example_gqa_bwd.py 16.2 KB
Newer Older
1
2
3
4
5
6
7
import torch
import torch.nn.functional as F
import tilelang
import tilelang.language as T
import argparse


8
9
@tilelang.jit(out_idx=[3, 4])
def flashattn_fwd(batch, heads, seq_len, dim_qk, dim_v, is_causal, block_M, block_N, groups=1):
10
11
12
13
14
15
16
17
18
19
    scale = (1.0 / dim_qk)**0.5 * 1.44269504  # log2(e)
    head_kv = heads // groups
    q_shape = [batch, seq_len, heads, dim_qk]
    k_shape = [batch, seq_len, head_kv, dim_qk]
    v_shape = [batch, seq_len, head_kv, dim_v]
    dtype = "float16"
    accum_dtype = "float"

    @T.prim_func
    def flash_fwd(
20
21
22
23
24
            Q: T.Tensor(q_shape, dtype),  # type: ignore
            K: T.Tensor(k_shape, dtype),  # type: ignore
            V: T.Tensor(v_shape, dtype),  # type: ignore
            Output: T.Tensor([batch, seq_len, heads, dim_v], dtype),  # type: ignore
            lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
25
    ):
26
        with T.Kernel(T.ceildiv(seq_len, block_M), heads, batch, threads=256) as (bx, by, bz):
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
            Q_shared = T.alloc_shared([block_M, dim_qk], dtype)
            K_shared = T.alloc_shared([block_N, dim_qk], dtype)
            V_shared = T.alloc_shared([block_N, dim_v], dtype)
            acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
            acc_o = T.alloc_fragment([block_M, dim_v], accum_dtype)
            scores_max = T.alloc_fragment([block_M], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
            scores_scale = T.alloc_fragment([block_M], accum_dtype)
            scores_sum = T.alloc_fragment([block_M], accum_dtype)
            logsum = T.alloc_fragment([block_M], accum_dtype)

            T.annotate_layout({Q_shared: tilelang.layout.make_swizzled_layout(Q_shared)})
            T.copy(Q[bz, bx * block_M:(bx + 1) * block_M, by, :], Q_shared)
            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))
            loop_range = (
                T.ceildiv(
46
                    (bx + 1) * block_M, block_N) if is_causal else T.ceildiv(seq_len, block_N))
47
48
            for k in T.Pipelined(loop_range, num_stages=1):
                T.copy(K[bz, k * block_N:(k + 1) * block_N, by // groups, :], K_shared)
49
                if is_causal:
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
                    for i, j in T.Parallel(block_M, block_N):
                        acc_s[i, j] = T.if_then_else(bx * block_M + i >= k * block_N + j, 0,
                                                     -T.infinity(acc_s.dtype))
                else:
                    T.clear(acc_s)
                T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
                T.copy(V[bz, k * block_N:(k + 1) * block_N, by // groups, :], V_shared)
                T.copy(scores_max, scores_max_prev)
                T.reduce_max(acc_s, scores_max, dim=1, clear=False)
                for i in T.Parallel(block_M):
                    scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
                for i, j in T.Parallel(block_M, dim_v):
                    acc_o[i, j] *= scores_scale[i]
                for i, j in T.Parallel(block_M, block_N):
                    acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
                T.copy(acc_s, acc_s_cast)
                T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)
                T.reduce_sum(acc_s, scores_sum, dim=1)
                for i in T.Parallel(block_M):
                    logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
            for i, j in T.Parallel(block_M, dim_v):
                acc_o[i, j] /= logsum[i]
            T.copy(acc_o, Output[bz, bx * block_M:(bx + 1) * block_M, by, :])
            for i in T.Parallel(block_M):
                logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale
            T.copy(logsum, lse[bz, by, bx * block_M:(bx + 1) * block_M])

    return flash_fwd


80
@tilelang.jit(out_idx=[2])
81
82
83
84
85
86
87
88
def flashattn_bwd_preprocess(batch, heads, seq_len, dim_v):
    dtype = "float16"
    accum_dtype = "float"
    shape = [batch, seq_len, heads, dim_v]
    blk = 32

