lower_tile_op.cc 22.1 KB
Newer Older
1
2
3
4
5
/*!
 * \file lower_tile_op.cc
 * \brief Lower the tile op for further codegen.
 */

6
#include <tvm/ffi/reflection/registry.h>
7
8
9
10
11
12
13
#include <tvm/tir/builtin.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>
#include <tvm/tir/utils.h>

#include "../layout/layout.h"
#include "../layout/utils.h"
14
#include "../op/builtin.h"
15
16
#include "../op/gemm.h"
#include "../op/gemm_sp.h"
17
#include "../op/operator.h"
18

19
#include "arith/ir_mutator_with_analyzer.h"
20
21
22
23
24
25
26
#include "loop_partition.h"

namespace tvm {
namespace tl {

using namespace tir;

27
28
static Buffer makeBufferWithLayout(const Buffer &buffer, const Layout &layout,
                                   Map<Var, Var> &var_remap) {
29
30
  const auto *ptr_type =
      TVM_TYPE_AS(buffer->data->type_annotation, PointerTypeNode);
31
32
33
34
35
36
37
38
39
40
41
  Type new_type;
  // convert fragments to normal local buffer
  if (ptr_type->storage_scope == "local.fragment") {
    new_type = PointerType(ptr_type->element_type, "local");
  } else {
    new_type = buffer->data->type_annotation;
  }
  Var new_var;
  if (ptr_type->storage_scope == "global") {
    new_var = buffer->data;
  } else {
42
43
44
45
46
47
    if (var_remap.count(buffer->data)) {
      new_var = var_remap[buffer->data];
    } else {
      new_var = Var(buffer->data->name_hint, new_type);
      var_remap.Set(buffer->data, new_var);
    }
48
  }
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
  Array<PrimExpr> layout_shape = layout->OutputShape();
  Array<PrimExpr> output_shape = layout_shape;

  if (ptr_type->storage_scope == "shared" ||
      ptr_type->storage_scope == "shared.dyn") {
    int replicate_extent = 1;
    Array<PrimExpr> buffer_shape = buffer->shape;
    int buffer_extent = 1;
    int layout_extent = 1;
    for (size_t i = 0; i < buffer_shape.size(); i++) {
      auto shape = buffer_shape[i].as<IntImmNode>();
      buffer_extent *= shape->value;
    }
    for (size_t i = 0; i < layout_shape.size(); i++) {
      auto shape = layout_shape[i].as<IntImmNode>();
      layout_extent *= shape->value;
    }
    replicate_extent = buffer_extent / layout_extent;
    if (replicate_extent > 1) {
      output_shape.insert(output_shape.begin(), replicate_extent);
    }
  }
  return Buffer(new_var, buffer->dtype, output_shape, {}, buffer->elem_offset,
                buffer->name, buffer->data_alignment, buffer->offset_factor,
                buffer->buffer_type);
74
75
}

76
77
78
79
80
81
82
83
84
85
86
87
88
class BufferGemmCollector : public StmtExprVisitor {
public:
  BufferGemmCollector() { Clear(); }

