example_gqa_bwd.py 16.8 KB
Newer Older
1
2
3
4
5
6
7
import torch
import torch.nn.functional as F
import tilelang
import tilelang.language as T
import argparse


8
9
10
11
@tilelang.jit(
    out_idx=[3, 4], pass_configs={
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
    })
12
def flashattn_fwd(batch, heads, seq_len, dim_qk, dim_v, is_causal, block_M, block_N, groups=1):
13
14
15
16
17
18
19
20
21
22
    scale = (1.0 / dim_qk)**0.5 * 1.44269504  # log2(e)
    head_kv = heads // groups
    q_shape = [batch, seq_len, heads, dim_qk]
    k_shape = [batch, seq_len, head_kv, dim_qk]
    v_shape = [batch, seq_len, head_kv, dim_v]
    dtype = "float16"
    accum_dtype = "float"

    @T.prim_func
    def flash_fwd(
23
24
25
26
27
            Q: T.Tensor(q_shape, dtype),  # type: ignore
            K: T.Tensor(k_shape, dtype),  # type: ignore
            V: T.Tensor(v_shape, dtype),  # type: ignore
            Output: T.Tensor([batch, seq_len, heads, dim_v], dtype),  # type: ignore
            lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
28
    ):
29
        with T.Kernel(T.ceildiv(seq_len, block_M), heads, batch, threads=256) as (bx, by, bz):
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
            Q_shared = T.alloc_shared([block_M, dim_qk], dtype)
            K_shared = T.alloc_shared([block_N, dim_qk], dtype)
            V_shared = T.alloc_shared([block_N, dim_v], dtype)
            acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
            acc_o = T.alloc_fragment([block_M, dim_v], accum_dtype)
            scores_max = T.alloc_fragment([block_M], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
            scores_scale = T.alloc_fragment([block_M], accum_dtype)
            scores_sum = T.alloc_fragment([block_M], accum_dtype)
            logsum = T.alloc_fragment([block_M], accum_dtype)

            T.annotate_layout({Q_shared: tilelang.layout.make_swizzled_layout(Q_shared)})
            T.copy(Q[bz, bx * block_M:(bx + 1) * block_M, by, :], Q_shared)
            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))
            loop_range = (
                T.ceildiv(
49
                    (bx + 1) * block_M, block_N) if is_causal else T.ceildiv(seq_len, block_N))
50
51
            for k in T.Pipelined(loop_range, num_stages=1):
                T.copy(K[bz, k * block_N:(k + 1) * block_N, by // groups, :], K_shared)
52
                if is_causal:
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
                    for i, j in T.Parallel(block_M, block_N):
                        acc_s[i, j] = T.if_then_else(bx * block_M + i >= k * block_N + j, 0,
                                                     -T.infinity(acc_s.dtype))
                else:
                    T.clear(acc_s)
                T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
                T.copy(V[bz, k * block_N:(k + 1) * block_N, by // groups, :], V_shared)
                T.copy(scores_max, scores_max_prev)
                T.reduce_max(acc_s, scores_max, dim=1, clear=False)
                for i in T.Parallel(block_M):
                    scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
                for i, j in T.Parallel(block_M, dim_v):
                    acc_o[i, j] *= scores_scale[i]
                for i, j in T.Parallel(block_M, block_N):
                    acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
                T.copy(acc_s, acc_s_cast)
                T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)
                T.reduce_sum(acc_s, scores_sum, dim=1)
                for i in T.Parallel(block_M):
                    logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
            for i, j in T.Parallel(block_M, dim_v):
                acc_o[i, j] /= logsum[i]
            T.copy(acc_o, Output[bz, bx * block_M:(bx + 1) * block_M, by, :])
            for i in T.Parallel(block_M):
                logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale
            T.copy(logsum, lse[bz, by, bx * block_M:(bx + 1) * block_M])

    return flash_fwd


83
84
85
86
@tilelang.jit(
    out_idx=[2], pass_configs={
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
    })
87
88
89
90
91
92
93
94
def flashattn_bwd_preprocess(batch, heads, seq_len, dim_v):
    dtype = "float16"
    accum_dtype = "float"
    shape = [batch, seq_len, heads, dim_v]
    blk = 32

