lower_tile_op.cc 27.4 KB
Newer Older
1
2
3
4
5
/*!
 * \file lower_tile_op.cc
 * \brief Lower the tile op for further codegen.
 */

6
#include <tvm/ffi/reflection/registry.h>
7
#include <tvm/tir/builtin.h>
8
#include <tvm/tir/op.h>
9
10
11
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>
#include <tvm/tir/utils.h>
12
#include <unordered_map>
13
14
15

#include "../layout/layout.h"
#include "../layout/utils.h"
16
#include "../op/builtin.h"
17
18
#include "../op/gemm.h"
#include "../op/gemm_sp.h"
19
#include "../op/operator.h"
20

21
#include "arith/ir_mutator_with_analyzer.h"
22
23
24
25
26
27
28
#include "loop_partition.h"

namespace tvm {
namespace tl {

using namespace tir;

29
30
static Buffer makeBufferWithLayout(const Buffer &buffer, const Layout &layout,
                                   Map<Var, Var> &var_remap) {
31
32
  const auto *ptr_type =
      TVM_TYPE_AS(buffer->data->type_annotation, PointerTypeNode);
33
34
35
36
37
38
39
40
41
42
43
  Type new_type;
  // convert fragments to normal local buffer
  if (ptr_type->storage_scope == "local.fragment") {
    new_type = PointerType(ptr_type->element_type, "local");
  } else {
    new_type = buffer->data->type_annotation;
  }
  Var new_var;
  if (ptr_type->storage_scope == "global") {
    new_var = buffer->data;
  } else {
44
45
46
47
48
49
    if (var_remap.count(buffer->data)) {
      new_var = var_remap[buffer->data];
    } else {
      new_var = Var(buffer->data->name_hint, new_type);
      var_remap.Set(buffer->data, new_var);
    }
50
  }
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
  Array<PrimExpr> layout_shape = layout->OutputShape();
  Array<PrimExpr> output_shape = layout_shape;

  if (ptr_type->storage_scope == "shared" ||
      ptr_type->storage_scope == "shared.dyn") {
    int replicate_extent = 1;
    Array<PrimExpr> buffer_shape = buffer->shape;
    int buffer_extent = 1;
    int layout_extent = 1;
    for (size_t i = 0; i < buffer_shape.size(); i++) {
      auto shape = buffer_shape[i].as<IntImmNode>();
      buffer_extent *= shape->value;
    }
    for (size_t i = 0; i < layout_shape.size(); i++) {
      auto shape = layout_shape[i].as<IntImmNode>();
      layout_extent *= shape->value;
    }
    replicate_extent = buffer_extent / layout_extent;
    if (replicate_extent > 1) {
      output_shape.insert(output_shape.begin(), replicate_extent);
    }
  }
  return Buffer(new_var, buffer->dtype, output_shape, {}, buffer->elem_offset,
                buffer->name, buffer->data_alignment, buffer->offset_factor,
                buffer->buffer_type);
76
77
}

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
// The function `makeBufferWithLayout` creates a new Buffer object based on the
// given buffer and layout. It handles remapping of buffer variables, adjusts
// the storage scope if needed (e.g., from "local.fragment" to "local"), and
// computes the output shape according to the layout. For shared memory buffers,
// it also handles replication if the buffer's extent is larger than the
// layout's extent.
class LayoutRemapRewriter : public arith::IRMutatorWithAnalyzer {
public:
  static Stmt Substitute(Stmt stmt, Map<Buffer, Layout> layout_remap) {
    arith::Analyzer analyzer;
    LayoutRemapRewriter substituter(&analyzer);
    substituter.layout_remap_ = std::move(layout_remap);
    return substituter.VisitStmt(stmt);
  }

private:
  using arith::IRMutatorWithAnalyzer::IRMutatorWithAnalyzer;

