lower_tile_op.cc 28.3 KB
Newer Older
1
2
3
4
5
/*!
 * \file lower_tile_op.cc
 * \brief Lower the tile op for further codegen.
 */

6
#include <tvm/ffi/reflection/registry.h>
7
#include <tvm/tir/builtin.h>
8
#include <tvm/tir/op.h>
9
10
11
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>
#include <tvm/tir/utils.h>
12
#include <unordered_map>
13
#include <vector>
14
15
16

#include "../layout/layout.h"
#include "../layout/utils.h"
17
#include "../op/builtin.h"
18
19
#include "../op/gemm.h"
#include "../op/gemm_sp.h"
20
#include "../op/operator.h"
21

22
#include "arith/ir_mutator_with_analyzer.h"
23
24
25
26
27
28
29
#include "loop_partition.h"

namespace tvm {
namespace tl {

using namespace tir;

30
31
static Buffer makeBufferWithLayout(const Buffer &buffer, const Layout &layout,
                                   Map<Var, Var> &var_remap) {
32
33
  const auto *ptr_type =
      TVM_TYPE_AS(buffer->data->type_annotation, PointerTypeNode);
34
35
36
37
38
39
40
41
42
43
44
  Type new_type;
  // convert fragments to normal local buffer
  if (ptr_type->storage_scope == "local.fragment") {
    new_type = PointerType(ptr_type->element_type, "local");
  } else {
    new_type = buffer->data->type_annotation;
  }
  Var new_var;
  if (ptr_type->storage_scope == "global") {
    new_var = buffer->data;
  } else {
45
46
47
48
49
50
    if (var_remap.count(buffer->data)) {
      new_var = var_remap[buffer->data];
    } else {
      new_var = Var(buffer->data->name_hint, new_type);
      var_remap.Set(buffer->data, new_var);
    }
51
  }
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
  Array<PrimExpr> layout_shape = layout->OutputShape();
  Array<PrimExpr> output_shape = layout_shape;

  if (ptr_type->storage_scope == "shared" ||
      ptr_type->storage_scope == "shared.dyn") {
    int replicate_extent = 1;
    Array<PrimExpr> buffer_shape = buffer->shape;
    int buffer_extent = 1;
    int layout_extent = 1;
    for (size_t i = 0; i < buffer_shape.size(); i++) {
      auto shape = buffer_shape[i].as<IntImmNode>();
      buffer_extent *= shape->value;
    }
    for (size_t i = 0; i < layout_shape.size(); i++) {
      auto shape = layout_shape[i].as<IntImmNode>();
      layout_extent *= shape->value;
    }
    replicate_extent = buffer_extent / layout_extent;
    if (replicate_extent > 1) {
      output_shape.insert(output_shape.begin(), replicate_extent);
    }
  }
  return Buffer(new_var, buffer->dtype, output_shape, {}, buffer->elem_offset,
                buffer->name, buffer->data_alignment, buffer->offset_factor,
                buffer->buffer_type);
77
78
}

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
// The function `makeBufferWithLayout` creates a new Buffer object based on the
// given buffer and layout. It handles remapping of buffer variables, adjusts
// the storage scope if needed (e.g., from "local.fragment" to "local"), and
// computes the output shape according to the layout. For shared memory buffers,
// it also handles replication if the buffer's extent is larger than the
// layout's extent.
class LayoutRemapRewriter : public arith::IRMutatorWithAnalyzer {
public:
  static Stmt Substitute(Stmt stmt, Map<Buffer, Layout> layout_remap) {
    arith::Analyzer analyzer;
    LayoutRemapRewriter substituter(&analyzer);
    substituter.layout_remap_ = std::move(layout_remap);
    return substituter.VisitStmt(stmt);
  }

private:
  using arith::IRMutatorWithAnalyzer::IRMutatorWithAnalyzer;

  Stmt VisitStmt_(const BlockNode *op) final {
    auto block = Downcast<Block>(arith::IRMutatorWithAnalyzer::VisitStmt_(op));
    if (op->annotations.count(attr::kLayoutMap)) {
      block.CopyOnWrite()->annotations.Set(attr::kLayoutMap, layout_remap_);
    }
    return block;
  }