  void Clear() { buffer_var_gemm_.clear(); }

  void Collect(Stmt stmt) { VisitStmt(stmt); }

  Array<Var> GetBufferVarGemm() { return buffer_var_gemm_; }

private:
  void VisitStmt_(const EvaluateNode *op) {
    auto call = Downcast<Call>(op->value);
89
    if (call->op.same_as(Gemm::Get())) {
90
91
92
93
94
95
96
97
98
99
100
101
      auto srcA_buffer_access_ptr = Downcast<Call>(call->args[0]);
      ICHECK(srcA_buffer_access_ptr->op.same_as(builtin::tvm_access_ptr()));
      auto srcA_buffer_var = Downcast<Var>(srcA_buffer_access_ptr->args[1]);
      auto srcB_buffer_access_ptr = Downcast<Call>(call->args[1]);
      ICHECK(srcB_buffer_access_ptr->op.same_as(builtin::tvm_access_ptr()));
      auto srcB_buffer_var = Downcast<Var>(srcB_buffer_access_ptr->args[1]);
      auto dst_buffer_access_ptr = Downcast<Call>(call->args[2]);
      ICHECK(dst_buffer_access_ptr->op.same_as(builtin::tvm_access_ptr()));
      auto dst_buffer_var = Downcast<Var>(dst_buffer_access_ptr->args[1]);
      buffer_var_gemm_.push_back(srcA_buffer_var);
      buffer_var_gemm_.push_back(srcB_buffer_var);
      buffer_var_gemm_.push_back(dst_buffer_var);
102
    } else if (call->op.same_as(GemmSP::Get())) {
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
      auto srcA_buffer_access_ptr = Downcast<Call>(call->args[0]);
      ICHECK(srcA_buffer_access_ptr->op.same_as(builtin::tvm_access_ptr()));
      auto srcA_buffer_var = Downcast<Var>(srcA_buffer_access_ptr->args[1]);
      auto srcB_buffer_access_ptr = Downcast<Call>(call->args[1]);
      ICHECK(srcB_buffer_access_ptr->op.same_as(builtin::tvm_access_ptr()));
      auto srcB_buffer_var = Downcast<Var>(srcB_buffer_access_ptr->args[1]);
      auto dst_buffer_access_ptr = Downcast<Call>(call->args[2]);
      ICHECK(dst_buffer_access_ptr->op.same_as(builtin::tvm_access_ptr()));
      auto dst_buffer_var = Downcast<Var>(dst_buffer_access_ptr->args[1]);
      buffer_var_gemm_.push_back(srcA_buffer_var);
      buffer_var_gemm_.push_back(srcB_buffer_var);
      buffer_var_gemm_.push_back(dst_buffer_var);
    }
  }

  Array<Var> buffer_var_gemm_;
};

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
/*!
 * \brief A class that rewrites buffer references in a statement based on a
 * given buffer remapping.
 *
 * This class is used to update buffer references in a statement after buffer
 * transformations have been applied. It specifically handles the remapping of
 * padding annotations.
 */
class RemapBufferRewriter : public arith::IRMutatorWithAnalyzer {
public:
  /*!
   * \brief Substitute buffer references in a statement based on a given buffer
   * remapping. \param stmt The statement to rewrite. \param buffer_remap A map
   * from old buffers to new buffers. \return The rewritten statement.
   */
  static Stmt Substitute(Stmt stmt, Map<Buffer, Buffer> buffer_remap) {
    arith::Analyzer analyzer;
    RemapBufferRewriter substituter(&analyzer);
    substituter.buffer_remap_ = std::move(buffer_remap);
    return substituter.VisitStmt(stmt);
  }

private:
  using arith::IRMutatorWithAnalyzer::IRMutatorWithAnalyzer;

  Stmt VisitStmt_(const BlockNode *op) final {
    if (op->annotations.count(attr::kPaddingMap)) {
      return RewritePaddingMap(op);
    }
    return IRMutatorWithAnalyzer::VisitStmt_(op);
  }

  /*!
   * \brief Rewrite the padding map annotation of a block.
   * \param op The block node to rewrite.
   * \return The rewritten block.
   */
  Stmt RewritePaddingMap(const BlockNode *op) {
159
160
161
162
    auto padding_map = op->annotations.Get(attr::kPaddingMap);
    if (!padding_map) {
      LOG(FATAL) << "Padding map annotation is missing";
    }
163
164

    Map<Var, Var> var_remap = CreateVarRemap();
165
166
    Map<Var, PrimExpr> new_padding_map = RemapPaddingMap(
        Downcast<Map<Var, PrimExpr>>(padding_map.value()), var_remap);
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

    auto block = Downcast<Block>(IRMutatorWithAnalyzer::VisitStmt_(op));
    auto block_ptr = block.CopyOnWrite();
    block_ptr->annotations.Set(attr::kPaddingMap, new_padding_map);
    return block;
  }

