example_gqa_bwd.py 23.8 KB
Newer Older
1
2
3
4
5
6
7
import torch
import torch.nn.functional as F
import tilelang
import tilelang.language as T
import argparse


8
9
10
11
@tilelang.jit(
    out_idx=[3, 4], pass_configs={
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
    })
12
def flashattn_fwd(batch, heads, seq_len, dim_qk, dim_v, is_causal, block_M, block_N, groups=1):
13
14
15
16
17
18
19
20
21
22
    scale = (1.0 / dim_qk)**0.5 * 1.44269504  # log2(e)
    head_kv = heads // groups
    q_shape = [batch, seq_len, heads, dim_qk]
    k_shape = [batch, seq_len, head_kv, dim_qk]
    v_shape = [batch, seq_len, head_kv, dim_v]
    dtype = "float16"
    accum_dtype = "float"

    @T.prim_func
    def flash_fwd(
23
24
25
26
27
            Q: T.Tensor(q_shape, dtype),  # type: ignore
            K: T.Tensor(k_shape, dtype),  # type: ignore
            V: T.Tensor(v_shape, dtype),  # type: ignore
            Output: T.Tensor([batch, seq_len, heads, dim_v], dtype),  # type: ignore
            lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
28
    ):
29
        with T.Kernel(T.ceildiv(seq_len, block_M), heads, batch, threads=256) as (bx, by, bz):
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
            Q_shared = T.alloc_shared([block_M, dim_qk], dtype)
            K_shared = T.alloc_shared([block_N, dim_qk], dtype)
            V_shared = T.alloc_shared([block_N, dim_v], dtype)
            acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
            acc_o = T.alloc_fragment([block_M, dim_v], accum_dtype)
            scores_max = T.alloc_fragment([block_M], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
            scores_scale = T.alloc_fragment([block_M], accum_dtype)
            scores_sum = T.alloc_fragment([block_M], accum_dtype)
            logsum = T.alloc_fragment([block_M], accum_dtype)

            T.annotate_layout({Q_shared: tilelang.layout.make_swizzled_layout(Q_shared)})
            T.copy(Q[bz, bx * block_M:(bx + 1) * block_M, by, :], Q_shared)
            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))
            loop_range = (
                T.ceildiv(
49
                    (bx + 1) * block_M, block_N) if is_causal else T.ceildiv(seq_len, block_N))
50
51
            for k in T.Pipelined(loop_range, num_stages=1):
                T.copy(K[bz, k * block_N:(k + 1) * block_N, by // groups, :], K_shared)
52
                if is_causal:
53
54
55
56
                    for i, j in T.Parallel(block_M, block_N):
                        acc_s[i, j] = T.if_then_else(bx * block_M + i >= k * block_N + j, 0,
                                                     -T.infinity(acc_s.dtype))
                else:
57
58
59
                    for i, j in T.Parallel(block_M, block_N):
                        acc_s[i, j] = T.if_then_else(k * block_N + j >= seq_len,
                                                     -T.infinity(acc_s.dtype), 0)
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
                T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
                T.copy(V[bz, k * block_N:(k + 1) * block_N, by // groups, :], V_shared)
                T.copy(scores_max, scores_max_prev)
                T.reduce_max(acc_s, scores_max, dim=1, clear=False)
                for i in T.Parallel(block_M):
                    scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
                for i, j in T.Parallel(block_M, dim_v):
                    acc_o[i, j] *= scores_scale[i]
                for i, j in T.Parallel(block_M, block_N):
                    acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
                T.copy(acc_s, acc_s_cast)
                T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)
                T.reduce_sum(acc_s, scores_sum, dim=1)
                for i in T.Parallel(block_M):
                    logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
            for i, j in T.Parallel(block_M, dim_v):
                acc_o[i, j] /= logsum[i]
            T.copy(acc_o, Output[bz, bx * block_M:(bx + 1) * block_M, by, :])
            for i in T.Parallel(block_M):
                logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale
            T.copy(logsum, lse[bz, by, bx * block_M:(bx + 1) * block_M])

    return flash_fwd


85
86
87
88
@tilelang.jit(
    out_idx=[2], pass_configs={
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
    })
89
90
91
92
93
94
95
96
def flashattn_bwd_preprocess(batch, heads, seq_len, dim_v):
    dtype = "float16"
    accum_dtype = "float"
    shape = [batch, seq_len, heads, dim_v]
    blk = 32