    @T.prim_func
    def flash_bwd_prep(
89
90
91
            O: T.Tensor(shape, dtype),  # type: ignore
            dO: T.Tensor(shape, dtype),  # type: ignore
            Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    ):
        with T.Kernel(heads, T.ceildiv(seq_len, blk), batch) as (bx, by, bz):
            o = T.alloc_fragment([blk, blk], dtype)
            do = T.alloc_fragment([blk, blk], dtype)
            acc = T.alloc_fragment([blk, blk], accum_dtype)
            delta = T.alloc_fragment([blk], accum_dtype)
            T.clear(acc)
            for k in range(T.ceildiv(dim_v, blk)):
                T.copy(O[bz, by * blk:(by + 1) * blk, bx, k * blk:(k + 1) * blk], o)
                T.copy(dO[bz, by * blk:(by + 1) * blk, bx, k * blk:(k + 1) * blk], do)
                for i, j in T.Parallel(blk, blk):
                    acc[i, j] += o[i, j] * do[i, j]
            T.reduce_sum(acc, delta, 1)
            T.copy(delta, Delta[bz, bx, by * blk:(by + 1) * blk])

    return flash_bwd_prep


def make_dq_layout(dQ):
    # atomicAdd can not be vectorized, so we need to reorder dq to match the 8x8 gemm fragment
    return T.Layout(dQ.shape,
                    lambda b, l, h, d: [b, l // 8, h, d // 8, (d % 2), 4 * (l % 8) + (d % 8) // 2])


116
@tilelang.jit(out_idx=[1])
117
118
119
120
121
122
123
124
def flashattn_bwd_postprocess(batch, heads, seq_len, dim_qk):
    dtype = "float16"
    accum_dtype = "float"
    shape = [batch, seq_len, heads, dim_qk]
    blk = 64

    @T.prim_func
    def flash_bwd_post(
125
126
            dQ: T.Tensor(shape, accum_dtype),  # type: ignore
            dQ_out: T.Tensor(shape, dtype),  # type: ignore
127
128
129
130
131
132
133
134
135
136
137
    ):
        with T.Kernel(T.ceildiv(seq_len, blk), heads, batch, threads=128) as (bx, by, bz):
            T.annotate_layout({dQ: make_dq_layout(dQ)})
            T.copy(
                dQ[bz, bx * blk:(bx + 1) * blk, by, :],
                dQ_out[bz, bx * blk:(bx + 1) * blk, by, :],
            )

    return flash_bwd_post


138
139
@tilelang.jit
def flashattn_bwd(batch, heads, seq_len, dim_qk, dim_v, is_causal, block_M, block_N, groups=1):
140
141
142
143
144
145
146
147
148
149
150
    sm_scale = (1.0 / dim_qk)**0.5
    scale = (1.0 / dim_qk)**0.5 * 1.44269504  # log2(e)
    head_kv = heads // groups
    q_shape = [batch, seq_len, heads, dim_qk]
    k_shape = [batch, seq_len, head_kv, dim_qk]
    v_shape = [batch, seq_len, head_kv, dim_v]
    dtype = "float16"
    accum_dtype = "float"