  /*!
   * \brief Create a mapping from old variables to new variables based on buffer
   * remapping. \return A map from old variables to new variables.
   */
  Map<Var, Var> CreateVarRemap() const {
    Map<Var, Var> var_remap;
    for (const auto &[buffer, buffer_remap] : buffer_remap_) {
      var_remap.Set(buffer->data, buffer_remap->data);
    }
    return var_remap;
  }

  /*!
   * \brief Remap the padding map using the variable remapping.
   * \param padding_map The original padding map.
   * \param var_remap The variable remapping.
   * \return The remapped padding map.
   */
  Map<Var, PrimExpr> RemapPaddingMap(const Map<Var, PrimExpr> &padding_map,
                                     const Map<Var, Var> &var_remap) const {
    Map<Var, PrimExpr> new_padding_map;
    for (const auto &[var, padding] : padding_map) {
      if (var_remap.count(var)) {
        new_padding_map.Set(var_remap.at(var), padding);
      } else {
        new_padding_map.Set(var, padding);
      }
    }
    return new_padding_map;
  }

  Map<Buffer, Buffer> buffer_remap_;
};

208
class LowerTileOpPass : arith::IRMutatorWithAnalyzer {
209
public:
210
211
212
213
214
  static PrimFunc Substitute(PrimFunc f) {
    arith::Analyzer analyzer;
    LowerTileOpPass substituter(&analyzer);
    // Trace the buffer map for tvm_access_ptr
    substituter.buffer_map_.insert(f->buffer_map.begin(), f->buffer_map.end());
215
    for (const auto &[_, buffer] : f->buffer_map) {
216
217
218
219
220
      substituter.buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    auto target = f->GetAttr<Target>(tvm::attr::kTarget);
    ICHECK(target.defined()) << "LowerTileOpPass: Require the target attribute";
    substituter.target_ = target.value();
221
222
223
224
225
    // For TMA 1D, we should collect the buffers which are not used in GEMM and
    // do not need swizzle
    BufferGemmCollector collector;
    collector.Collect(f->body);
    substituter.buffer_var_gemm_ = collector.GetBufferVarGemm();
226
    PrimFuncNode *fptr = f.CopyOnWrite();
227
    fptr->body = substituter.VisitStmt(f->body);
228
229
    fptr->body =
        RemapBufferRewriter::Substitute(fptr->body, substituter.buffer_remap_);
230
231
232
233
234
235
236
237
238
    tvm::transform::PassContext ctxt = tvm::transform::PassContext::Current();
    Optional<Bool> opt_disable_tma_lower =
        ctxt->GetConfig(kDisableTMALower, Optional<Bool>());

    if (!opt_disable_tma_lower.value_or(Bool(false))) {
      // @lei: this is a workaround, as if we don't disable tma lower,
      // cp async lowering won't be generated.
      ctxt->config.Set(kDisableTMALower, Bool(!substituter.has_tma_));
    }
239
240
241
    return f;
  }

242
private:
243
244
  using arith::IRMutatorWithAnalyzer::IRMutatorWithAnalyzer;