    @T.prim_func
    def flash_bwd_prep(
97
98
99
            O: T.Tensor(shape, dtype),  # type: ignore
            dO: T.Tensor(shape, dtype),  # type: ignore
            Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    ):
        with T.Kernel(heads, T.ceildiv(seq_len, blk), batch) as (bx, by, bz):
            o = T.alloc_fragment([blk, blk], dtype)
            do = T.alloc_fragment([blk, blk], dtype)
            acc = T.alloc_fragment([blk, blk], accum_dtype)
            delta = T.alloc_fragment([blk], accum_dtype)
            T.clear(acc)
            for k in range(T.ceildiv(dim_v, blk)):
                T.copy(O[bz, by * blk:(by + 1) * blk, bx, k * blk:(k + 1) * blk], o)
                T.copy(dO[bz, by * blk:(by + 1) * blk, bx, k * blk:(k + 1) * blk], do)
                for i, j in T.Parallel(blk, blk):
                    acc[i, j] += o[i, j] * do[i, j]
            T.reduce_sum(acc, delta, 1)
            T.copy(delta, Delta[bz, bx, by * blk:(by + 1) * blk])

    return flash_bwd_prep


def make_dq_layout(dQ):
    # atomicAdd can not be vectorized, so we need to reorder dq to match the 8x8 gemm fragment
    return T.Layout(dQ.shape,
                    lambda b, l, h, d: [b, l // 8, h, d // 8, (d % 2), 4 * (l % 8) + (d % 8) // 2])


124
125
126
127
@tilelang.jit(
    out_idx=[1], pass_configs={
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
    })
128
129
130
131
132
133
134
135
def flashattn_bwd_postprocess(batch, heads, seq_len, dim_qk):
    dtype = "float16"
    accum_dtype = "float"
    shape = [batch, seq_len, heads, dim_qk]
    blk = 64

    @T.prim_func
    def flash_bwd_post(
136
137
            dQ: T.Tensor(shape, accum_dtype),  # type: ignore
            dQ_out: T.Tensor(shape, dtype),  # type: ignore
138
139
140
141
142
143
144
145
146
147
148
    ):
        with T.Kernel(T.ceildiv(seq_len, blk), heads, batch, threads=128) as (bx, by, bz):
            T.annotate_layout({dQ: make_dq_layout(dQ)})
            T.copy(
                dQ[bz, bx * blk:(bx + 1) * blk, by, :],
                dQ_out[bz, bx * blk:(bx + 1) * blk, by, :],
            )

    return flash_bwd_post


149
150
151
@tilelang.jit(pass_configs={
    tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
})
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
def flashattn_bwd_atomic_add(batch,
                             heads,
                             seq_len,
                             dim_qk,
                             dim_v,
                             is_causal,
                             block_M,
                             block_N,
                             threads=256,
                             num_stages=2,
                             groups=1):
    sm_scale = (1.0 / dim_qk)**0.5
    scale = (1.0 / dim_qk)**0.5 * 1.44269504  # log2(e)
    head_kv = heads // groups
    q_shape = [batch, seq_len, heads, dim_qk]
    k_shape = [batch, seq_len, head_kv, dim_qk]
    v_shape = [batch, seq_len, head_kv, dim_v]
    dtype = "float16"
    accum_dtype = "float"