  Map<Buffer, Layout> layout_remap_;
};
107
108
109
110
111
112
class BufferGemmCollector : public StmtExprVisitor {
public:
  BufferGemmCollector() { Clear(); }

  void Clear() { buffer_var_gemm_.clear(); }

113
  void Collect(const Stmt &stmt) { VisitStmt(stmt); }
114
115
116
117
118

  Array<Var> GetBufferVarGemm() { return buffer_var_gemm_; }

private:
  void VisitStmt_(const EvaluateNode *op) {
119
120
121
122
123
124
    const CallNode *call_node = op->value.as<CallNode>();
    // Value of EvaluateNode may not be a call
    if (!call_node) {
      return;
    }
    auto call = Downcast<Call>(call_node);
125
    if (call->op.same_as(Gemm::Get())) {
126
127
128
129
130
131
132
133
134
135
136
137
      auto srcA_buffer_access_ptr = Downcast<Call>(call->args[0]);
      ICHECK(srcA_buffer_access_ptr->op.same_as(builtin::tvm_access_ptr()));
      auto srcA_buffer_var = Downcast<Var>(srcA_buffer_access_ptr->args[1]);
      auto srcB_buffer_access_ptr = Downcast<Call>(call->args[1]);
      ICHECK(srcB_buffer_access_ptr->op.same_as(builtin::tvm_access_ptr()));
      auto srcB_buffer_var = Downcast<Var>(srcB_buffer_access_ptr->args[1]);
      auto dst_buffer_access_ptr = Downcast<Call>(call->args[2]);
      ICHECK(dst_buffer_access_ptr->op.same_as(builtin::tvm_access_ptr()));
      auto dst_buffer_var = Downcast<Var>(dst_buffer_access_ptr->args[1]);
      buffer_var_gemm_.push_back(srcA_buffer_var);
      buffer_var_gemm_.push_back(srcB_buffer_var);
      buffer_var_gemm_.push_back(dst_buffer_var);
138
    } else if (call->op.same_as(GemmSP::Get())) {
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
      auto srcA_buffer_access_ptr = Downcast<Call>(call->args[0]);
      ICHECK(srcA_buffer_access_ptr->op.same_as(builtin::tvm_access_ptr()));
      auto srcA_buffer_var = Downcast<Var>(srcA_buffer_access_ptr->args[1]);
      auto srcB_buffer_access_ptr = Downcast<Call>(call->args[1]);
      ICHECK(srcB_buffer_access_ptr->op.same_as(builtin::tvm_access_ptr()));
      auto srcB_buffer_var = Downcast<Var>(srcB_buffer_access_ptr->args[1]);
      auto dst_buffer_access_ptr = Downcast<Call>(call->args[2]);
      ICHECK(dst_buffer_access_ptr->op.same_as(builtin::tvm_access_ptr()));
      auto dst_buffer_var = Downcast<Var>(dst_buffer_access_ptr->args[1]);
      buffer_var_gemm_.push_back(srcA_buffer_var);
      buffer_var_gemm_.push_back(srcB_buffer_var);
      buffer_var_gemm_.push_back(dst_buffer_var);
    }
  }

  Array<Var> buffer_var_gemm_;
};

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
/*!
 * \brief A class that rewrites buffer references in a statement based on a
 * given buffer remapping.
 *
 * This class is used to update buffer references in a statement after buffer
 * transformations have been applied. It specifically handles the remapping of
 * padding annotations.
 */
class RemapBufferRewriter : public arith::IRMutatorWithAnalyzer {
public:
  /*!
   * \brief Substitute buffer references in a statement based on a given buffer
   * remapping. \param stmt The statement to rewrite. \param buffer_remap A map
   * from old buffers to new buffers. \return The rewritten statement.
   */
172
  static Stmt Substitute(const Stmt &stmt, Map<Buffer, Buffer> buffer_remap) {
173
174
175
176
177
178
179
180
181
182
    arith::Analyzer analyzer;
    RemapBufferRewriter substituter(&analyzer);
    substituter.buffer_remap_ = std::move(buffer_remap);
    return substituter.VisitStmt(stmt);
  }

private:
  using arith::IRMutatorWithAnalyzer::IRMutatorWithAnalyzer;

  Stmt VisitStmt_(const BlockNode *op) final {
183
    if (op->annotations.count(attr::kSafeValueMap)) {
184
185
186
187
188
189
190
191
192
193
194
      return RewritePaddingMap(op);
    }
    return IRMutatorWithAnalyzer::VisitStmt_(op);
  }