    @T.prim_func
    def flash_bwd(
151
152
153
154
155
156
157
158
159
            Q: T.Tensor(q_shape, dtype),  # type: ignore
            K: T.Tensor(k_shape, dtype),  # type: ignore
            V: T.Tensor(v_shape, dtype),  # type: ignore
            dO: T.Tensor([batch, seq_len, heads, dim_v], dtype),  # type: ignore
            lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            dQ: T.Tensor(q_shape, accum_dtype),  # type: ignore
            dK: T.Tensor(k_shape, dtype),  # type: ignore
            dV: T.Tensor(v_shape, dtype),  # type: ignore
160
    ):
161
        with T.Kernel(heads, T.ceildiv(seq_len, block_M), batch, threads=128) as (bx, by, bz):
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
            K_shared = T.alloc_shared([block_M, dim_qk], dtype)
            dsT_shared = T.alloc_shared([block_M, block_N], dtype)
            q = T.alloc_shared([block_N, dim_qk], dtype)
            V_shared = T.alloc_shared([block_M, dim_v], dtype)
            qkT = T.alloc_fragment([block_M, block_N], accum_dtype)
            dsT = T.alloc_fragment([block_M, block_N], accum_dtype)
            qkT_cast = T.alloc_fragment([block_M, block_N], dtype)
            dsT_cast = T.alloc_fragment([block_M, block_N], dtype)
            lse_shared = T.alloc_shared([block_N], accum_dtype)
            delta = T.alloc_shared([block_N], accum_dtype)
            do = T.alloc_shared([block_N, dim_v], dtype)
            dv = T.alloc_fragment([block_M, dim_v], accum_dtype)
            dk = T.alloc_fragment([block_M, dim_qk], accum_dtype)
            dq = T.alloc_fragment([block_N, dim_qk], accum_dtype)
            dv_shared = T.alloc_shared([block_N, dim_v], dtype)
            dk_shared = T.alloc_shared([block_N, dim_qk], dtype)

            T.annotate_layout({
                dQ: make_dq_layout(dQ),
                K_shared: tilelang.layout.make_swizzled_layout(K_shared),
                dv_shared: tilelang.layout.make_swizzled_layout(dv_shared),
                dk_shared: tilelang.layout.make_swizzled_layout(dk_shared),
            })

            T.copy(K[bz, by * block_M:(by + 1) * block_M, bx // groups, :], K_shared)
            T.copy(V[bz, by * block_M:(by + 1) * block_M, bx // groups, :], V_shared)
            T.clear(dv)
            T.clear(dk)
190
            loop_st = T.floordiv(by * block_M, block_N) if is_causal else 0
191
192
193
194
195
196
197
198
            loop_ed = T.ceildiv(seq_len, block_N)
            for k in T.Pipelined(loop_st, loop_ed, num_stages=1):
                T.copy(Q[bz, k * block_N:(k + 1) * block_N, bx, :], q)
                T.clear(qkT)
                T.gemm(K_shared, q, qkT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
                T.copy(lse[bz, bx, k * block_N:(k + 1) * block_N], lse_shared)
                for i, j in T.Parallel(block_M, block_N):
                    qkT[i, j] = T.exp2(qkT[i, j] * scale - lse_shared[j])
199
                if is_causal:
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
                    for i, j in T.Parallel(block_M, block_N):
                        qkT[i, j] = T.if_then_else(by * block_M + i <= k * block_N + j, qkT[i, j],
                                                   0)
                T.copy(dO[bz, k * block_N:(k + 1) * block_N, bx, :], do)
                T.clear(dsT)
                T.gemm(V_shared, do, dsT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
                T.copy(qkT, qkT_cast)
                T.gemm(qkT_cast, do, dv, policy=T.GemmWarpPolicy.FullRow)

                T.copy(Delta[bz, bx, k * block_N:(k + 1) * block_N], delta)

                for i, j in T.Parallel(block_M, block_N):
                    dsT_cast[i, j] = qkT[i, j] * (dsT[i, j] - delta[j]) * sm_scale
                T.gemm(dsT_cast, q, dk, policy=T.GemmWarpPolicy.FullRow)