    @T.prim_func
    def flash_bwd(
            Q: T.Tensor(q_shape, dtype),  # type: ignore
            K: T.Tensor(k_shape, dtype),  # type: ignore
            V: T.Tensor(v_shape, dtype),  # type: ignore
            dO: T.Tensor([batch, seq_len, heads, dim_v], dtype),  # type: ignore
            lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            dQ: T.Tensor(q_shape, accum_dtype),  # type: ignore
            dK: T.Tensor(k_shape, accum_dtype),  # type: ignore
            dV: T.Tensor(v_shape, accum_dtype),  # type: ignore
    ):
        with T.Kernel(heads, T.ceildiv(seq_len, block_M), batch, threads=threads) as (bx, by, bz):
            K_shared = T.alloc_shared([block_M, dim_qk], dtype)
            dsT_shared = T.alloc_shared([block_M, block_N], dtype)
            q = T.alloc_shared([block_N, dim_qk], dtype)
            V_shared = T.alloc_shared([block_M, dim_v], dtype)
            qkT = T.alloc_fragment([block_M, block_N], accum_dtype)
            dsT = T.alloc_fragment([block_M, block_N], accum_dtype)
            qkT_cast = T.alloc_fragment([block_M, block_N], dtype)
            dsT_cast = T.alloc_fragment([block_M, block_N], dtype)
            lse_shared = T.alloc_shared([block_N], accum_dtype)
            delta = T.alloc_shared([block_N], accum_dtype)
            do = T.alloc_shared([block_N, dim_v], dtype)
            dv = T.alloc_fragment([block_M, dim_v], accum_dtype)
            dk = T.alloc_fragment([block_M, dim_qk], accum_dtype)
            dq = T.alloc_fragment([block_N, dim_qk], accum_dtype)
            dk_shared = T.alloc_shared([block_M, dim_qk], accum_dtype)
            dv_shared = T.alloc_shared([block_M, dim_v], accum_dtype)

            T.annotate_layout({
                dQ: make_dq_layout(dQ),
                K_shared: tilelang.layout.make_swizzled_layout(K_shared),
            })

            T.copy(K[bz, by * block_M:(by + 1) * block_M, bx // groups, :], K_shared)
            T.copy(V[bz, by * block_M:(by + 1) * block_M, bx // groups, :], V_shared)
            T.clear(dv)
            T.clear(dk)
            loop_st = T.floordiv(by * block_M, block_N) if is_causal else 0
            loop_ed = T.ceildiv(seq_len, block_N)
            for k in T.Pipelined(loop_st, loop_ed, num_stages=num_stages):
                T.copy(Q[bz, k * block_N:(k + 1) * block_N, bx, :], q)
                T.clear(qkT)
                T.gemm(K_shared, q, qkT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
                T.copy(lse[bz, bx, k * block_N:(k + 1) * block_N], lse_shared)
                for i, j in T.Parallel(block_M, block_N):
                    qkT[i, j] = T.exp2(qkT[i, j] * scale - lse_shared[j])
                if is_causal:
                    for i, j in T.Parallel(block_M, block_N):
                        qkT[i, j] = T.if_then_else(by * block_M + i <= k * block_N + j, qkT[i, j],
                                                   0)
                T.copy(dO[bz, k * block_N:(k + 1) * block_N, bx, :], do)
                T.clear(dsT)
                T.gemm(V_shared, do, dsT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
                T.copy(qkT, qkT_cast)
                T.gemm(qkT_cast, do, dv, policy=T.GemmWarpPolicy.FullRow)

                T.copy(Delta[bz, bx, k * block_N:(k + 1) * block_N], delta)

                for i, j in T.Parallel(block_M, block_N):
                    dsT_cast[i, j] = qkT[i, j] * (dsT[i, j] - delta[j]) * sm_scale
                T.gemm(dsT_cast, q, dk, policy=T.GemmWarpPolicy.FullRow)