  Stmt VisitStmt_(const BlockNode *op) final {
    auto block = Downcast<Block>(arith::IRMutatorWithAnalyzer::VisitStmt_(op));
    if (op->annotations.count(attr::kLayoutMap)) {
      block.CopyOnWrite()->annotations.Set(attr::kLayoutMap, layout_remap_);
    }
    return block;
  }

  Map<Buffer, Layout> layout_remap_;
};
106
107
108
109
110
111
class BufferGemmCollector : public StmtExprVisitor {
public:
  BufferGemmCollector() { Clear(); }

  void Clear() { buffer_var_gemm_.clear(); }

112
  void Collect(const Stmt &stmt) { VisitStmt(stmt); }
113
114
115
116
117

  Array<Var> GetBufferVarGemm() { return buffer_var_gemm_; }

private:
  void VisitStmt_(const EvaluateNode *op) {
118
119
120
121
122
123
    const CallNode *call_node = op->value.as<CallNode>();
    // Value of EvaluateNode may not be a call
    if (!call_node) {
      return;
    }
    auto call = Downcast<Call>(call_node);
124
    if (call->op.same_as(Gemm::Get())) {
125
126
127
128
129
130
131
132
133
134
135
136
      auto srcA_buffer_access_ptr = Downcast<Call>(call->args[0]);
      ICHECK(srcA_buffer_access_ptr->op.same_as(builtin::tvm_access_ptr()));
      auto srcA_buffer_var = Downcast<Var>(srcA_buffer_access_ptr->args[1]);
      auto srcB_buffer_access_ptr = Downcast<Call>(call->args[1]);
      ICHECK(srcB_buffer_access_ptr->op.same_as(builtin::tvm_access_ptr()));
      auto srcB_buffer_var = Downcast<Var>(srcB_buffer_access_ptr->args[1]);
      auto dst_buffer_access_ptr = Downcast<Call>(call->args[2]);
      ICHECK(dst_buffer_access_ptr->op.same_as(builtin::tvm_access_ptr()));
      auto dst_buffer_var = Downcast<Var>(dst_buffer_access_ptr->args[1]);
      buffer_var_gemm_.push_back(srcA_buffer_var);
      buffer_var_gemm_.push_back(srcB_buffer_var);
      buffer_var_gemm_.push_back(dst_buffer_var);
137
    } else if (call->op.same_as(GemmSP::Get())) {
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
      auto srcA_buffer_access_ptr = Downcast<Call>(call->args[0]);
      ICHECK(srcA_buffer_access_ptr->op.same_as(builtin::tvm_access_ptr()));
      auto srcA_buffer_var = Downcast<Var>(srcA_buffer_access_ptr->args[1]);
      auto srcB_buffer_access_ptr = Downcast<Call>(call->args[1]);
      ICHECK(srcB_buffer_access_ptr->op.same_as(builtin::tvm_access_ptr()));
      auto srcB_buffer_var = Downcast<Var>(srcB_buffer_access_ptr->args[1]);
      auto dst_buffer_access_ptr = Downcast<Call>(call->args[2]);
      ICHECK(dst_buffer_access_ptr->op.same_as(builtin::tvm_access_ptr()));
      auto dst_buffer_var = Downcast<Var>(dst_buffer_access_ptr->args[1]);
      buffer_var_gemm_.push_back(srcA_buffer_var);
      buffer_var_gemm_.push_back(srcB_buffer_var);
      buffer_var_gemm_.push_back(dst_buffer_var);
    }
  }

  Array<Var> buffer_var_gemm_;
};

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/*!
 * \brief A class that rewrites buffer references in a statement based on a
 * given buffer remapping.
 *
 * This class is used to update buffer references in a statement after buffer
 * transformations have been applied. It specifically handles the remapping of
 * padding annotations.
 */
class RemapBufferRewriter : public arith::IRMutatorWithAnalyzer {
public:
  /*!
   * \brief Substitute buffer references in a statement based on a given buffer
   * remapping. \param stmt The statement to rewrite. \param buffer_remap A map
   * from old buffers to new buffers. \return The rewritten statement.
   */
171
  static Stmt Substitute(const Stmt &stmt, Map<Buffer, Buffer> buffer_remap) {
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    arith::Analyzer analyzer;
    RemapBufferRewriter substituter(&analyzer);
    substituter.buffer_remap_ = std::move(buffer_remap);
    return substituter.VisitStmt(stmt);
  }

private:
  using arith::IRMutatorWithAnalyzer::IRMutatorWithAnalyzer;