                T.copy(dsT_cast, dsT_shared)
                T.clear(dq)
                T.gemm(dsT_shared, K_shared, dq, transpose_A=True)
                for i, j in T.Parallel(block_N, dim_qk):
                    if k * block_N + i < seq_len:
                        T.atomic_add(dQ[bz, k * block_N + i, bx, j], dq[i, j])

            for i, j in T.Parallel(block_M, dim_v):
                T.atomic_add(dV[bz, by * block_M + i, bx // groups, j], dv[i, j])
            for i, j in T.Parallel(block_M, dim_qk):
                T.atomic_add(dK[bz, by * block_M + i, bx // groups, j], dk[i, j])

    return flash_bwd


230
@torch.compile
231
232
233
234
235
236
class _attention(torch.autograd.Function):

    @staticmethod
    def forward(ctx, q, k, v, causal, groups=1):
        BATCH, N_CTX, H, D_HEAD_QK = q.shape
        D_HEAD_V = v.shape[-1]
237
        block_M = 128
238
        block_N = 64
239
        mod = flashattn_fwd(BATCH, H, N_CTX, D_HEAD_QK, D_HEAD_V, causal, block_M, block_N, groups)
240
241
242
243
244
245
246
247
        o, lse = mod(q, k, v)
        ctx.save_for_backward(q, k, v, o, lse)
        ctx.causal = causal
        return o

    @staticmethod
    def backward(ctx, do):
        q, k, v, o, lse = ctx.saved_tensors
248
249
250
        BATCH, N_CTX, H, D_HEAD_QK = q.shape
        HEAD_KV, D_HEAD_V, = v.shape[-2], v.shape[-1]
        groups = H // HEAD_KV
251
252
253
254
255
256
257

        def maybe_contiguous(x):
            if x.stride(-1) != 1:
                return x.contiguous()
            return x

        do, q, k, v, o = [maybe_contiguous(x) for x in (do, q, k, v, o)]
258
259
260
261
        block_M = 64
        block_N = 32
        mod_prep = flashattn_bwd_preprocess(BATCH, H, N_CTX, D_HEAD_V)
        mod_post = flashattn_bwd_postprocess(BATCH, H, N_CTX, D_HEAD_QK)
262
        delta = mod_prep(o, do)
263
264
265
266
267
268
269
270
271
        kernel = flashattn_bwd(BATCH, H, N_CTX, D_HEAD_QK, D_HEAD_V, ctx.causal, block_M, block_N,
                               groups)
        shape_q = [BATCH, N_CTX, H, D_HEAD_QK]
        shape_k = [BATCH, N_CTX, HEAD_KV, D_HEAD_QK]
        shape_v = [BATCH, N_CTX, HEAD_KV, D_HEAD_V]
        dq = torch.zeros(shape_q, dtype=torch.float32, device=q.device)
        dk = torch.zeros(shape_k, dtype=torch.float16, device=q.device)
        dv = torch.zeros(shape_v, dtype=torch.float16, device=q.device)
        kernel(q, k, v, do, lse, delta, dq, dk, dv)
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
        dq = mod_post(dq)
        return dq, dk, dv, None, None


attention = _attention.apply


def ref_program(Q, K, V, is_causal, groups=1):
    # Q: [B, T, HQ, D_QK]
    # K: [B, T, HK, D_QK]
    # V: [B, T, HV, D_V]
    # HQ = HKV * groups
    assert Q.size(2) == K.size(
        2) * groups, f"Q.size(2): {Q.size(2)}, K.size(2): {K.size(2)}, groups: {groups}"
    assert Q.size(2) == V.size(
        2) * groups, f"Q.size(2): {Q.size(2)}, V.size(2): {V.size(2)}, groups: {groups}"

    dim_qk = Q.size(-1)
    K = K.repeat_interleave(groups, dim=2)
    V = V.repeat_interleave(groups, dim=2)
    scores = torch.einsum('bqhd,bkhd->bhqk', Q, K)
    scores = scores / torch.sqrt(torch.tensor(dim_qk, dtype=scores.dtype))
    if is_causal:
        seq_len = Q.size(1)
        mask = torch.tril(torch.ones(seq_len, seq_len, device=scores.device))
        mask = mask.unsqueeze(0).unsqueeze(0)
        scores = scores.masked_fill(mask == 0, float('-inf'))
    attention_weights = F.softmax(scores, dim=-1)
    output = torch.einsum('bhqk,bkhd->bqhd', attention_weights, V)
    return output