  /*!
   * \brief Rewrite the padding map annotation of a block.
   * \param op The block node to rewrite.
   * \return The rewritten block.
   */
  Stmt RewritePaddingMap(const BlockNode *op) {
195
196
    auto safe_value_map = op->annotations.Get(attr::kSafeValueMap);
    if (!safe_value_map) {
197
198
      LOG(FATAL) << "Padding map annotation is missing";
    }
199
200

    Map<Var, Var> var_remap = CreateVarRemap();
201
202
    Map<Var, PrimExpr> new_safe_value_map = RemapPaddingMap(
        Downcast<Map<Var, PrimExpr>>(safe_value_map.value()), var_remap);
203
204
205

    auto block = Downcast<Block>(IRMutatorWithAnalyzer::VisitStmt_(op));
    auto block_ptr = block.CopyOnWrite();
206
    block_ptr->annotations.Set(attr::kSafeValueMap, new_safe_value_map);
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    return block;
  }

  /*!
   * \brief Create a mapping from old variables to new variables based on buffer
   * remapping. \return A map from old variables to new variables.
   */
  Map<Var, Var> CreateVarRemap() const {
    Map<Var, Var> var_remap;
    for (const auto &[buffer, buffer_remap] : buffer_remap_) {
      var_remap.Set(buffer->data, buffer_remap->data);
    }
    return var_remap;
  }

  /*!
   * \brief Remap the padding map using the variable remapping.
224
   * \param safe_value_map The original padding map.
225
226
227
   * \param var_remap The variable remapping.
   * \return The remapped padding map.
   */
228
  Map<Var, PrimExpr> RemapPaddingMap(const Map<Var, PrimExpr> &safe_value_map,
229
                                     const Map<Var, Var> &var_remap) const {
230
231
    Map<Var, PrimExpr> new_safe_value_map;
    for (const auto &[var, padding] : safe_value_map) {
232
      if (var_remap.count(var)) {
233
        new_safe_value_map.Set(var_remap.at(var), padding);
234
      } else {
235
        new_safe_value_map.Set(var, padding);
236
237
      }
    }
238
    return new_safe_value_map;
239
240
241
242
243
  }

  Map<Buffer, Buffer> buffer_remap_;
};

244
class LowerTileOpPass : arith::IRMutatorWithAnalyzer {
245
public:
246
247
248
249
250
  static PrimFunc Substitute(PrimFunc f) {
    arith::Analyzer analyzer;
    LowerTileOpPass substituter(&analyzer);
    // Trace the buffer map for tvm_access_ptr
    substituter.buffer_map_.insert(f->buffer_map.begin(), f->buffer_map.end());
251
    for (const auto &[_, buffer] : f->buffer_map) {
252
253
254
255
256
      substituter.buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    auto target = f->GetAttr<Target>(tvm::attr::kTarget);
    ICHECK(target.defined()) << "LowerTileOpPass: Require the target attribute";
    substituter.target_ = target.value();
257
258
259
260
261
    // For TMA 1D, we should collect the buffers which are not used in GEMM and
    // do not need swizzle
    BufferGemmCollector collector;
    collector.Collect(f->body);
    substituter.buffer_var_gemm_ = collector.GetBufferVarGemm();
262
    PrimFuncNode *fptr = f.CopyOnWrite();
263
    fptr->body = substituter.VisitStmt(f->body);
264
265
    fptr->body =
        RemapBufferRewriter::Substitute(fptr->body, substituter.buffer_remap_);
266
267
    fptr->body =
        LayoutRemapRewriter::Substitute(fptr->body, substituter.layout_remap_);
268
269
270
271
272
273
274
275
276
    tvm::transform::PassContext ctxt = tvm::transform::PassContext::Current();
    Optional<Bool> opt_disable_tma_lower =
        ctxt->GetConfig(kDisableTMALower, Optional<Bool>());

    if (!opt_disable_tma_lower.value_or(Bool(false))) {
      // @lei: this is a workaround, as if we don't disable tma lower,
      // cp async lowering won't be generated.
      ctxt->config.Set(kDisableTMALower, Bool(!substituter.has_tma_));
    }
277
278
279
    return f;
  }

280
private:
281
282
  using arith::IRMutatorWithAnalyzer::IRMutatorWithAnalyzer;