    @T.prim_func
    def flash_bwd_prep(
95
96
97
            O: T.Tensor(shape, dtype),  # type: ignore
            dO: T.Tensor(shape, dtype),  # type: ignore
            Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    ):
        with T.Kernel(heads, T.ceildiv(seq_len, blk), batch) as (bx, by, bz):
            o = T.alloc_fragment([blk, blk], dtype)
            do = T.alloc_fragment([blk, blk], dtype)
            acc = T.alloc_fragment([blk, blk], accum_dtype)
            delta = T.alloc_fragment([blk], accum_dtype)
            T.clear(acc)
            for k in range(T.ceildiv(dim_v, blk)):
                T.copy(O[bz, by * blk:(by + 1) * blk, bx, k * blk:(k + 1) * blk], o)
                T.copy(dO[bz, by * blk:(by + 1) * blk, bx, k * blk:(k + 1) * blk], do)
                for i, j in T.Parallel(blk, blk):
                    acc[i, j] += o[i, j] * do[i, j]
            T.reduce_sum(acc, delta, 1)
            T.copy(delta, Delta[bz, bx, by * blk:(by + 1) * blk])

    return flash_bwd_prep


def make_dq_layout(dQ):
    # atomicAdd can not be vectorized, so we need to reorder dq to match the 8x8 gemm fragment
    return T.Layout(dQ.shape,
                    lambda b, l, h, d: [b, l // 8, h, d // 8, (d % 2), 4 * (l % 8) + (d % 8) // 2])


122
123
124
125
@tilelang.jit(
    out_idx=[1], pass_configs={
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
    })
126
127
128
129
130
131
132
133
def flashattn_bwd_postprocess(batch, heads, seq_len, dim_qk):
    dtype = "float16"
    accum_dtype = "float"
    shape = [batch, seq_len, heads, dim_qk]
    blk = 64

    @T.prim_func
    def flash_bwd_post(
134
135
            dQ: T.Tensor(shape, accum_dtype),  # type: ignore
            dQ_out: T.Tensor(shape, dtype),  # type: ignore
136
137
138
139
140
141
142
143
144
145
146
    ):
        with T.Kernel(T.ceildiv(seq_len, blk), heads, batch, threads=128) as (bx, by, bz):
            T.annotate_layout({dQ: make_dq_layout(dQ)})
            T.copy(
                dQ[bz, bx * blk:(bx + 1) * blk, by, :],
                dQ_out[bz, bx * blk:(bx + 1) * blk, by, :],
            )

    return flash_bwd_post


147
148
149
@tilelang.jit(pass_configs={
    tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
})
150
def flashattn_bwd(batch, heads, seq_len, dim_qk, dim_v, is_causal, block_M, block_N, groups=1):
151
152
153
154
155
156
    sm_scale = (1.0 / dim_qk)**0.5
    scale = (1.0 / dim_qk)**0.5 * 1.44269504  # log2(e)
    head_kv = heads // groups
    q_shape = [batch, seq_len, heads, dim_qk]
    k_shape = [batch, seq_len, head_kv, dim_qk]
    v_shape = [batch, seq_len, head_kv, dim_v]
157
158
    dk_shape = [groups, batch, seq_len, head_kv, dim_qk]  # sum after kernel
    dv_shape = [groups, batch, seq_len, head_kv, dim_v]  # sum after kernel
159
160
161
162
163
    dtype = "float16"
    accum_dtype = "float"