304
def main(BATCH: int = 1,
305
         H: int = 32,
306
         N_CTX: int = 256,
307
308
309
310
         D_HEAD_QK: int = 192,
         D_HEAD_V: int = 128,
         groups: int = 16,
         causal: bool = False):
311
312
313
    flops_per_qk = 2.0 * BATCH * H * N_CTX * N_CTX * D_HEAD_QK
    flops_per_v = 2.0 * BATCH * H * N_CTX * N_CTX * D_HEAD_V
    total_flops = 3 * flops_per_qk + 2 * flops_per_v
314
    if causal:
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
        total_flops *= 0.5
    Q = (
        torch.empty(BATCH, N_CTX, H, D_HEAD_QK, dtype=torch.half,
                    device="cuda").normal_().requires_grad_())

    head_kv = H // groups
    K = (
        torch.empty(BATCH, N_CTX, head_kv, D_HEAD_QK, dtype=torch.half,
                    device="cuda").normal_().requires_grad_())
    V = (
        torch.empty(BATCH, N_CTX, head_kv, D_HEAD_V, dtype=torch.half,
                    device="cuda").normal_().requires_grad_())
    dO = (
        torch.empty(BATCH, N_CTX, H, D_HEAD_V, dtype=torch.half,
                    device="cuda").normal_().requires_grad_())
330
    O = attention(Q, K, V, causal, groups)
331
332
333
334
335
    O.backward(dO, retain_graph=True)
    dQ, Q.grad = Q.grad.clone(), None
    dK, K.grad = K.grad.clone(), None
    dV, V.grad = V.grad.clone(), None

336
    O_ref = ref_program(Q, K, V, causal, groups)
337
338
339
340
341
    O_ref.backward(dO, retain_graph=True)
    dQ_ref, Q.grad = Q.grad.clone(), None
    dK_ref, K.grad = K.grad.clone(), None
    dV_ref, V.grad = V.grad.clone(), None

342
    torch.testing.assert_close(O, O_ref, rtol=1e-2, atol=1e-2)
343
    torch.testing.assert_close(dV, dV_ref, rtol=1e-2, atol=1e-2)
344
345
    torch.testing.assert_close(dK, dK_ref, rtol=1e-2, atol=1e-2)
    torch.testing.assert_close(dQ, dQ_ref, rtol=1e-2, atol=1e-2)
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

    def run():
        O_ref.backward(dO, retain_graph=True)

    def run1():
        O.backward(dO, retain_graph=True)

    from tilelang.profiler import do_bench

    latency = do_bench(run, warmup=500)
    print("torch: {:.2f} ms".format(latency))
    print("torch: {:.2f} TFlops".format(total_flops / latency * 1e-9))
    latency = do_bench(run1, warmup=500)
    print("tilelang: {:.2f} ms".format(latency))
    print("tilelang: {:.2f} TFlops".format(total_flops / latency * 1e-9))
361
362
363
364
365
366
367
368
369
370
371
372
373


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=8, help='Batch size')
    parser.add_argument('--h', type=int, default=32, help='Number of heads')
    parser.add_argument('--n_ctx', type=int, default=1024, help='Context size')
    parser.add_argument('--d_head_qk', type=int, default=192, help='Head dimension for Q/K')
    parser.add_argument('--d_head_v', type=int, default=128, help='Head dimension for V')
    parser.add_argument('--causal', type=bool, default=False, help='Causal flag')
    parser.add_argument('--groups', type=int, default=16, help='groups')
    args = parser.parse_args()
    main(args.batch, args.h, args.n_ctx, args.d_head_qk, args.d_head_v, args.groups, args.causal)