  Stmt VisitStmt_(const BlockNode *op) final {
    if (op->annotations.count(attr::kPaddingMap)) {
      return RewritePaddingMap(op);
    }
    return IRMutatorWithAnalyzer::VisitStmt_(op);
  }

  /*!
   * \brief Rewrite the padding map annotation of a block.
   * \param op The block node to rewrite.
   * \return The rewritten block.
   */
  Stmt RewritePaddingMap(const BlockNode *op) {
194
195
196
197
    auto padding_map = op->annotations.Get(attr::kPaddingMap);
    if (!padding_map) {
      LOG(FATAL) << "Padding map annotation is missing";
    }
198
199

    Map<Var, Var> var_remap = CreateVarRemap();
200
201
    Map<Var, PrimExpr> new_padding_map = RemapPaddingMap(
        Downcast<Map<Var, PrimExpr>>(padding_map.value()), var_remap);
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

    auto block = Downcast<Block>(IRMutatorWithAnalyzer::VisitStmt_(op));
    auto block_ptr = block.CopyOnWrite();
    block_ptr->annotations.Set(attr::kPaddingMap, new_padding_map);
    return block;
  }

  /*!
   * \brief Create a mapping from old variables to new variables based on buffer
   * remapping. \return A map from old variables to new variables.
   */
  Map<Var, Var> CreateVarRemap() const {
    Map<Var, Var> var_remap;
    for (const auto &[buffer, buffer_remap] : buffer_remap_) {
      var_remap.Set(buffer->data, buffer_remap->data);
    }
    return var_remap;
  }

  /*!
   * \brief Remap the padding map using the variable remapping.
   * \param padding_map The original padding map.
   * \param var_remap The variable remapping.
   * \return The remapped padding map.
   */
  Map<Var, PrimExpr> RemapPaddingMap(const Map<Var, PrimExpr> &padding_map,
                                     const Map<Var, Var> &var_remap) const {
    Map<Var, PrimExpr> new_padding_map;
    for (const auto &[var, padding] : padding_map) {
      if (var_remap.count(var)) {
        new_padding_map.Set(var_remap.at(var), padding);
      } else {
        new_padding_map.Set(var, padding);
      }
    }
    return new_padding_map;
  }

  Map<Buffer, Buffer> buffer_remap_;
};

243
class LowerTileOpPass : arith::IRMutatorWithAnalyzer {
244
public:
245
246
247
248
249
  static PrimFunc Substitute(PrimFunc f) {
    arith::Analyzer analyzer;
    LowerTileOpPass substituter(&analyzer);
    // Trace the buffer map for tvm_access_ptr
    substituter.buffer_map_.insert(f->buffer_map.begin(), f->buffer_map.end());
250
    for (const auto &[_, buffer] : f->buffer_map) {
251
252
253
254
255
      substituter.buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    auto target = f->GetAttr<Target>(tvm::attr::kTarget);
    ICHECK(target.defined()) << "LowerTileOpPass: Require the target attribute";
    substituter.target_ = target.value();
256
257
258
259
260
    // For TMA 1D, we should collect the buffers which are not used in GEMM and
    // do not need swizzle
    BufferGemmCollector collector;
    collector.Collect(f->body);
    substituter.buffer_var_gemm_ = collector.GetBufferVarGemm();
261
    PrimFuncNode *fptr = f.CopyOnWrite();
262
    fptr->body = substituter.VisitStmt(f->body);
263
264
    fptr->body =
        RemapBufferRewriter::Substitute(fptr->body, substituter.buffer_remap_);
265
266
    fptr->body =
        LayoutRemapRewriter::Substitute(fptr->body, substituter.layout_remap_);
267
268
269
270
271
272
273
274
275
    tvm::transform::PassContext ctxt = tvm::transform::PassContext::Current();
    Optional<Bool> opt_disable_tma_lower =
        ctxt->GetConfig(kDisableTMALower, Optional<Bool>());