    @T.prim_func
    def flash_bwd(
164
165
166
167
168
169
170
            Q: T.Tensor(q_shape, dtype),  # type: ignore
            K: T.Tensor(k_shape, dtype),  # type: ignore
            V: T.Tensor(v_shape, dtype),  # type: ignore
            dO: T.Tensor([batch, seq_len, heads, dim_v], dtype),  # type: ignore
            lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            dQ: T.Tensor(q_shape, accum_dtype),  # type: ignore
171
172
            dK: T.Tensor(dk_shape, dtype),  # type: ignore
            dV: T.Tensor(dv_shape, dtype),  # type: ignore
173
    ):
174
        with T.Kernel(heads, T.ceildiv(seq_len, block_M), batch, threads=128) as (bx, by, bz):
175
176
177
178
179
180
181
182
183
184
185
186
187
188
            K_shared = T.alloc_shared([block_M, dim_qk], dtype)
            dsT_shared = T.alloc_shared([block_M, block_N], dtype)
            q = T.alloc_shared([block_N, dim_qk], dtype)
            V_shared = T.alloc_shared([block_M, dim_v], dtype)
            qkT = T.alloc_fragment([block_M, block_N], accum_dtype)
            dsT = T.alloc_fragment([block_M, block_N], accum_dtype)
            qkT_cast = T.alloc_fragment([block_M, block_N], dtype)
            dsT_cast = T.alloc_fragment([block_M, block_N], dtype)
            lse_shared = T.alloc_shared([block_N], accum_dtype)
            delta = T.alloc_shared([block_N], accum_dtype)
            do = T.alloc_shared([block_N, dim_v], dtype)
            dv = T.alloc_fragment([block_M, dim_v], accum_dtype)
            dk = T.alloc_fragment([block_M, dim_qk], accum_dtype)
            dq = T.alloc_fragment([block_N, dim_qk], accum_dtype)
189
190
            dv_shared = T.alloc_shared([block_M, dim_v], dtype)
            dk_shared = T.alloc_shared([block_M, dim_qk], dtype)
191
192
193
194
195
196
197
198
199
200
201
202

            T.annotate_layout({
                dQ: make_dq_layout(dQ),
                K_shared: tilelang.layout.make_swizzled_layout(K_shared),
                dv_shared: tilelang.layout.make_swizzled_layout(dv_shared),
                dk_shared: tilelang.layout.make_swizzled_layout(dk_shared),
            })

            T.copy(K[bz, by * block_M:(by + 1) * block_M, bx // groups, :], K_shared)
            T.copy(V[bz, by * block_M:(by + 1) * block_M, bx // groups, :], V_shared)
            T.clear(dv)
            T.clear(dk)
203
            loop_st = T.floordiv(by * block_M, block_N) if is_causal else 0
204
205
206
207
208
209
210
211
            loop_ed = T.ceildiv(seq_len, block_N)
            for k in T.Pipelined(loop_st, loop_ed, num_stages=1):
                T.copy(Q[bz, k * block_N:(k + 1) * block_N, bx, :], q)
                T.clear(qkT)
                T.gemm(K_shared, q, qkT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
                T.copy(lse[bz, bx, k * block_N:(k + 1) * block_N], lse_shared)
                for i, j in T.Parallel(block_M, block_N):
                    qkT[i, j] = T.exp2(qkT[i, j] * scale - lse_shared[j])
212
                if is_causal:
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
                    for i, j in T.Parallel(block_M, block_N):
                        qkT[i, j] = T.if_then_else(by * block_M + i <= k * block_N + j, qkT[i, j],
                                                   0)
                T.copy(dO[bz, k * block_N:(k + 1) * block_N, bx, :], do)
                T.clear(dsT)
                T.gemm(V_shared, do, dsT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
                T.copy(qkT, qkT_cast)
                T.gemm(qkT_cast, do, dv, policy=T.GemmWarpPolicy.FullRow)

                T.copy(Delta[bz, bx, k * block_N:(k + 1) * block_N], delta)

                for i, j in T.Parallel(block_M, block_N):
                    dsT_cast[i, j] = qkT[i, j] * (dsT[i, j] - delta[j]) * sm_scale
                T.gemm(dsT_cast, q, dk, policy=T.GemmWarpPolicy.FullRow)

                T.copy(dsT_cast, dsT_shared)
                T.clear(dq)
                T.gemm(dsT_shared, K_shared, dq, transpose_A=True)
                for i, j in T.Parallel(block_N, dim_qk):
                    if k * block_N + i < seq_len:
                        T.atomic_add(dQ[bz, k * block_N + i, bx, j], dq[i, j])