283
  Stmt VisitStmt_(const BlockNode *op) final {
284
285
286
287
288
289
290
291
292
293
294
295
    // Record the mapping from buffer data var to buffer for later lookup
    for (auto buffer : op->alloc_buffers) {
      buffer_map_.insert({buffer->data, buffer});
    }
    for (auto match_buffer : op->match_buffers) {
      buffer_map_.insert({match_buffer->buffer->data, match_buffer->buffer});
    }
    for (auto buffer : op->alloc_buffers) {
      buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    Map<Var, Layout> vmap;
    if (op->annotations.count(attr::kLayoutMap)) {
296
297
298
      auto layout_map = op->annotations.at(attr::kLayoutMap)
                            .as<Map<Buffer, Layout>>()
                            .value();
299
      for (auto [buffer, layout] : layout_map) {
300
301
        buffer_remap_.Set(buffer,
                          makeBufferWithLayout(buffer, layout, var_remap_));
302
303
304
        layout_map_.Set(buffer, layout);
      }
    }
305
306
307
    // Begin a new workspace collection frame for this block scope
    workspace_stack_.emplace_back();

308
309
310
311
312
313
314
315
    auto block = Downcast<Block>(arith::IRMutatorWithAnalyzer::VisitStmt_(op));
    auto block_ptr = block.CopyOnWrite();
    for (size_t i = 0; i < block->alloc_buffers.size(); i++) {
      auto buffer = block->alloc_buffers[i];
      if (buffer_remap_.count(buffer)) {
        block_ptr->alloc_buffers.Set(i, buffer_remap_[buffer]);
      }
    }
316
317
318
319
320
321
322
    // Attach any workspaces requested within this block to its alloc_buffers
    if (!workspace_stack_.empty()) {
      for (const auto &buffer : workspace_stack_.back()) {
        block_ptr->alloc_buffers.push_back(buffer);
      }
      workspace_stack_.pop_back();
    }
323
324
325
    return block;
  }

326
  int CheckAndGetBufferRowSize(const Buffer &buffer) {
327
    CHECK(buffer->shape.size() >= 2)
328
329
        << "The dimension of Buffer \"" << buffer->name << "\" with shape "
        << buffer->shape << " should be at least 2";
330
331
332
333
334
335

    auto dim = buffer->shape.size();
    auto buffer_row_size = buffer->shape[dim - 1].as<IntImmNode>()->value;
    return buffer_row_size;
  }

336
337
338
339
340
341
  struct AccessPtrResult {
    PrimExpr expr;
    bool rewritten{false};
  };

  AccessPtrResult
342
343
344
  HandleAccessPtrAndOffset(const PrimExpr &access_ptr,
                           const Optional<PrimExpr> &offset = std::nullopt,
                           DataType dtype = DataType::Int(32)) {
345
    AccessPtrResult result{access_ptr, false};
346
347
    // The 2th arg of T.tvm_access_ptr call is offset, we set it to 0 and
    // accumulate it to smem_offset
348
349
350
351
352
353
    CHECK(access_ptr->IsInstance<CallNode>())
        << "Invalid access ptr for permuted layout: " << access_ptr;
    auto access_ptr_call = Downcast<Call>(access_ptr);
    if (access_ptr_call->op.same_as(builtin::tvm_access_ptr())) {
      LOG(FATAL) << "Transformation for tvm_access_ptr is not implemented yet";
    } else if (access_ptr_call->op.same_as(builtin::address_of())) {
354
355
356
357
358
359
360
361
362
363
      Optional<PrimExpr> resolved = ResolveBufferLoad(access_ptr_call->args[0]);
      ICHECK(resolved.defined())
          << "Invalid access op for permuted layout: " << access_ptr;
      PrimExpr load_expr = resolved.value();
      if (!load_expr.same_as(access_ptr_call->args[0])) {
        auto node = access_ptr_call.CopyOnWrite();
        node->args.Set(0, load_expr);
        access_ptr_call = Call(access_ptr_call->dtype, access_ptr_call->op,
                               {load_expr}, access_ptr_call->span);
      }
364
365
      BufferLoad load = Downcast<BufferLoad>(access_ptr_call->args[0]);
      Array<PrimExpr> indices = load->indices;
366
      Array<PrimExpr> old_shape = load->buffer->shape;
367

368
      CHECK_EQ(indices.size(), old_shape.size())
369
370
371
          << "Indices size and shape size must match for general N-dimensional "
             "buffer "
          << "but got indices size: " << indices.size()
372
          << " and shape size: " << old_shape.size();
373
374
375
376

