atomic_add(batch,
                             heads,
                             seq_len,
                             dim_qk,
                             dim_v,
                             is_causal,
                             block_M,
                             block_N,
                             threads=256,
                             num_stages=2,
                             groups=1):
    sm_scale = (1.0 / dim_qk)**0.5
    scale = (1.0 / dim_qk)**0.5 * 1.44269504  # log2(e)
    head_kv = heads // groups
    q_shape = [batch, seq_len, heads, dim_qk]
    k_shape = [batch, seq_len, head_kv, dim_qk]
    v_shape = [batch, seq_len, head_kv, dim_v]
    dtype = "float16"
    accum_dtype = "float"

    @T.prim_func
    def flash_bwd(
            Q: T.Tensor(q_shape, dtype),  # type: ignore
            K: T.Tensor(k_shape, dtype),  # type: ignore
            V: T.Tensor(v_shape, dtype),  # type: ignore
            dO: T.Tensor([batch, seq_len, heads, dim_v], dtype),  # type: ignore
            lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            dQ: T.Tensor(q_shape, accum_dtype),  # type: ignore
            dK: T.Tensor(k_shape, accum_dtype),  # type: ignore
            dV: T.Tensor(v_shape, accum_dtype),  # type: ignore
    ):
        with T.Kernel(heads, T.ceildiv(seq_len, block_M), batch, threads=threads) as (bx, by, bz):
            K_shared = T.alloc_shared([block_M, dim_qk], dtype)
            dsT_shared = T.alloc_shared([block_M, block_N], dtype)
            q = T.alloc_shared([block_N, dim_qk], dtype)
            V_shared = T.alloc_shared([block_M, dim_v], dtype)
            qkT = T.alloc_fragment([block_M, block_N], accum_dtype)
            dsT = T.alloc_fragment([block_M, block_N], accum_dtype)
            qkT_cast = T.alloc_fragment([block_M, block_N], dtype)
            dsT_cast = T.alloc_fragment([block_M, block_N], dtype)
            lse_shared = T.alloc_shared([block_N], accum_dtype)
            delta = T.alloc_shared([block_N], accum_dtype)
            do = T.alloc_shared([block_N, dim_v], dtype)
            dv = T.alloc_fragment([block_M, dim_v], accum_dtype)
            dk = T.alloc_fragment([block_M, dim_qk], accum_dtype)
            dq = T.alloc_fragment([block_N, dim_qk], accum_dtype)
            dk_shared = T.alloc_shared([block_M, dim_qk], accum_dtype)
            dv_shared = T.alloc_shared([block_M, dim_v], accum_dtype)

            T.annotate_layout({
                dQ: make_dq_layout(dQ),
                K_shared: tilelang.layout.make_swizzled_layout(K_shared),
            })

            T.copy(K[bz, by * block_M:(by + 1) * block_M, bx // groups, :], K_shared)
            T.copy(V[bz, by * block_M:(by + 1) * block_M, bx // groups, :], V_shared)
            T.clear(dv)
            T.clear(dk)
            loop_st = T.floordiv(by * block_M, block_N) if is_causal else 0
            loop_ed = T.ceildiv(seq_len, block_N)
            for k in T.Pipelined(loop_st, loop_ed, num_stages=num_stages):
                T.copy(Q[bz, k * block_N:(k + 1) * block_N, bx, :], q)
                T.clear(qkT)
                T.gemm(K_shared, q, qkT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
                T.copy(lse[bz, bx, k * block_N:(k + 1) * block_N], lse_shared)
                for i, j in T.Parallel(block_M, block_N):
                    qkT[i, j] = T.exp2(qkT[i, j] * scale - lse_shared[j])
                if is_causal:
                    for i, j in T.Parallel(block_M, block_N):
                        qkT[i, j] = T.if_then_else(by * block_M + i <= k * block_N + j, qkT[i, j],
                                                   0)
                T.copy(dO[bz, k * block_N:(k + 1) * block_N, bx, :], do)
                T.clear(dsT)
                T.gemm(V_shared, do, dsT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
                T.copy(qkT, qkT_cast)
                T.gemm(qkT_cast, do, dv, policy=T.GemmWarpPolicy.FullRow)