    if (!opt_disable_tma_lower.value_or(Bool(false))) {
      // @lei: this is a workaround, as if we don't disable tma lower,
      // cp async lowering won't be generated.
      ctxt->config.Set(kDisableTMALower, Bool(!substituter.has_tma_));
    }
276
277
278
    return f;
  }

279
private:
280
281
  using arith::IRMutatorWithAnalyzer::IRMutatorWithAnalyzer;

282
  Stmt VisitStmt_(const BlockNode *op) final {
283
284
285
286
287
288
289
290
291
292
293
294
    // Record the mapping from buffer data var to buffer for later lookup
    for (auto buffer : op->alloc_buffers) {
      buffer_map_.insert({buffer->data, buffer});
    }
    for (auto match_buffer : op->match_buffers) {
      buffer_map_.insert({match_buffer->buffer->data, match_buffer->buffer});
    }
    for (auto buffer : op->alloc_buffers) {
      buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    Map<Var, Layout> vmap;
    if (op->annotations.count(attr::kLayoutMap)) {
295
296
297
      auto layout_map = op->annotations.at(attr::kLayoutMap)
                            .as<Map<Buffer, Layout>>()
                            .value();
298
      for (auto [buffer, layout] : layout_map) {
299
300
        buffer_remap_.Set(buffer,
                          makeBufferWithLayout(buffer, layout, var_remap_));
301
302
303
304
305
306
307
308
309
310
311
        layout_map_.Set(buffer, layout);
      }
    }
    auto block = Downcast<Block>(arith::IRMutatorWithAnalyzer::VisitStmt_(op));
    auto block_ptr = block.CopyOnWrite();
    for (size_t i = 0; i < block->alloc_buffers.size(); i++) {
      auto buffer = block->alloc_buffers[i];
      if (buffer_remap_.count(buffer)) {
        block_ptr->alloc_buffers.Set(i, buffer_remap_[buffer]);
      }
    }
312
313
    for (const auto &buffer : workspaces_)
      block_ptr->alloc_buffers.push_back(buffer);
314
315
316
317
    workspaces_.clear();
    return block;
  }

318
  int CheckAndGetBufferRowSize(const Buffer &buffer) {
319
    CHECK(buffer->shape.size() >= 2)
320
321
        << "The dimension of Buffer \"" << buffer->name << "\" with shape "
        << buffer->shape << " should be at least 2";
322
323
324
325
326
327

    auto dim = buffer->shape.size();
    auto buffer_row_size = buffer->shape[dim - 1].as<IntImmNode>()->value;
    return buffer_row_size;
  }

328
329
330
331
332
333
  struct AccessPtrResult {
    PrimExpr expr;
    bool rewritten{false};
  };

  AccessPtrResult
334
335
336
  HandleAccessPtrAndOffset(const PrimExpr &access_ptr,
                           const Optional<PrimExpr> &offset = std::nullopt,
                           DataType dtype = DataType::Int(32)) {
337
    AccessPtrResult result{access_ptr, false};
338
339
    // The 2th arg of T.tvm_access_ptr call is offset, we set it to 0 and
    // accumulate it to smem_offset
340
341
342
343
344
345
    CHECK(access_ptr->IsInstance<CallNode>())
        << "Invalid access ptr for permuted layout: " << access_ptr;
    auto access_ptr_call = Downcast<Call>(access_ptr);
    if (access_ptr_call->op.same_as(builtin::tvm_access_ptr())) {
      LOG(FATAL) << "Transformation for tvm_access_ptr is not implemented yet";
    } else if (access_ptr_call->op.same_as(builtin::address_of())) {
346
347
348
349
350
351
352
353
354
355
      Optional<PrimExpr> resolved = ResolveBufferLoad(access_ptr_call->args[0]);
      ICHECK(resolved.defined())
          << "Invalid access op for permuted layout: " << access_ptr;
      PrimExpr load_expr = resolved.value();
      if (!load_expr.same_as(access_ptr_call->args[0])) {
        auto node = access_ptr_call.CopyOnWrite();
        node->args.Set(0, load_expr);
        access_ptr_call = Call(access_ptr_call->dtype, access_ptr_call->op,
                               {load_expr}, access_ptr_call->span);
      }
356
357
      BufferLoad load = Downcast<BufferLoad>(access_ptr_call->args[0]);
      Array<PrimExpr> indices = load->indices;
358
      Array<PrimExpr> old_shape = load->buffer->shape;
359