235
236
237
238
            T.copy(dv, dv_shared)
            T.copy(dv_shared, dV[bx % groups, bz, by * block_M:(by + 1) * block_M, bx // groups, :])
            T.copy(dk, dk_shared)
            T.copy(dk, dK[bx % groups, bz, by * block_M:(by + 1) * block_M, bx // groups, :])
239
240
241
242

    return flash_bwd


243
@torch.compile
244
245
246
247
248
249
class _attention(torch.autograd.Function):

    @staticmethod
    def forward(ctx, q, k, v, causal, groups=1):
        BATCH, N_CTX, H, D_HEAD_QK = q.shape
        D_HEAD_V = v.shape[-1]
250
        block_M = 128
251
        block_N = 64
252
        mod = flashattn_fwd(BATCH, H, N_CTX, D_HEAD_QK, D_HEAD_V, causal, block_M, block_N, groups)
253
254
255
256
257
258
259
260
        o, lse = mod(q, k, v)
        ctx.save_for_backward(q, k, v, o, lse)
        ctx.causal = causal
        return o

    @staticmethod
    def backward(ctx, do):
        q, k, v, o, lse = ctx.saved_tensors
261
262
263
        BATCH, N_CTX, H, D_HEAD_QK = q.shape
        HEAD_KV, D_HEAD_V, = v.shape[-2], v.shape[-1]
        groups = H // HEAD_KV
264
265
266
267
268
269
270

        def maybe_contiguous(x):
            if x.stride(-1) != 1:
                return x.contiguous()
            return x

        do, q, k, v, o = [maybe_contiguous(x) for x in (do, q, k, v, o)]
271
272
273
274
        block_M = 64
        block_N = 32
        mod_prep = flashattn_bwd_preprocess(BATCH, H, N_CTX, D_HEAD_V)
        mod_post = flashattn_bwd_postprocess(BATCH, H, N_CTX, D_HEAD_QK)
275
        delta = mod_prep(o, do)
276
277
278
        kernel = flashattn_bwd(BATCH, H, N_CTX, D_HEAD_QK, D_HEAD_V, ctx.causal, block_M, block_N,
                               groups)
        shape_q = [BATCH, N_CTX, H, D_HEAD_QK]
279
280
        shape_k = [groups, BATCH, N_CTX, HEAD_KV, D_HEAD_QK]  # sum after kernel
        shape_v = [groups, BATCH, N_CTX, HEAD_KV, D_HEAD_V]  # sum after kernel
281
        dq = torch.zeros(shape_q, dtype=torch.float32, device=q.device)
282
283
        dk = torch.empty(shape_k, dtype=torch.float16, device=q.device)
        dv = torch.empty(shape_v, dtype=torch.float16, device=q.device)
284
        kernel(q, k, v, do, lse, delta, dq, dk, dv)
285
        dq = mod_post(dq)
286
        dk, dv = dk.sum(0), dv.sum(0)
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
        return dq, dk, dv, None, None


attention = _attention.apply


def ref_program(Q, K, V, is_causal, groups=1):
    # Q: [B, T, HQ, D_QK]
    # K: [B, T, HK, D_QK]
    # V: [B, T, HV, D_V]
    # HQ = HKV * groups
    assert Q.size(2) == K.size(
        2) * groups, f"Q.size(2): {Q.size(2)}, K.size(2): {K.size(2)}, groups: {groups}"
    assert Q.size(2) == V.size(
        2) * groups, f"Q.size(2): {Q.size(2)}, V.size(2): {V.size(2)}, groups: {groups}"

    dim_qk = Q.size(-1)
    K = K.repeat_interleave(groups, dim=2)
    V = V.repeat_interleave(groups, dim=2)
    scores = torch.einsum('bqhd,bkhd->bhqk', Q, K)
    scores = scores / torch.sqrt(torch.tensor(dim_qk, dtype=scores.dtype))
    if is_causal:
        seq_len = Q.size(1)
        mask = torch.tril(torch.ones(seq_len, seq_len, device=scores.device))
        mask = mask.unsqueeze(0).unsqueeze(0)
        scores = scores.masked_fill(mask == 0, float('-inf'))
    attention_weights = F.softmax(scores, dim=-1)
    output = torch.einsum('bhqk,bkhd->bqhd', attention_weights, V)
    return output