      PrimExpr elem_offset = 0;
      PrimExpr stride = 1;

377
      for (int i = static_cast<int>(old_shape.size()) - 1; i >= 0; --i) {
378
        elem_offset += indices[i] * stride;
379
        stride *= old_shape[i];
380
381
      }

382
383
      PrimExpr smem_offset =
          elem_offset + (offset.defined() ? offset.value() : 0);
384

385
386
387
388
389
390
391
392
      Buffer remap_key = FindRemapBuffer(load->buffer).value_or(load->buffer);
      Optional<Layout> layout = FindLayout(remap_key);
      if (!layout.defined() || !buffer_map_.count(remap_key->data)) {
        return result;
      }
      auto new_buffer = buffer_remap_.count(remap_key)
                            ? buffer_remap_[remap_key]
                            : load->buffer;
393
      auto new_shape = new_buffer->shape;
394

395
      auto buffer_map_iter = buffer_map_.find(Downcast<Var>(remap_key->data));
396
397
398
399
400
401
402
403

      int buffer_row_size = CheckAndGetBufferRowSize(buffer_map_iter->second);
      (void)buffer_row_size;

      // Convert offset to target-dimension, reindex it and convert it back
      Array<PrimExpr> multi_dim_indices;
      PrimExpr remaining_offset = smem_offset;

404
      for (int i = static_cast<int>(old_shape.size()) - 1; i >= 0; --i) {
405
        multi_dim_indices.insert(multi_dim_indices.begin(),
406
407
                                 floormod(remaining_offset, old_shape[i]));
        remaining_offset = floordiv(remaining_offset, old_shape[i]);
408
409
      }

410
      auto forward_indices = layout.value()->Forward(multi_dim_indices);
411
412
      PrimExpr new_offset = 0;
      PrimExpr stride_offset = 1;
413
      for (int i = static_cast<int>(new_shape.size()) - 1; i >= 0; --i) {
414
        new_offset += forward_indices[i] * stride_offset;
415
        stride_offset *= new_shape[i];
416
417
418
419
      }
      new_offset = analyzer_->Simplify(new_offset);

      Array<PrimExpr> new_indices;
420
421
422
423
      for (int i = static_cast<int>(new_shape.size()) - 1; i >= 0; --i) {
        new_indices.insert(new_indices.begin(),
                           floormod(new_offset, new_shape[i]));
        new_offset = floordiv(new_offset, new_shape[i]);
424
425
      }

426
427
428
429
430
431
432
433
      Array<PrimExpr> new_args = {BufferLoad(new_buffer, new_indices)};
      if (buffer_remap_.count(remap_key)) {
        layout_remap_.Set(new_buffer, layout.value());
      }
      result.rewritten = true;
      result.expr = Call(access_ptr_call->dtype, access_ptr_call->op, new_args,
                         access_ptr_call->span);
      return result;
434
435
436
437
    } else {
      LOG(FATAL) << "Invalid access op for permuted layout: " << access_ptr;
    }

438
439
440
441
442
443
444
445
    return result;
  }

  Optional<PrimExpr> ResolveBufferLoad(const PrimExpr &expr) const {
    if (expr->IsInstance<BufferLoadNode>()) {
      return expr;
    }
    if (const auto *var_node = expr.as<VarNode>()) {
446
      Var var = tvm::ffi::GetRef<Var>(var_node);
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
      auto it = let_bindings_.find(var);
      if (it != let_bindings_.end()) {
        return it->second;
      }
    }
    return Optional<PrimExpr>();
  }

  Optional<Buffer> FindRemapBuffer(const Buffer &buffer) const {
    if (buffer_remap_.count(buffer)) {
      return buffer;
    }
    auto it = buffer_map_.find(buffer->data);
    if (it != buffer_map_.end() && buffer_remap_.count(it->second)) {
      return it->second;
    }
    for (const auto &kv : buffer_remap_) {
      if (kv.first->data.same_as(buffer->data)) {
        return kv.first;
      }
      if (kv.first->name == buffer->name) {
        return kv.first;
      }
    }
    return Optional<Buffer>();
  }