360
      CHECK_EQ(indices.size(), old_shape.size())
361
362
363
          << "Indices size and shape size must match for general N-dimensional "
             "buffer "
          << "but got indices size: " << indices.size()
364
          << " and shape size: " << old_shape.size();
365
366
367
368

      PrimExpr elem_offset = 0;
      PrimExpr stride = 1;

369
      for (int i = static_cast<int>(old_shape.size()) - 1; i >= 0; --i) {
370
        elem_offset += indices[i] * stride;
371
        stride *= old_shape[i];
372
373
      }

374
375
      PrimExpr smem_offset =
          elem_offset + (offset.defined() ? offset.value() : 0);
376

377
378
379
380
381
382
383
384
      Buffer remap_key = FindRemapBuffer(load->buffer).value_or(load->buffer);
      Optional<Layout> layout = FindLayout(remap_key);
      if (!layout.defined() || !buffer_map_.count(remap_key->data)) {
        return result;
      }
      auto new_buffer = buffer_remap_.count(remap_key)
                            ? buffer_remap_[remap_key]
                            : load->buffer;
385
      auto new_shape = new_buffer->shape;
386

387
      auto buffer_map_iter = buffer_map_.find(Downcast<Var>(remap_key->data));
388
389
390
391
392
393
394
395

      int buffer_row_size = CheckAndGetBufferRowSize(buffer_map_iter->second);
      (void)buffer_row_size;

      // Convert offset to target-dimension, reindex it and convert it back
      Array<PrimExpr> multi_dim_indices;
      PrimExpr remaining_offset = smem_offset;

396
      for (int i = static_cast<int>(old_shape.size()) - 1; i >= 0; --i) {
397
        multi_dim_indices.insert(multi_dim_indices.begin(),
398
399
                                 floormod(remaining_offset, old_shape[i]));
        remaining_offset = floordiv(remaining_offset, old_shape[i]);
400
401
      }

402
      auto forward_indices = layout.value()->Forward(multi_dim_indices);
403
404
      PrimExpr new_offset = 0;
      PrimExpr stride_offset = 1;
405
      for (int i = static_cast<int>(new_shape.size()) - 1; i >= 0; --i) {
406
        new_offset += forward_indices[i] * stride_offset;
407
        stride_offset *= new_shape[i];
408
409
410
411
      }
      new_offset = analyzer_->Simplify(new_offset);

      Array<PrimExpr> new_indices;
412
413
414
415
      for (int i = static_cast<int>(new_shape.size()) - 1; i >= 0; --i) {
        new_indices.insert(new_indices.begin(),
                           floormod(new_offset, new_shape[i]));
        new_offset = floordiv(new_offset, new_shape[i]);
416
417
      }

418
419
420
421
422
423
424
425
      Array<PrimExpr> new_args = {BufferLoad(new_buffer, new_indices)};
      if (buffer_remap_.count(remap_key)) {
        layout_remap_.Set(new_buffer, layout.value());
      }
      result.rewritten = true;
      result.expr = Call(access_ptr_call->dtype, access_ptr_call->op, new_args,
                         access_ptr_call->span);
      return result;
426
427
428
429
    } else {
      LOG(FATAL) << "Invalid access op for permuted layout: " << access_ptr;
    }