245
  Stmt VisitStmt_(const BlockNode *op) final {
246
247
248
249
250
251
252
253
254
255
256
257
    // Record the mapping from buffer data var to buffer for later lookup
    for (auto buffer : op->alloc_buffers) {
      buffer_map_.insert({buffer->data, buffer});
    }
    for (auto match_buffer : op->match_buffers) {
      buffer_map_.insert({match_buffer->buffer->data, match_buffer->buffer});
    }
    for (auto buffer : op->alloc_buffers) {
      buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    Map<Var, Layout> vmap;
    if (op->annotations.count(attr::kLayoutMap)) {
258
259
260
      auto layout_map = op->annotations.at(attr::kLayoutMap)
                            .as<Map<Buffer, Layout>>()
                            .value();
261
      for (auto [buffer, layout] : layout_map) {
262
263
        buffer_remap_.Set(buffer,
                          makeBufferWithLayout(buffer, layout, var_remap_));
264
265
266
267
268
269
270
271
272
273
274
        layout_map_.Set(buffer, layout);
      }
    }
    auto block = Downcast<Block>(arith::IRMutatorWithAnalyzer::VisitStmt_(op));
    auto block_ptr = block.CopyOnWrite();
    for (size_t i = 0; i < block->alloc_buffers.size(); i++) {
      auto buffer = block->alloc_buffers[i];
      if (buffer_remap_.count(buffer)) {
        block_ptr->alloc_buffers.Set(i, buffer_remap_[buffer]);
      }
    }
275
276
    for (const auto &buffer : workspaces_)
      block_ptr->alloc_buffers.push_back(buffer);
277
278
279
280
281
282
283
    workspaces_.clear();
    block_ptr->annotations.erase(attr::kLayoutMap);
    return block;
  }

  int CheckAndGetBufferRowSize(Buffer buffer) {
    CHECK(buffer->shape.size() >= 2)
284
285
        << "The dimension of Buffer \"" << buffer->name << "\" with shape "
        << buffer->shape << " should be at least 2";
286
287
288
289
290
291

    auto dim = buffer->shape.size();
    auto buffer_row_size = buffer->shape[dim - 1].as<IntImmNode>()->value;
    return buffer_row_size;
  }

292
  PrimExpr HandleAccessPtrAndOffset(PrimExpr access_ptr,
293
                                    Optional<PrimExpr> offset = std::nullopt,
294
                                    DataType dtype = DataType::Int(32)) {
295
296
    // The 2th arg of T.tvm_access_ptr call is offset, we set it to 0 and
    // accumulate it to smem_offset
297
298
299
300
301
302
303
304
305
306
307
    CHECK(access_ptr->IsInstance<CallNode>())
        << "Invalid access ptr for permuted layout: " << access_ptr;
    auto access_ptr_call = Downcast<Call>(access_ptr);
    if (access_ptr_call->op.same_as(builtin::tvm_access_ptr())) {
      LOG(FATAL) << "Transformation for tvm_access_ptr is not implemented yet";
    } else if (access_ptr_call->op.same_as(builtin::address_of())) {
      BufferLoad load = Downcast<BufferLoad>(access_ptr_call->args[0]);
      Array<PrimExpr> indices = load->indices;
      Array<PrimExpr> shape = load->buffer->shape;

      CHECK_EQ(indices.size(), shape.size())
308
309
310
311
          << "Indices size and shape size must match for general N-dimensional "
             "buffer "
          << "but got indices size: " << indices.size()
          << " and shape size: " << shape.size();
312
313
314
315
316
317
318
319
320

      PrimExpr elem_offset = 0;
      PrimExpr stride = 1;

      for (int i = static_cast<int>(shape.size()) - 1; i >= 0; --i) {
        elem_offset += indices[i] * stride;
        stride *= shape[i];
      }

321
322
      PrimExpr smem_offset =
          elem_offset + (offset.defined() ? offset.value() : 0);
323
324
325

      auto new_buffer = buffer_remap_[load->buffer];

326
327
      auto buffer_map_iter =
          buffer_map_.find(Downcast<Var>(load->buffer->data));
328
      CHECK(buffer_map_iter != buffer_map_.end())
329
330
          << "The buffer corresponding to data Var " << access_ptr_call->args[0]
          << " is not found";
331
332
333
334
335
336
337
338
339

      int buffer_row_size = CheckAndGetBufferRowSize(buffer_map_iter->second);
      (void)buffer_row_size;