  Optional<Layout> FindLayout(const Buffer &buffer) const {
    if (layout_map_.count(buffer)) {
      return layout_map_[buffer];
    }
    auto it = buffer_map_.find(buffer->data);
    if (it != buffer_map_.end() && layout_map_.count(it->second)) {
      return layout_map_[it->second];
    }
    for (const auto &kv : layout_map_) {
      if (kv.first->data.same_as(buffer->data)) {
        return kv.second;
      }
      if (kv.first->name == buffer->name) {
        return kv.second;
      }
    }
    return Optional<Layout>();
491
492
  }

493
  PrimExpr VisitExpr_(const tir::CallNode *op) final {
494
495
496
497
498
    if ((!has_tma_) && (op->op.same_as(tl::tma_load()) ||
                        op->op.same_as(tl::tma_load_im2col()) ||
                        op->op.same_as(tl::tma_store()))) {
      has_tma_ = true;
    }
499
    Array<RelaxExpr> ptx_instructions = {builtin::ptx_ldmatrix(),
500
501
502
503
504
505
                                         builtin::mma_store()};

    if (std::find(ptx_instructions.begin(), ptx_instructions.end(), op->op) ==
        ptx_instructions.end()) {
      auto call = Downcast<Call>(IRMutatorWithAnalyzer::VisitExpr_(op));
      return call;
506
507
508
509
510
511
512
513
514
    } else {
      is_ptx_ = true;
    }
    // Rewrite from/to shared or shared.dyn to/from local
    auto call = Downcast<Call>(IRMutatorWithAnalyzer::VisitExpr_(op));
    if (call->op.same_as(builtin::ptx_ldmatrix())) {
      // form: T.ptx_ldmatrix(..., smem_ptr, smem_offset)
      // smem_ptr: T.tvm_access_ptr(ptype, data, offset, extent, rw_mask)
      // or T.address_of(buffer, offset)
515
      PrimExpr access_ptr = call->args[5];
516
517
518
519
520
      PrimExpr smem_offset = call->args[6];
      Call address_of_call = Downcast<Call>(access_ptr);
      if (!address_of_call->op.same_as(builtin::address_of())) {
        LOG(FATAL) << "Invalid access ptr for permuted layout: " << access_ptr;
      }
521
522
523
524
525
526
527
528
529
530
531
532
      Optional<PrimExpr> resolved = ResolveBufferLoad(address_of_call->args[0]);
      ICHECK(resolved.defined())
          << "Invalid address_of argument for permuted layout: "
          << address_of_call->args[0];
      PrimExpr load_expr = resolved.value();
      if (!load_expr.same_as(address_of_call->args[0])) {
        auto call_node = call.CopyOnWrite();
        call_node->args.Set(5, Call(address_of_call->dtype, address_of_call->op,
                                    {load_expr}, address_of_call->span));
        address_of_call = Downcast<Call>(call->args[5]);
        access_ptr = call->args[5];
      }
533
      BufferLoad load = Downcast<BufferLoad>(address_of_call->args[0]);
534
535
536
      auto new_access_ptr =
          HandleAccessPtrAndOffset(access_ptr, smem_offset, call->dtype);
      if (new_access_ptr.rewritten) {
537
        auto new_call = call.CopyOnWrite();
538
        new_call->args.Set(5, new_access_ptr.expr);
539
540
541
        new_call->args.Set(6, IntImm(smem_offset->dtype, 0));
      }
    } else if (call->op.same_as(builtin::mma_store())) {
542
543
      // because we will directly store result to Buffer instead of calling
      // mma_store now
544
      auto access_ptr = call->args[2];
545
      auto new_access_ptr =
546
          HandleAccessPtrAndOffset(access_ptr, std::nullopt, call->dtype);
547
548
549
550
      if (new_access_ptr.rewritten) {
        auto new_call = call.CopyOnWrite();
        new_call->args.Set(2, new_access_ptr.expr);
      }
551
552
553
554
555
556
557
    } else {
      LOG(FATAL) << "Invalid call node: " << call;
    }
    is_ptx_ = false;
    return call;
  }

558
  PrimExpr VisitExpr_(const BufferLoadNode *op) final {
559
560
561
562
    auto load = Downcast<BufferLoad>(IRMutatorWithAnalyzer::VisitExpr_(op));
    if (is_ptx_) {
      return load;
    }
563
564
565
    auto buffer = load->buffer;
    if (buffer_remap_.count(buffer)) {
      auto new_indices = layout_map_[buffer]->Forward(load->indices);
566
      auto new_buffer = buffer_remap_[load->buffer];
567
      layout_remap_.Set(new_buffer, layout_map_[load->buffer]);
568
      return BufferLoad(new_buffer, new_indices);
569
570
571
572
573
574
    } else if (var_remap_.count(buffer->data)) {
      auto new_buffer = Buffer(
          var_remap_[buffer->data], buffer->dtype, buffer->shape,
          buffer->strides, buffer->elem_offset, buffer->name,
          buffer->data_alignment, buffer->offset_factor, buffer->buffer_type);
      return BufferLoad(new_buffer, load->indices);
575
576
577
578
    }
    return load;
  }