                T.copy(Delta[bz, bx, k * block_N:(k + 1) * block_N], delta)

                for i, j in T.Parallel(block_M, block_N):
                    dsT_cast[i, j] = qkT[i, j] * (dsT[i, j] - delta[j]) * sm_scale
                T.gemm(dsT_cast, q, dk, policy=T.GemmWarpPolicy.FullRow)

                T.copy(dsT_cast, dsT_shared)
                T.clear(dq)
                T.gemm(dsT_shared, K_shared, dq, transpose_A=True)
                for i, j in T.Parallel(block_N, dim_qk):
242
                    T.atomic_add(dQ[bz, k * block_N + i, bx, j], dq[i, j])
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
            T.copy(dv, dv_shared)
            T.atomic_add(dV[bz, by * block_M:(by + 1) * block_M, bx // groups, :], dv_shared)
            T.copy(dk, dk_shared)
            T.atomic_add(dK[bz, by * block_M:(by + 1) * block_M, bx // groups, :], dk_shared)

    return flash_bwd


@tilelang.jit(pass_configs={
    tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
})
def flashattn_bwd_split(batch,
                        heads,
                        seq_len,
                        dim_qk,
                        dim_v,
                        is_causal,
                        block_M,
                        block_N,
                        threads=256,
                        num_stages=2,
                        groups=1):
265
266
267
268
269
270
    sm_scale = (1.0 / dim_qk)**0.5
    scale = (1.0 / dim_qk)**0.5 * 1.44269504  # log2(e)
    head_kv = heads // groups
    q_shape = [batch, seq_len, heads, dim_qk]
    k_shape = [batch, seq_len, head_kv, dim_qk]
    v_shape = [batch, seq_len, head_kv, dim_v]
271
272
    dk_shape = [groups, batch, seq_len, head_kv, dim_qk]  # sum after kernel
    dv_shape = [groups, batch, seq_len, head_kv, dim_v]  # sum after kernel
273
274
275
276
277
    dtype = "float16"
    accum_dtype = "float"

    @T.prim_func
    def flash_bwd(
278
279
280
281
282
283
284
            Q: T.Tensor(q_shape, dtype),  # type: ignore
            K: T.Tensor(k_shape, dtype),  # type: ignore
            V: T.Tensor(v_shape, dtype),  # type: ignore
            dO: T.Tensor([batch, seq_len, heads, dim_v], dtype),  # type: ignore
            lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            dQ: T.Tensor(q_shape, accum_dtype),  # type: ignore
285
286
            dK: T.Tensor(dk_shape, dtype),  # type: ignore
            dV: T.Tensor(dv_shape, dtype),  # type: ignore
287
    ):
288
        with T.Kernel(heads, T.ceildiv(seq_len, block_M), batch, threads=threads) as (bx, by, bz):
289
290
291
292
293
294
295
296
297
298
299
300
301
302
            K_shared = T.alloc_shared([block_M, dim_qk], dtype)
            dsT_shared = T.alloc_shared([block_M, block_N], dtype)
            q = T.alloc_shared([block_N, dim_qk], dtype)
            V_shared = T.alloc_shared([block_M, dim_v], dtype)
            qkT = T.alloc_fragment([block_M, block_N], accum_dtype)
            dsT = T.alloc_fragment([block_M, block_N], accum_dtype)
            qkT_cast = T.alloc_fragment([block_M, block_N], dtype)
            dsT_cast = T.alloc_fragment([block_M, block_N], dtype)
            lse_shared = T.alloc_shared([block_N], accum_dtype)
            delta = T.alloc_shared([block_N], accum_dtype)
            do = T.alloc_shared([block_N, dim_v], dtype)
            dv = T.alloc_fragment([block_M, dim_v], accum_dtype)
            dk = T.alloc_fragment([block_M, dim_qk], accum_dtype)
            dq = T.alloc_fragment([block_N, dim_qk], accum_dtype)
303
304
            dv_shared = T.alloc_shared([block_M, dim_v], dtype)
            dk_shared = T.alloc_shared([block_M, dim_qk], dtype)
305
306
307
308
309
310
311
312
313
314
315
316