      // Convert offset to target-dimension, reindex it and convert it back
      Array<PrimExpr> multi_dim_indices;
      PrimExpr remaining_offset = smem_offset;

      for (int i = static_cast<int>(shape.size()) - 1; i >= 0; --i) {
340
341
        multi_dim_indices.insert(multi_dim_indices.begin(),
                                 floormod(remaining_offset, shape[i]));
342
343
344
        remaining_offset = floordiv(remaining_offset, shape[i]);
      }

345
346
      auto forward_indices =
          layout_map_[load->buffer]->Forward(multi_dim_indices);
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
      PrimExpr new_offset = 0;
      PrimExpr stride_offset = 1;
      for (int i = static_cast<int>(shape.size()) - 1; i >= 0; --i) {
        new_offset += forward_indices[i] * stride_offset;
        stride_offset *= shape[i];
      }
      new_offset = analyzer_->Simplify(new_offset);

      Array<PrimExpr> new_indices;
      for (int i = static_cast<int>(shape.size()) - 1; i >= 0; --i) {
        new_indices.insert(new_indices.begin(), floormod(new_offset, shape[i]));
        new_offset = floordiv(new_offset, shape[i]);
      }

      auto new_access_ptr = access_ptr_call.CopyOnWrite();
      new_access_ptr->args.Set(0, BufferLoad(new_buffer, new_indices));
    } else {
      LOG(FATAL) << "Invalid access op for permuted layout: " << access_ptr;
    }

    return access_ptr_call;
  }

370
  PrimExpr VisitExpr_(const tir::CallNode *op) final {
371
372
373
374
375
    if ((!has_tma_) && (op->op.same_as(tl::tma_load()) ||
                        op->op.same_as(tl::tma_load_im2col()) ||
                        op->op.same_as(tl::tma_store()))) {
      has_tma_ = true;
    }
376
    Array<RelaxExpr> ptx_instructions = {builtin::ptx_ldmatrix(),
377
378
379
380
381
382
                                         builtin::mma_store()};

    if (std::find(ptx_instructions.begin(), ptx_instructions.end(), op->op) ==
        ptx_instructions.end()) {
      auto call = Downcast<Call>(IRMutatorWithAnalyzer::VisitExpr_(op));
      return call;
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
    } else {
      is_ptx_ = true;
    }
    // Rewrite from/to shared or shared.dyn to/from local
    auto call = Downcast<Call>(IRMutatorWithAnalyzer::VisitExpr_(op));
    if (call->op.same_as(builtin::ptx_ldmatrix())) {
      // form: T.ptx_ldmatrix(..., smem_ptr, smem_offset)
      // smem_ptr: T.tvm_access_ptr(ptype, data, offset, extent, rw_mask)
      // or T.address_of(buffer, offset)
      auto access_ptr = call->args[5];
      PrimExpr smem_offset = call->args[6];
      Call address_of_call = Downcast<Call>(access_ptr);
      if (!address_of_call->op.same_as(builtin::address_of())) {
        LOG(FATAL) << "Invalid access ptr for permuted layout: " << access_ptr;
      }
      BufferLoad load = Downcast<BufferLoad>(address_of_call->args[0]);

      if (buffer_remap_.count(load->buffer)) {
401
402
        auto new_access_ptr =
            HandleAccessPtrAndOffset(access_ptr, smem_offset, call->dtype);
403
404
405
406
407
        auto new_call = call.CopyOnWrite();
        new_call->args.Set(5, new_access_ptr);
        new_call->args.Set(6, IntImm(smem_offset->dtype, 0));
      }
    } else if (call->op.same_as(builtin::mma_store())) {
408
409
      // because we will directly store result to Buffer instead of calling
      // mma_store now
410
      auto access_ptr = call->args[2];
411
      auto new_access_ptr =
412
          HandleAccessPtrAndOffset(access_ptr, std::nullopt, call->dtype);
413
414
415
416
417
418
419
420
421
      auto new_call = call.CopyOnWrite();
      new_call->args.Set(2, new_access_ptr);
    } else {
      LOG(FATAL) << "Invalid call node: " << call;
    }
    is_ptx_ = false;
    return call;
  }