579
  Stmt VisitStmt_(const BufferStoreNode *op) final {
580
    auto store = Downcast<BufferStore>(IRMutatorWithAnalyzer::VisitStmt_(op));
581
582
583
    auto buffer = store->buffer;
    if (buffer_remap_.count(buffer)) {
      auto new_indices = layout_map_[buffer]->Forward(store->indices);
584
      auto new_buffer = buffer_remap_[store->buffer];
585
      layout_remap_.Set(new_buffer, layout_map_[store->buffer]);
586
      return BufferStore(new_buffer, store->value, new_indices);
587
588
589
590
591
592
    } else if (var_remap_.count(buffer->data)) {
      auto new_buffer = Buffer(
          var_remap_[buffer->data], buffer->dtype, buffer->shape,
          buffer->strides, buffer->elem_offset, buffer->name,
          buffer->data_alignment, buffer->offset_factor, buffer->buffer_type);
      return BufferStore(new_buffer, store->value, store->indices);
593
594
595
596
    }
    return store;
  }

597
  PrimExpr VisitExpr_(const VarNode *op) final {
598
599
600
    auto var = Downcast<Var>(IRMutatorWithAnalyzer::VisitExpr_(op));
    if (buffer_data_to_buffer_.count(var)) {
      auto buffer = buffer_data_to_buffer_[var];
601
602
      if (buffer_remap_.count(buffer))
        return buffer_remap_[buffer]->data;
603
604
605
606
    }
    return var;
  }

607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
  Stmt VisitStmt_(const LetStmtNode *op) final {
    PrimExpr value = this->VisitExpr(op->value);
    bool recorded = false;
    if (value->IsInstance<BufferLoadNode>()) {
      let_bindings_[op->var] = value;
      recorded = true;
    }
    if (SideEffect(value) <= CallEffectKind::kPure) {
      analyzer_->Bind(op->var, value);
    }
    Stmt body = this->VisitStmt(op->body);
    if (recorded) {
      let_bindings_.erase(op->var);
    }
    if (value.same_as(op->value) && body.same_as(op->body)) {
622
      return tvm::ffi::GetRef<Stmt>(op);
623
624
625
626
627
628
629
630
    } else {
      auto n = this->CopyOnWrite(op);
      n->value = value;
      n->body = body;
      return Stmt(n);
    }
  }

631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
  /**
   * @brief Handle an Evaluate node, lowering a detected tile operator to TIR.
   *
   * This visit implementation detects whether the Evaluate node represents a
   * tile operator invocation (via ParseOperator). If no tile operator is found
   * or the call targets a global function, the node is delegated to the base
   * visitor.
   *
   * When a tile operator is present, the method:
   * - Builds a workspace-allocation callback that creates a dynamic shared
   * buffer named "workspace" (storage scope "shared.dyn") and returns its write
   *   access pointer.
   * - Determines thread bounds for lowering from the analyzer's constant-int
   *   information for thread_var_; if unavailable, a default range [0,1) is
   * used.
   * - Invokes tile_op->Lower(...) with LowerArgs containing target, thread
   *   bounds, thread variable, the workspace callback, layout and buffer remap
   *   maps, and the list of GEMM-involved buffer vars; the analyzer is passed
   *   through for use during lowering.
   *
   * The lowered statement returned by the operator is then visited by the base
   * IRMutatorWithAnalyzer and that result is returned.
   *
   * @return Stmt The (possibly transformed) statement after lowering or base
   * visitor processing.
   */
657
658
  Stmt VisitStmt_(const EvaluateNode *op) final {
    const CallNode *call = op->value.as<CallNode>();
659
660
661
662
    // Do not analysis the call node to the global function.
    if (call && call->op.as<GlobalVarNode>())
      return Downcast<Evaluate>(IRMutatorWithAnalyzer::VisitStmt_(op));