                T.copy(dsT_cast, dsT_shared)
                T.clear(dq)
                T.gemm(dsT_shared, K_shared, dq, transpose_A=True)
                for i, j in T.Parallel(block_N, dim_qk):
240
                    T.atomic_add(dQ[bz, k * block_N + i, bx, j], dq[i, j])
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
            T.copy(dv, dv_shared)
            T.atomic_add(dV[bz, by * block_M:(by + 1) * block_M, bx // groups, :], dv_shared)
            T.copy(dk, dk_shared)
            T.atomic_add(dK[bz, by * block_M:(by + 1) * block_M, bx // groups, :], dk_shared)

    return flash_bwd


@tilelang.jit(pass_configs={
    tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
})
def flashattn_bwd_split(batch,
                        heads,
                        seq_len,
                        dim_qk,
                        dim_v,
                        is_causal,
                        block_M,
                        block_N,
                        threads=256,
                        num_stages=2,
                        groups=1):
263
264
265
266
267
268
    sm_scale = (1.0 / dim_qk)**0.5
    scale = (1.0 / dim_qk)**0.5 * 1.44269504  # log2(e)
    head_kv = heads // groups
    q_shape = [batch, seq_len, heads, dim_qk]
    k_shape = [batch, seq_len, head_kv, dim_qk]
    v_shape = [batch, seq_len, head_kv, dim_v]
269
270
    dk_shape = [groups, batch, seq_len, head_kv, dim_qk]  # sum after kernel
    dv_shape = [groups, batch, seq_len, head_kv, dim_v]  # sum after kernel
271
272
273
274
275
    dtype = "float16"
    accum_dtype = "float"

    @T.prim_func
    def flash_bwd(
276
277
278
279
280
281
282
            Q: T.Tensor(q_shape, dtype),  # type: ignore
            K: T.Tensor(k_shape, dtype),  # type: ignore
            V: T.Tensor(v_shape, dtype),  # type: ignore
            dO: T.Tensor([batch, seq_len, heads, dim_v], dtype),  # type: ignore
            lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            dQ: T.Tensor(q_shape, accum_dtype),  # type: ignore
283
284
            dK: T.Tensor(dk_shape, dtype),  # type: ignore
            dV: T.Tensor(dv_shape, dtype),  # type: ignore
285
    ):
286
        with T.Kernel(heads, T.ceildiv(seq_len, block_M), batch, threads=threads) as (bx, by, bz):
287
288
289
290
291
292
293
294
295
296
297
298
299
300
            K_shared = T.alloc_shared([block_M, dim_qk], dtype)
            dsT_shared = T.alloc_shared([block_M, block_N], dtype)
            q = T.alloc_shared([block_N, dim_qk], dtype)
            V_shared = T.alloc_shared([block_M, dim_v], dtype)
            qkT = T.alloc_fragment([block_M, block_N], accum_dtype)
            dsT = T.alloc_fragment([block_M, block_N], accum_dtype)
            qkT_cast = T.alloc_fragment([block_M, block_N], dtype)
            dsT_cast = T.alloc_fragment([block_M, block_N], dtype)
            lse_shared = T.alloc_shared([block_N], accum_dtype)
            delta = T.alloc_shared([block_N], accum_dtype)
            do = T.alloc_shared([block_N, dim_v], dtype)
            dv = T.alloc_fragment([block_M, dim_v], accum_dtype)
            dk = T.alloc_fragment([block_M, dim_qk], accum_dtype)
            dq = T.alloc_fragment([block_N, dim_qk], accum_dtype)
301
302
            dv_shared = T.alloc_shared([block_M, dim_v], dtype)
            dk_shared = T.alloc_shared([block_M, dim_qk], dtype)
303
304
305
306
307
308
309
310
311
312
313
314

            T.annotate_layout({
                dQ: make_dq_layout(dQ),
                K_shared: tilelang.layout.make_swizzled_layout(K_shared),
                dv_shared: tilelang.layout.make_swizzled_layout(dv_shared),
                dk_shared: tilelang.layout.make_swizzled_layout(dk_shared),
            })