430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
    return result;
  }

  Optional<PrimExpr> ResolveBufferLoad(const PrimExpr &expr) const {
    if (expr->IsInstance<BufferLoadNode>()) {
      return expr;
    }
    if (const auto *var_node = expr.as<VarNode>()) {
      Var var = GetRef<Var>(var_node);
      auto it = let_bindings_.find(var);
      if (it != let_bindings_.end()) {
        return it->second;
      }
    }
    return Optional<PrimExpr>();
  }

  Optional<Buffer> FindRemapBuffer(const Buffer &buffer) const {
    if (buffer_remap_.count(buffer)) {
      return buffer;
    }
    auto it = buffer_map_.find(buffer->data);
    if (it != buffer_map_.end() && buffer_remap_.count(it->second)) {
      return it->second;
    }
    for (const auto &kv : buffer_remap_) {
      if (kv.first->data.same_as(buffer->data)) {
        return kv.first;
      }
      if (kv.first->name == buffer->name) {
        return kv.first;
      }
    }
    return Optional<Buffer>();
  }

  Optional<Layout> FindLayout(const Buffer &buffer) const {
    if (layout_map_.count(buffer)) {
      return layout_map_[buffer];
    }
    auto it = buffer_map_.find(buffer->data);
    if (it != buffer_map_.end() && layout_map_.count(it->second)) {
      return layout_map_[it->second];
    }
    for (const auto &kv : layout_map_) {
      if (kv.first->data.same_as(buffer->data)) {
        return kv.second;
      }
      if (kv.first->name == buffer->name) {
        return kv.second;
      }
    }
    return Optional<Layout>();
483
484
  }

485
  PrimExpr VisitExpr_(const tir::CallNode *op) final {
486
487
488
489
490
    if ((!has_tma_) && (op->op.same_as(tl::tma_load()) ||
                        op->op.same_as(tl::tma_load_im2col()) ||
                        op->op.same_as(tl::tma_store()))) {
      has_tma_ = true;
    }
491
    Array<RelaxExpr> ptx_instructions = {builtin::ptx_ldmatrix(),
492
493
494
495
496
497
                                         builtin::mma_store()};

    if (std::find(ptx_instructions.begin(), ptx_instructions.end(), op->op) ==
        ptx_instructions.end()) {
      auto call = Downcast<Call>(IRMutatorWithAnalyzer::VisitExpr_(op));
      return call;
498
499
500
501
502
503
504
505
506
    } else {
      is_ptx_ = true;
    }
    // Rewrite from/to shared or shared.dyn to/from local
    auto call = Downcast<Call>(IRMutatorWithAnalyzer::VisitExpr_(op));
    if (call->op.same_as(builtin::ptx_ldmatrix())) {
      // form: T.ptx_ldmatrix(..., smem_ptr, smem_offset)
      // smem_ptr: T.tvm_access_ptr(ptype, data, offset, extent, rw_mask)
      // or T.address_of(buffer, offset)
507
      PrimExpr access_ptr = call->args[5];
508
509
510
511
512
      PrimExpr smem_offset = call->args[6];
      Call address_of_call = Downcast<Call>(access_ptr);
      if (!address_of_call->op.same_as(builtin::address_of())) {
        LOG(FATAL) << "Invalid access ptr for permuted layout: " << access_ptr;
      }
513
514
515
516
517
518
519
520
521
522
523
524
      Optional<PrimExpr> resolved = ResolveBufferLoad(address_of_call->args[0]);
      ICHECK(resolved.defined())
          << "Invalid address_of argument for permuted layout: "
          << address_of_call->args[0];
      PrimExpr load_expr = resolved.value();
      if (!load_expr.same_as(address_of_call->args[0])) {
        auto call_node = call.CopyOnWrite();
        call_node->args.Set(5, Call(address_of_call->dtype, address_of_call->op,
                                    {load_expr}, address_of_call->span));
        address_of_call = Downcast<Call>(call->args[5]);
        access_ptr = call->args[5];
      }
525
      BufferLoad load = Downcast<BufferLoad>(address_of_call->args[0]);
526
527
528
      auto new_access_ptr =
          HandleAccessPtrAndOffset(access_ptr, smem_offset, call->dtype);
      if (new_access_ptr.rewritten) {
529
        auto new_call = call.CopyOnWrite();
530
        new_call->args.Set(5, new_access_ptr.expr);
531
532
533
        new_call->args.Set(6, IntImm(smem_offset->dtype, 0));
      }
    } else if (call->op.same_as(builtin::mma_store())) {
534
535
      // because we will directly store result to Buffer instead of calling
      // mma_store now
536
      auto access_ptr = call->args[2];
537
      auto new_access_ptr =
538
          HandleAccessPtrAndOffset(access_ptr, std::nullopt, call->dtype);
539
540
541
542
      if (new_access_ptr.rewritten) {
        auto new_call = call.CopyOnWrite();
        new_call->args.Set(2, new_access_ptr.expr);
      }
543
544
545
546
547
548
549
    } else {
      LOG(FATAL) << "Invalid call node: " << call;
    }
    is_ptx_ = false;
    return call;
  }