            T.annotate_layout({
                dQ: make_dq_layout(dQ),
                K_shared: tilelang.layout.make_swizzled_layout(K_shared),
                dv_shared: tilelang.layout.make_swizzled_layout(dv_shared),
                dk_shared: tilelang.layout.make_swizzled_layout(dk_shared),
            })

            T.copy(K[bz, by * block_M:(by + 1) * block_M, bx // groups, :], K_shared)
            T.copy(V[bz, by * block_M:(by + 1) * block_M, bx // groups, :], V_shared)
            T.clear(dv)
            T.clear(dk)
317
            loop_st = T.floordiv(by * block_M, block_N) if is_causal else 0
318
            loop_ed = T.ceildiv(seq_len, block_N)
319
            for k in T.Pipelined(loop_st, loop_ed, num_stages=num_stages):
320
321
322
                T.copy(Q[bz, k * block_N:(k + 1) * block_N, bx, :], q)
                T.clear(qkT)
                T.gemm(K_shared, q, qkT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
323
324
325
                T.copy(dO[bz, k * block_N:(k + 1) * block_N, bx, :], do)
                T.clear(dsT)
                T.gemm(V_shared, do, dsT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
326
327
328
                T.copy(lse[bz, bx, k * block_N:(k + 1) * block_N], lse_shared)
                for i, j in T.Parallel(block_M, block_N):
                    qkT[i, j] = T.exp2(qkT[i, j] * scale - lse_shared[j])
329
                if is_causal:
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
                    for i, j in T.Parallel(block_M, block_N):
                        qkT[i, j] = T.if_then_else(by * block_M + i <= k * block_N + j, qkT[i, j],
                                                   0)
                T.copy(qkT, qkT_cast)
                T.gemm(qkT_cast, do, dv, policy=T.GemmWarpPolicy.FullRow)

                T.copy(Delta[bz, bx, k * block_N:(k + 1) * block_N], delta)

                for i, j in T.Parallel(block_M, block_N):
                    dsT_cast[i, j] = qkT[i, j] * (dsT[i, j] - delta[j]) * sm_scale
                T.gemm(dsT_cast, q, dk, policy=T.GemmWarpPolicy.FullRow)

                T.copy(dsT_cast, dsT_shared)
                T.clear(dq)
                T.gemm(dsT_shared, K_shared, dq, transpose_A=True)
                for i, j in T.Parallel(block_N, dim_qk):
346
                    T.atomic_add(dQ[bz, k * block_N + i, bx, j], dq[i, j])
347

348
349
350
351
            T.copy(dv, dv_shared)
            T.copy(dv_shared, dV[bx % groups, bz, by * block_M:(by + 1) * block_M, bx // groups, :])
            T.copy(dk, dk_shared)
            T.copy(dk, dK[bx % groups, bz, by * block_M:(by + 1) * block_M, bx // groups, :])
352
353
354
355

    return flash_bwd


356
@torch.compile
357
358
359
class _attention(torch.autograd.Function):

    @staticmethod
360
    def forward(ctx, q, k, v, causal, groups=1, use_atomic=True):
361
362
        BATCH, N_CTX, H, D_HEAD_QK = q.shape
        D_HEAD_V = v.shape[-1]
363
        block_M = 128
364
        block_N = 64
365
        mod = flashattn_fwd(BATCH, H, N_CTX, D_HEAD_QK, D_HEAD_V, causal, block_M, block_N, groups)
366
367
368
        o, lse = mod(q, k, v)
        ctx.save_for_backward(q, k, v, o, lse)
        ctx.causal = causal
369
        ctx.use_atomic = use_atomic
370
371
372
373
374
        return o