422
  PrimExpr VisitExpr_(const BufferLoadNode *op) final {
423
424
425
426
    auto load = Downcast<BufferLoad>(IRMutatorWithAnalyzer::VisitExpr_(op));
    if (is_ptx_) {
      return load;
    }
427
428
429
    auto buffer = load->buffer;
    if (buffer_remap_.count(buffer)) {
      auto new_indices = layout_map_[buffer]->Forward(load->indices);
430
431
      auto new_buffer = buffer_remap_[load->buffer];
      return BufferLoad(new_buffer, new_indices);
432
433
434
435
436
437
    } else if (var_remap_.count(buffer->data)) {
      auto new_buffer = Buffer(
          var_remap_[buffer->data], buffer->dtype, buffer->shape,
          buffer->strides, buffer->elem_offset, buffer->name,
          buffer->data_alignment, buffer->offset_factor, buffer->buffer_type);
      return BufferLoad(new_buffer, load->indices);
438
439
440
441
    }
    return load;
  }

442
  Stmt VisitStmt_(const BufferStoreNode *op) final {
443
    auto store = Downcast<BufferStore>(IRMutatorWithAnalyzer::VisitStmt_(op));
444
445
446
    auto buffer = store->buffer;
    if (buffer_remap_.count(buffer)) {
      auto new_indices = layout_map_[buffer]->Forward(store->indices);
447
448
      auto new_buffer = buffer_remap_[store->buffer];
      return BufferStore(new_buffer, store->value, new_indices);
449
450
451
452
453
454
    } else if (var_remap_.count(buffer->data)) {
      auto new_buffer = Buffer(
          var_remap_[buffer->data], buffer->dtype, buffer->shape,
          buffer->strides, buffer->elem_offset, buffer->name,
          buffer->data_alignment, buffer->offset_factor, buffer->buffer_type);
      return BufferStore(new_buffer, store->value, store->indices);
455
456
457
458
    }
    return store;
  }

459
  PrimExpr VisitExpr_(const VarNode *op) final {
460
461
462
    auto var = Downcast<Var>(IRMutatorWithAnalyzer::VisitExpr_(op));
    if (buffer_data_to_buffer_.count(var)) {
      auto buffer = buffer_data_to_buffer_[var];
463
464
      if (buffer_remap_.count(buffer))
        return buffer_remap_[buffer]->data;
465
466
467
468
    }
    return var;
  }

469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
  /**
   * @brief Handle an Evaluate node, lowering a detected tile operator to TIR.
   *
   * This visit implementation detects whether the Evaluate node represents a
   * tile operator invocation (via ParseOperator). If no tile operator is found
   * or the call targets a global function, the node is delegated to the base
   * visitor.
   *
   * When a tile operator is present, the method:
   * - Builds a workspace-allocation callback that creates a dynamic shared
   * buffer named "workspace" (storage scope "shared.dyn") and returns its write
   *   access pointer.
   * - Determines thread bounds for lowering from the analyzer's constant-int
   *   information for thread_var_; if unavailable, a default range [0,1) is
   * used.
   * - Invokes tile_op->Lower(...) with LowerArgs containing target, thread
   *   bounds, thread variable, the workspace callback, layout and buffer remap
   *   maps, and the list of GEMM-involved buffer vars; the analyzer is passed
   *   through for use during lowering.
   *
   * The lowered statement returned by the operator is then visited by the base
   * IRMutatorWithAnalyzer and that result is returned.
   *
   * @return Stmt The (possibly transformed) statement after lowering or base
   * visitor processing.
   */
495
  Stmt VisitStmt_(const EvaluateNode *op) final {
496
    // LOG(INFO) << "evaluate node: " << op->value;
497
    const CallNode *call = op->value.as<CallNode>();
498
    // LOG(INFO) << "call: " << call->op;
499
500
501
502
503
    // Do not analysis the call node to the global function.
    if (call && call->op.as<GlobalVarNode>())
      return Downcast<Evaluate>(IRMutatorWithAnalyzer::VisitStmt_(op));