663
664
    auto tile_op =
        ParseOperator(tvm::ffi::GetRef<Stmt>(op), buffer_data_to_buffer_);
665
    if (!tile_op.defined())
666
      return IRMutatorWithAnalyzer::VisitStmt_(op);
667
    AddWorkspaceCallback callback = [this](int num_elem, DataType dtype) {
668
669
      auto workspace =
          decl_buffer({PrimExpr(num_elem)}, dtype, "workspace", "shared.dyn");
670
671
672
673
674
675
676
677
678
      // Record workspace under the innermost block scope so its lifetime
      // covers the statements that requested it and does not sink into
      // subsequently created inner blocks (e.g., GEMM macro blocks).
      if (!workspace_stack_.empty()) {
        workspace_stack_.back().push_back(workspace);
      } else {
        // Fallback: create a temporary frame (should be rare)
        workspace_stack_.emplace_back(Array<Buffer>{workspace});
      }
679
      return workspace.access_ptr(2); // write
680
681
    };

682
683
684
685
686
687
    Range thread_bounds;

    if (analyzer_->const_int_bound.IsBound(thread_var_->var)) {
      auto const_int_bound = analyzer_->const_int_bound(thread_var_);
      auto min_value = const_int_bound->min_value;
      auto max_value = const_int_bound->max_value;
688
      auto extent = max_value + 1 - min_value;
689
690
      thread_bounds =
          Range::FromMinExtent(IntImm(thread_var_->var.dtype(), min_value),
691
                               IntImm(thread_var_->var.dtype(), extent));
692
693
694
    } else {
      thread_bounds = Range::FromMinExtent(0, 1);
    }
695

696
697
698
699
    auto lowered = tile_op->Lower(
        LowerArgs{target_, thread_bounds, thread_var_->var, callback,
                  layout_map_, buffer_remap_, buffer_var_gemm_},
        analyzer_);
700
701
702
    return IRMutatorWithAnalyzer::VisitStmt(lowered);
  }

703
  Stmt VisitStmt_(const AttrStmtNode *op) final {
704
705
706
707
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      ICHECK_NE(iv->thread_tag.length(), 0U);
      if (iv->thread_tag == "threadIdx.x") {
708
        thread_var_ = iv;
709
710
711
712
713
714
715
716
717
718
        ICHECK(iv->dom->extent.as<IntImmNode>());
        thread_block_size_ = iv->dom->extent.as<IntImmNode>()->value;
      }
    }
    return arith::IRMutatorWithAnalyzer::VisitStmt_(op);
  }

  Target target_;
  Map<Var, Buffer> buffer_data_to_buffer_;
  Map<Buffer, Layout> layout_map_;
719
  Map<Buffer, Layout> layout_remap_;
720
  Map<Buffer, Buffer> buffer_remap_;
721
722
723
724
  // This is a workaround for cpu backend,
  // we need to define a thread_var for the serial loop.
  IterVar thread_var_ = IterVar(Range::FromMinExtent(0, 1), Var("v_thread"),
                                IterVarType::kDataPar);
725
  size_t thread_block_size_ = 0;
726
727
  // Stack of per-Block workspace buffers gathered while visiting children
  std::vector<Array<Buffer>> workspace_stack_;
728
729
730
  // For ptx Node, we need to remap the buffer and indices
  // By access CallNode instead of BufferLoad Node.
  bool is_ptx_{false};
731
732
  std::unordered_map<Var, PrimExpr, ObjectPtrHash, ObjectPtrEqual>
      let_bindings_;
733
734
  // Mapping from data Var of a Buffer to Buffer, for lookup
  std::unordered_map<Var, Buffer, ObjectPtrHash, ObjectPtrEqual> buffer_map_;
735
  Map<Var, Var> var_remap_;
736
  bool has_tma_{false};
737
  Array<Var> buffer_var_gemm_;
738
739
740
741
742
743
744
};

namespace transform {

using namespace tir::transform;

tvm::transform::Pass LowerTileOp() {
745
  auto pass_func = [=](PrimFunc f, const IRModule &m, const PassContext &ctx) {
746
747
748
749
750
    return LowerTileOpPass::Substitute(std::move(f));
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.LowerTileOp", {});
}

751
TVM_FFI_STATIC_INIT_BLOCK() {
752
753
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.LowerTileOp", LowerTileOp);
754
}
755
} // namespace transform
756

757
758
} // namespace tl
} // namespace tvm