    @staticmethod
    def backward(ctx, do):
        q, k, v, o, lse = ctx.saved_tensors
375
376
377
        BATCH, N_CTX, H, D_HEAD_QK = q.shape
        HEAD_KV, D_HEAD_V, = v.shape[-2], v.shape[-1]
        groups = H // HEAD_KV
378
379
380
381
382
383
384

        def maybe_contiguous(x):
            if x.stride(-1) != 1:
                return x.contiguous()
            return x

        do, q, k, v, o = [maybe_contiguous(x) for x in (do, q, k, v, o)]
385
        block_M = 128
386
387
388
        block_N = 32
        mod_prep = flashattn_bwd_preprocess(BATCH, H, N_CTX, D_HEAD_V)
        mod_post = flashattn_bwd_postprocess(BATCH, H, N_CTX, D_HEAD_QK)
389
        delta = mod_prep(o, do)
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437

        if ctx.use_atomic:
            kernel = flashattn_bwd_atomic_add(
                BATCH,
                H,
                N_CTX,
                D_HEAD_QK,
                D_HEAD_V,
                ctx.causal,
                block_M,
                block_N,
                threads=256,
                num_stages=2,
                groups=groups)
            shape_q = [BATCH, N_CTX, H, D_HEAD_QK]
            shape_k = [BATCH, N_CTX, HEAD_KV, D_HEAD_QK]
            shape_v = [BATCH, N_CTX, HEAD_KV, D_HEAD_V]
            dq = torch.zeros(shape_q, dtype=torch.float32, device=q.device)
            dk = torch.zeros(shape_k, dtype=torch.float32, device=q.device)
            dv = torch.zeros(shape_v, dtype=torch.float32, device=q.device)
            kernel(q, k, v, do, lse, delta, dq, dk, dv)
            dq = mod_post(dq)
            dk = dk.to(torch.float16)
            dv = dv.to(torch.float16)
        else:
            kernel = flashattn_bwd_split(
                BATCH,
                H,
                N_CTX,
                D_HEAD_QK,
                D_HEAD_V,
                ctx.causal,
                block_M,
                block_N,
                threads=256,
                num_stages=2,
                groups=groups)
            shape_q = [BATCH, N_CTX, H, D_HEAD_QK]
            shape_k = [groups, BATCH, N_CTX, HEAD_KV, D_HEAD_QK]  # sum after kernel
            shape_v = [groups, BATCH, N_CTX, HEAD_KV, D_HEAD_V]  # sum after kernel
            dq = torch.zeros(shape_q, dtype=torch.float32, device=q.device)
            dk = torch.empty(shape_k, dtype=torch.float16, device=q.device)
            dv = torch.empty(shape_v, dtype=torch.float16, device=q.device)
            kernel(q, k, v, do, lse, delta, dq, dk, dv)
            dq = mod_post(dq)
            dk, dv = dk.sum(0), dv.sum(0)

        return dq, dk, dv, None, None, None
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467


attention = _attention.apply


def ref_program(Q, K, V, is_causal, groups=1):
    # Q: [B, T, HQ, D_QK]
    # K: [B, T, HK, D_QK]
    # V: [B, T, HV, D_V]
    # HQ = HKV * groups
    assert Q.size(2) == K.size(
        2) * groups, f"Q.size(2): {Q.size(2)}, K.size(2): {K.size(2)}, groups: {groups}"
    assert Q.size(2) == V.size(
        2) * groups, f"Q.size(2): {Q.size(2)}, V.size(2): {V.size(2)}, groups: {groups}"

    dim_qk = Q.size(-1)
    K = K.repeat_interleave(groups, dim=2)
    V = V.repeat_interleave(groups, dim=2)
    scores = torch.einsum('bqhd,bkhd->bhqk', Q, K)
    scores = scores / torch.sqrt(torch.tensor(dim_qk, dtype=scores.dtype))
    if is_causal:
        seq_len = Q.size(1)
        mask = torch.tril(torch.ones(seq_len, seq_len, device=scores.device))
        mask = mask.unsqueeze(0).unsqueeze(0)
        scores = scores.masked_fill(mask == 0, float('-inf'))
    attention_weights = F.softmax(scores, dim=-1)
    output = torch.einsum('bhqk,bkhd->bqhd', attention_weights, V)
    return output