            T.copy(K[bz, by * block_M:(by + 1) * block_M, bx // groups, :], K_shared)
            T.copy(V[bz, by * block_M:(by + 1) * block_M, bx // groups, :], V_shared)
            T.clear(dv)
            T.clear(dk)
315
            loop_st = T.floordiv(by * block_M, block_N) if is_causal else 0
316
            loop_ed = T.ceildiv(seq_len, block_N)
317
            for k in T.Pipelined(loop_st, loop_ed, num_stages=num_stages):
318
319
320
                T.copy(Q[bz, k * block_N:(k + 1) * block_N, bx, :], q)
                T.clear(qkT)
                T.gemm(K_shared, q, qkT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
321
322
323
                T.copy(dO[bz, k * block_N:(k + 1) * block_N, bx, :], do)
                T.clear(dsT)
                T.gemm(V_shared, do, dsT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
324
325
326
                T.copy(lse[bz, bx, k * block_N:(k + 1) * block_N], lse_shared)
                for i, j in T.Parallel(block_M, block_N):
                    qkT[i, j] = T.exp2(qkT[i, j] * scale - lse_shared[j])
327
                if is_causal:
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
                    for i, j in T.Parallel(block_M, block_N):
                        qkT[i, j] = T.if_then_else(by * block_M + i <= k * block_N + j, qkT[i, j],
                                                   0)
                T.copy(qkT, qkT_cast)
                T.gemm(qkT_cast, do, dv, policy=T.GemmWarpPolicy.FullRow)

                T.copy(Delta[bz, bx, k * block_N:(k + 1) * block_N], delta)

                for i, j in T.Parallel(block_M, block_N):
                    dsT_cast[i, j] = qkT[i, j] * (dsT[i, j] - delta[j]) * sm_scale
                T.gemm(dsT_cast, q, dk, policy=T.GemmWarpPolicy.FullRow)

                T.copy(dsT_cast, dsT_shared)
                T.clear(dq)
                T.gemm(dsT_shared, K_shared, dq, transpose_A=True)
                for i, j in T.Parallel(block_N, dim_qk):
344
                    T.atomic_add(dQ[bz, k * block_N + i, bx, j], dq[i, j])
345

346
347
348
349
            T.copy(dv, dv_shared)
            T.copy(dv_shared, dV[bx % groups, bz, by * block_M:(by + 1) * block_M, bx // groups, :])
            T.copy(dk, dk_shared)
            T.copy(dk, dK[bx % groups, bz, by * block_M:(by + 1) * block_M, bx // groups, :])
350
351
352
353

    return flash_bwd


354
@torch.compile
355
356
357
class _attention(torch.autograd.Function):

    @staticmethod
358
    def forward(ctx, q, k, v, causal, groups=1, use_atomic=True):
359
360
        BATCH, N_CTX, H, D_HEAD_QK = q.shape
        D_HEAD_V = v.shape[-1]
361
        block_M = 128
362
        block_N = 64
363
        mod = flashattn_fwd(BATCH, H, N_CTX, D_HEAD_QK, D_HEAD_V, causal, block_M, block_N, groups)
364
365
366
        o, lse = mod(q, k, v)
        ctx.save_for_backward(q, k, v, o, lse)
        ctx.causal = causal
367
        ctx.use_atomic = use_atomic
368
369
370
371
372
        return o

    @staticmethod
    def backward(ctx, do):
        q, k, v, o, lse = ctx.saved_tensors
373
374
375
        BATCH, N_CTX, H, D_HEAD_QK = q.shape
        HEAD_KV, D_HEAD_V, = v.shape[-2], v.shape[-1]
        groups = H // HEAD_KV
376
377
378
379
380
381
382

        def maybe_contiguous(x):
            if x.stride(-1) != 1:
                return x.contiguous()
            return x