    auto tile_op = ParseOperator(GetRef<Stmt>(op), buffer_data_to_buffer_);
504
    if (!tile_op.defined())
505
      return IRMutatorWithAnalyzer::VisitStmt_(op);
506
    AddWorkspaceCallback callback = [this](int num_elem, DataType dtype) {
507
508
      auto workspace =
          decl_buffer({PrimExpr(num_elem)}, dtype, "workspace", "shared.dyn");
509
      workspaces_.push_back(workspace);
510
      return workspace.access_ptr(2); // write
511
512
    };

513
514
515
516
517
518
    Range thread_bounds;

    if (analyzer_->const_int_bound.IsBound(thread_var_->var)) {
      auto const_int_bound = analyzer_->const_int_bound(thread_var_);
      auto min_value = const_int_bound->min_value;
      auto max_value = const_int_bound->max_value;
519
      auto extent = max_value + 1 - min_value;
520
521
      thread_bounds =
          Range::FromMinExtent(IntImm(thread_var_->var.dtype(), min_value),
522
                               IntImm(thread_var_->var.dtype(), extent));
523
524
525
    } else {
      thread_bounds = Range::FromMinExtent(0, 1);
    }
526

527
528
529
530
    auto lowered = tile_op->Lower(
        LowerArgs{target_, thread_bounds, thread_var_->var, callback,
                  layout_map_, buffer_remap_, buffer_var_gemm_},
        analyzer_);
531
532
533
    return IRMutatorWithAnalyzer::VisitStmt(lowered);
  }

534
  Stmt VisitStmt_(const AttrStmtNode *op) final {
535
536
537
538
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      ICHECK_NE(iv->thread_tag.length(), 0U);
      if (iv->thread_tag == "threadIdx.x") {
539
        thread_var_ = iv;
540
541
542
543
544
545
546
547
548
549
550
        ICHECK(iv->dom->extent.as<IntImmNode>());
        thread_block_size_ = iv->dom->extent.as<IntImmNode>()->value;
      }
    }
    return arith::IRMutatorWithAnalyzer::VisitStmt_(op);
  }

  Target target_;
  Map<Var, Buffer> buffer_data_to_buffer_;
  Map<Buffer, Layout> layout_map_;
  Map<Buffer, Buffer> buffer_remap_;
551
552
553
554
  // This is a workaround for cpu backend,
  // we need to define a thread_var for the serial loop.
  IterVar thread_var_ = IterVar(Range::FromMinExtent(0, 1), Var("v_thread"),
                                IterVarType::kDataPar);
555
556
557
558
559
560
561
  size_t thread_block_size_ = 0;
  Array<Buffer> workspaces_;
  // For ptx Node, we need to remap the buffer and indices
  // By access CallNode instead of BufferLoad Node.
  bool is_ptx_{false};
  // Mapping from data Var of a Buffer to Buffer, for lookup
  std::unordered_map<Var, Buffer, ObjectPtrHash, ObjectPtrEqual> buffer_map_;
562
  Map<Var, Var> var_remap_;
563
  bool has_tma_{false};
564
  Array<Var> buffer_var_gemm_;
565
566
567
568
569
570
571
572
573
574
575
576
577
};

namespace transform {

using namespace tir::transform;

tvm::transform::Pass LowerTileOp() {
  auto pass_func = [=](PrimFunc f, IRModule m, PassContext ctx) {
    return LowerTileOpPass::Substitute(std::move(f));
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.LowerTileOp", {});
}

578
579
580
581
TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.LowerTileOp", LowerTileOp);
});
582
} // namespace transform
583

584
585
} // namespace tl
} // namespace tvm