550
  PrimExpr VisitExpr_(const BufferLoadNode *op) final {
551
552
553
554
    auto load = Downcast<BufferLoad>(IRMutatorWithAnalyzer::VisitExpr_(op));
    if (is_ptx_) {
      return load;
    }
555
556
557
    auto buffer = load->buffer;
    if (buffer_remap_.count(buffer)) {
      auto new_indices = layout_map_[buffer]->Forward(load->indices);
558
      auto new_buffer = buffer_remap_[load->buffer];
559
      layout_remap_.Set(new_buffer, layout_map_[load->buffer]);
560
      return BufferLoad(new_buffer, new_indices);
561
562
563
564
565
566
    } else if (var_remap_.count(buffer->data)) {
      auto new_buffer = Buffer(
          var_remap_[buffer->data], buffer->dtype, buffer->shape,
          buffer->strides, buffer->elem_offset, buffer->name,
          buffer->data_alignment, buffer->offset_factor, buffer->buffer_type);
      return BufferLoad(new_buffer, load->indices);
567
568
569
570
    }
    return load;
  }

571
  Stmt VisitStmt_(const BufferStoreNode *op) final {
572
    auto store = Downcast<BufferStore>(IRMutatorWithAnalyzer::VisitStmt_(op));
573
574
575
    auto buffer = store->buffer;
    if (buffer_remap_.count(buffer)) {
      auto new_indices = layout_map_[buffer]->Forward(store->indices);
576
      auto new_buffer = buffer_remap_[store->buffer];
577
      layout_remap_.Set(new_buffer, layout_map_[store->buffer]);
578
      return BufferStore(new_buffer, store->value, new_indices);
579
580
581
582
583
584
    } else if (var_remap_.count(buffer->data)) {
      auto new_buffer = Buffer(
          var_remap_[buffer->data], buffer->dtype, buffer->shape,
          buffer->strides, buffer->elem_offset, buffer->name,
          buffer->data_alignment, buffer->offset_factor, buffer->buffer_type);
      return BufferStore(new_buffer, store->value, store->indices);
585
586
587
588
    }
    return store;
  }

589
  PrimExpr VisitExpr_(const VarNode *op) final {
590
591
592
    auto var = Downcast<Var>(IRMutatorWithAnalyzer::VisitExpr_(op));
    if (buffer_data_to_buffer_.count(var)) {
      auto buffer = buffer_data_to_buffer_[var];
593
594
      if (buffer_remap_.count(buffer))
        return buffer_remap_[buffer]->data;
595
596
597
598
    }
    return var;
  }