        do, q, k, v, o = [maybe_contiguous(x) for x in (do, q, k, v, o)]
383
        block_M = 128
384
385
386
        block_N = 32
        mod_prep = flashattn_bwd_preprocess(BATCH, H, N_CTX, D_HEAD_V)
        mod_post = flashattn_bwd_postprocess(BATCH, H, N_CTX, D_HEAD_QK)
387
        delta = mod_prep(o, do)
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

        if ctx.use_atomic:
            kernel = flashattn_bwd_atomic_add(
                BATCH,
                H,
                N_CTX,
                D_HEAD_QK,
                D_HEAD_V,
                ctx.causal,
                block_M,
                block_N,
                threads=256,
                num_stages=2,
                groups=groups)
            shape_q = [BATCH, N_CTX, H, D_HEAD_QK]
            shape_k = [BATCH, N_CTX, HEAD_KV, D_HEAD_QK]
            shape_v = [BATCH, N_CTX, HEAD_KV, D_HEAD_V]
            dq = torch.zeros(shape_q, dtype=torch.float32, device=q.device)
            dk = torch.zeros(shape_k, dtype=torch.float32, device=q.device)
            dv = torch.zeros(shape_v, dtype=torch.float32, device=q.device)
            kernel(q, k, v, do, lse, delta, dq, dk, dv)
            dq = mod_post(dq)
            dk = dk.to(torch.float16)
            dv = dv.to(torch.float16)
        else:
            kernel = flashattn_bwd_split(
                BATCH,
                H,
                N_CTX,
                D_HEAD_QK,
                D_HEAD_V,
                ctx.causal,
                block_M,
                block_N,
                threads=256,
                num_stages=2,
                groups=groups)
            shape_q = [BATCH, N_CTX, H, D_HEAD_QK]
            shape_k = [groups, BATCH, N_CTX, HEAD_KV, D_HEAD_QK]  # sum after kernel
            shape_v = [groups, BATCH, N_CTX, HEAD_KV, D_HEAD_V]  # sum after kernel
            dq = torch.zeros(shape_q, dtype=torch.float32, device=q.device)
            dk = torch.empty(shape_k, dtype=torch.float16, device=q.device)
            dv = torch.empty(shape_v, dtype=torch.float16, device=q.device)
            kernel(q, k, v, do, lse, delta, dq, dk, dv)
            dq = mod_post(dq)
            dk, dv = dk.sum(0), dv.sum(0)

        return dq, dk, dv, None, None, None
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465


attention = _attention.apply


def ref_program(Q, K, V, is_causal, groups=1):
    # Q: [B, T, HQ, D_QK]
    # K: [B, T, HK, D_QK]
    # V: [B, T, HV, D_V]
    # HQ = HKV * groups
    assert Q.size(2) == K.size(
        2) * groups, f"Q.size(2): {Q.size(2)}, K.size(2): {K.size(2)}, groups: {groups}"
    assert Q.size(2) == V.size(
        2) * groups, f"Q.size(2): {Q.size(2)}, V.size(2): {V.size(2)}, groups: {groups}"

    dim_qk = Q.size(-1)
    K = K.repeat_interleave(groups, dim=2)
    V = V.repeat_interleave(groups, dim=2)
    scores = torch.einsum('bqhd,bkhd->bhqk', Q, K)
    scores = scores / torch.sqrt(torch.tensor(dim_qk, dtype=scores.dtype))
    if is_causal:
        seq_len = Q.size(1)
        mask = torch.tril(torch.ones(seq_len, seq_len, device=scores.device))
        mask = mask.unsqueeze(0).unsqueeze(0)
        scores = scores.masked_fill(mask == 0, float('-inf'))
    attention_weights = F.softmax(scores, dim=-1)
    output = torch.einsum('bhqk,bkhd->bqhd', attention_weights, V)
    return output