318
def main(BATCH: int = 1,
319
         H: int = 32,
320
         N_CTX: int = 256,
321
322
323
324
         D_HEAD_QK: int = 192,
         D_HEAD_V: int = 128,
         groups: int = 16,
         causal: bool = False):
325
326
327
    flops_per_qk = 2.0 * BATCH * H * N_CTX * N_CTX * D_HEAD_QK
    flops_per_v = 2.0 * BATCH * H * N_CTX * N_CTX * D_HEAD_V
    total_flops = 3 * flops_per_qk + 2 * flops_per_v
328
    if causal:
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
        total_flops *= 0.5
    Q = (
        torch.empty(BATCH, N_CTX, H, D_HEAD_QK, dtype=torch.half,
                    device="cuda").normal_().requires_grad_())

    head_kv = H // groups
    K = (
        torch.empty(BATCH, N_CTX, head_kv, D_HEAD_QK, dtype=torch.half,
                    device="cuda").normal_().requires_grad_())
    V = (
        torch.empty(BATCH, N_CTX, head_kv, D_HEAD_V, dtype=torch.half,
                    device="cuda").normal_().requires_grad_())
    dO = (
        torch.empty(BATCH, N_CTX, H, D_HEAD_V, dtype=torch.half,
                    device="cuda").normal_().requires_grad_())
344
    O = attention(Q, K, V, causal, groups)
345
346
347
348
349
    O.backward(dO, retain_graph=True)
    dQ, Q.grad = Q.grad.clone(), None
    dK, K.grad = K.grad.clone(), None
    dV, V.grad = V.grad.clone(), None

350
    O_ref = ref_program(Q, K, V, causal, groups)
351
352
353
354
355
    O_ref.backward(dO, retain_graph=True)
    dQ_ref, Q.grad = Q.grad.clone(), None
    dK_ref, K.grad = K.grad.clone(), None
    dV_ref, V.grad = V.grad.clone(), None

356
    torch.testing.assert_close(O, O_ref, rtol=1e-2, atol=1e-2)
357
    torch.testing.assert_close(dV, dV_ref, rtol=1e-2, atol=1e-2)
358
359
    torch.testing.assert_close(dK, dK_ref, rtol=1e-2, atol=1e-2)
    torch.testing.assert_close(dQ, dQ_ref, rtol=1e-2, atol=1e-2)
360
    print('All checks passed.✅')
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

    def run():
        O_ref.backward(dO, retain_graph=True)

    def run1():
        O.backward(dO, retain_graph=True)

    from tilelang.profiler import do_bench

    latency = do_bench(run, warmup=500)
    print("torch: {:.2f} ms".format(latency))
    print("torch: {:.2f} TFlops".format(total_flops / latency * 1e-9))
    latency = do_bench(run1, warmup=500)
    print("tilelang: {:.2f} ms".format(latency))
    print("tilelang: {:.2f} TFlops".format(total_flops / latency * 1e-9))
376
377
378
379
380
381
382
383
384
385
386
387
388


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=8, help='Batch size')
    parser.add_argument('--h', type=int, default=32, help='Number of heads')
    parser.add_argument('--n_ctx', type=int, default=1024, help='Context size')
    parser.add_argument('--d_head_qk', type=int, default=192, help='Head dimension for Q/K')
    parser.add_argument('--d_head_v', type=int, default=128, help='Head dimension for V')
    parser.add_argument('--causal', type=bool, default=False, help='Causal flag')
    parser.add_argument('--groups', type=int, default=16, help='groups')
    args = parser.parse_args()
    main(args.batch, args.h, args.n_ctx, args.d_head_qk, args.d_head_v, args.groups, args.causal)