468
def main(BATCH: int = 1,
469
         H: int = 32,
470
         N_CTX: int = 256,
471
472
473
         D_HEAD_QK: int = 192,
         D_HEAD_V: int = 128,
         groups: int = 16,
474
475
         causal: bool = False,
         use_atomic: bool = True):
476
477
478
    flops_per_qk = 2.0 * BATCH * H * N_CTX * N_CTX * D_HEAD_QK
    flops_per_v = 2.0 * BATCH * H * N_CTX * N_CTX * D_HEAD_V
    total_flops = 3 * flops_per_qk + 2 * flops_per_v
479
    if causal:
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
        total_flops *= 0.5
    Q = (
        torch.empty(BATCH, N_CTX, H, D_HEAD_QK, dtype=torch.half,
                    device="cuda").normal_().requires_grad_())

    head_kv = H // groups
    K = (
        torch.empty(BATCH, N_CTX, head_kv, D_HEAD_QK, dtype=torch.half,
                    device="cuda").normal_().requires_grad_())
    V = (
        torch.empty(BATCH, N_CTX, head_kv, D_HEAD_V, dtype=torch.half,
                    device="cuda").normal_().requires_grad_())
    dO = (
        torch.empty(BATCH, N_CTX, H, D_HEAD_V, dtype=torch.half,
                    device="cuda").normal_().requires_grad_())
495
    O = attention(Q, K, V, causal, groups, use_atomic)
496
497
498
499
500
    O.backward(dO, retain_graph=True)
    dQ, Q.grad = Q.grad.clone(), None
    dK, K.grad = K.grad.clone(), None
    dV, V.grad = V.grad.clone(), None

501
    O_ref = ref_program(Q, K, V, causal, groups)
502
503
504
505
506
    O_ref.backward(dO, retain_graph=True)
    dQ_ref, Q.grad = Q.grad.clone(), None
    dK_ref, K.grad = K.grad.clone(), None
    dV_ref, V.grad = V.grad.clone(), None

507
    torch.testing.assert_close(O, O_ref, rtol=1e-2, atol=1e-2)
508
    torch.testing.assert_close(dV, dV_ref, rtol=1e-2, atol=1e-2)
509
510
    torch.testing.assert_close(dK, dK_ref, rtol=1e-2, atol=1e-2)
    torch.testing.assert_close(dQ, dQ_ref, rtol=1e-2, atol=1e-2)
511
    print('All checks passed.✅')
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526

    def run():
        O_ref.backward(dO, retain_graph=True)

    def run1():
        O.backward(dO, retain_graph=True)

    from tilelang.profiler import do_bench

    latency = do_bench(run, warmup=500)
    print("torch: {:.2f} ms".format(latency))
    print("torch: {:.2f} TFlops".format(total_flops / latency * 1e-9))
    latency = do_bench(run1, warmup=500)
    print("tilelang: {:.2f} ms".format(latency))
    print("tilelang: {:.2f} TFlops".format(total_flops / latency * 1e-9))
527
528
529
530
531
532
533
534
535


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=8, help='Batch size')
    parser.add_argument('--h', type=int, default=32, help='Number of heads')
    parser.add_argument('--n_ctx', type=int, default=1024, help='Context size')
    parser.add_argument('--d_head_qk', type=int, default=192, help='Head dimension for Q/K')
    parser.add_argument('--d_head_v', type=int, default=128, help='Head dimension for V')
536
    parser.add_argument('--causal', action='store_true', help='Causal flag')
537
    parser.add_argument('--groups', type=int, default=16, help='groups')
538
539
540
541
    parser.add_argument(
        '--use_atomic', action='store_true', default=False, help='Use atomic add for dK/dV')
    parser.add_argument(
        '--use_split', action='store_true', default=False, help='Use split for dK/dV')
542
    args = parser.parse_args()
543
544
545
546
547
548
549
550
551
552
553
554

    # Handle backward compatibility and logic
    if args.use_split:
        use_atomic = False
    elif args.use_atomic:
        use_atomic = True
    else:
        # Default: use atomic
        use_atomic = True

    main(args.batch, args.h, args.n_ctx, args.d_head_qk, args.d_head_v, args.groups, args.causal,
         use_atomic)