466
def main(BATCH: int = 1,
467
         H: int = 32,
468
         N_CTX: int = 256,
469
470
471
         D_HEAD_QK: int = 192,
         D_HEAD_V: int = 128,
         groups: int = 16,
472
473
         causal: bool = False,
         use_atomic: bool = True):
474
475
476
    flops_per_qk = 2.0 * BATCH * H * N_CTX * N_CTX * D_HEAD_QK
    flops_per_v = 2.0 * BATCH * H * N_CTX * N_CTX * D_HEAD_V
    total_flops = 3 * flops_per_qk + 2 * flops_per_v
477
    if causal:
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
        total_flops *= 0.5
    Q = (
        torch.empty(BATCH, N_CTX, H, D_HEAD_QK, dtype=torch.half,
                    device="cuda").normal_().requires_grad_())

    head_kv = H // groups
    K = (
        torch.empty(BATCH, N_CTX, head_kv, D_HEAD_QK, dtype=torch.half,
                    device="cuda").normal_().requires_grad_())
    V = (
        torch.empty(BATCH, N_CTX, head_kv, D_HEAD_V, dtype=torch.half,
                    device="cuda").normal_().requires_grad_())
    dO = (
        torch.empty(BATCH, N_CTX, H, D_HEAD_V, dtype=torch.half,
                    device="cuda").normal_().requires_grad_())
493
    O = attention(Q, K, V, causal, groups, use_atomic)
494
495
496
497
498
    O.backward(dO, retain_graph=True)
    dQ, Q.grad = Q.grad.clone(), None
    dK, K.grad = K.grad.clone(), None
    dV, V.grad = V.grad.clone(), None

499
    O_ref = ref_program(Q, K, V, causal, groups)
500
501
502
503
504
    O_ref.backward(dO, retain_graph=True)
    dQ_ref, Q.grad = Q.grad.clone(), None
    dK_ref, K.grad = K.grad.clone(), None
    dV_ref, V.grad = V.grad.clone(), None

505
    torch.testing.assert_close(O, O_ref, rtol=1e-2, atol=1e-2)
506
    torch.testing.assert_close(dV, dV_ref, rtol=1e-2, atol=1e-2)
507
508
    torch.testing.assert_close(dK, dK_ref, rtol=1e-2, atol=1e-2)
    torch.testing.assert_close(dQ, dQ_ref, rtol=1e-2, atol=1e-2)
509
    print('All checks passed.✅')
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524

    def run():
        O_ref.backward(dO, retain_graph=True)

    def run1():
        O.backward(dO, retain_graph=True)

    from tilelang.profiler import do_bench

    latency = do_bench(run, warmup=500)
    print("torch: {:.2f} ms".format(latency))
    print("torch: {:.2f} TFlops".format(total_flops / latency * 1e-9))
    latency = do_bench(run1, warmup=500)
    print("tilelang: {:.2f} ms".format(latency))
    print("tilelang: {:.2f} TFlops".format(total_flops / latency * 1e-9))
525
526
527
528
529
530
531
532
533


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=8, help='Batch size')
    parser.add_argument('--h', type=int, default=32, help='Number of heads')
    parser.add_argument('--n_ctx', type=int, default=1024, help='Context size')
    parser.add_argument('--d_head_qk', type=int, default=192, help='Head dimension for Q/K')
    parser.add_argument('--d_head_v', type=int, default=128, help='Head dimension for V')
534
    parser.add_argument('--causal', action='store_true', help='Causal flag')
535
    parser.add_argument('--groups', type=int, default=16, help='groups')
536
537
538
539
    parser.add_argument(
        '--use_atomic', action='store_true', default=False, help='Use atomic add for dK/dV')
    parser.add_argument(
        '--use_split', action='store_true', default=False, help='Use split for dK/dV')
540
    args = parser.parse_args()
541
542
543
544
545
546
547
548
549
550
551
552

    # Handle backward compatibility and logic
    if args.use_split:
        use_atomic = False
    elif args.use_atomic:
        use_atomic = True
    else:
        # Default: use atomic
        use_atomic = True

    main(args.batch, args.h, args.n_ctx, args.d_head_qk, args.d_head_v, args.groups, args.causal,
         use_atomic)