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
  Stmt VisitStmt_(const LetStmtNode *op) final {
    PrimExpr value = this->VisitExpr(op->value);
    bool recorded = false;
    if (value->IsInstance<BufferLoadNode>()) {
      let_bindings_[op->var] = value;
      recorded = true;
    }
    if (SideEffect(value) <= CallEffectKind::kPure) {
      analyzer_->Bind(op->var, value);
    }
    Stmt body = this->VisitStmt(op->body);
    if (recorded) {
      let_bindings_.erase(op->var);
    }
    if (value.same_as(op->value) && body.same_as(op->body)) {
      return GetRef<Stmt>(op);
    } else {
      auto n = this->CopyOnWrite(op);
      n->value = value;
      n->body = body;
      return Stmt(n);
    }
  }

623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
  /**
   * @brief Handle an Evaluate node, lowering a detected tile operator to TIR.
   *
   * This visit implementation detects whether the Evaluate node represents a
   * tile operator invocation (via ParseOperator). If no tile operator is found
   * or the call targets a global function, the node is delegated to the base
   * visitor.
   *
   * When a tile operator is present, the method:
   * - Builds a workspace-allocation callback that creates a dynamic shared
   * buffer named "workspace" (storage scope "shared.dyn") and returns its write
   *   access pointer.
   * - Determines thread bounds for lowering from the analyzer's constant-int
   *   information for thread_var_; if unavailable, a default range [0,1) is
   * used.
   * - Invokes tile_op->Lower(...) with LowerArgs containing target, thread
   *   bounds, thread variable, the workspace callback, layout and buffer remap
   *   maps, and the list of GEMM-involved buffer vars; the analyzer is passed
   *   through for use during lowering.
   *
   * The lowered statement returned by the operator is then visited by the base
   * IRMutatorWithAnalyzer and that result is returned.
   *
   * @return Stmt The (possibly transformed) statement after lowering or base
   * visitor processing.
   */
649
650
  Stmt VisitStmt_(const EvaluateNode *op) final {
    const CallNode *call = op->value.as<CallNode>();
651
652
653
654
655
    // Do not analysis the call node to the global function.
    if (call && call->op.as<GlobalVarNode>())
      return Downcast<Evaluate>(IRMutatorWithAnalyzer::VisitStmt_(op));

    auto tile_op = ParseOperator(GetRef<Stmt>(op), buffer_data_to_buffer_);
656
    if (!tile_op.defined())
657
      return IRMutatorWithAnalyzer::VisitStmt_(op);
658
    AddWorkspaceCallback callback = [this](int num_elem, DataType dtype) {
659
660
      auto workspace =
          decl_buffer({PrimExpr(num_elem)}, dtype, "workspace", "shared.dyn");
661
      workspaces_.push_back(workspace);
662
      return workspace.access_ptr(2); // write
663
664
    };

665
666
667
668
669
670
    Range thread_bounds;

    if (analyzer_->const_int_bound.IsBound(thread_var_->var)) {
      auto const_int_bound = analyzer_->const_int_bound(thread_var_);
      auto min_value = const_int_bound->min_value;
      auto max_value = const_int_bound->max_value;
671
      auto extent = max_value + 1 - min_value;
672
673
      thread_bounds =
          Range::FromMinExtent(IntImm(thread_var_->var.dtype(), min_value),
674
                               IntImm(thread_var_->var.dtype(), extent));
675
676
677
    } else {
      thread_bounds = Range::FromMinExtent(0, 1);
    }
678

679
680
681
682
    auto lowered = tile_op->Lower(
        LowerArgs{target_, thread_bounds, thread_var_->var, callback,
                  layout_map_, buffer_remap_, buffer_var_gemm_},
        analyzer_);
683
684
685
    return IRMutatorWithAnalyzer::VisitStmt(lowered);
  }

686
  Stmt VisitStmt_(const AttrStmtNode *op) final {
687
688
689
690
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      ICHECK_NE(iv->thread_tag.length(), 0U);
      if (iv->thread_tag == "threadIdx.x") {
691
        thread_var_ = iv;
692
693
694
695
696
697
698
699
700
701
        ICHECK(iv->dom->extent.as<IntImmNode>());
        thread_block_size_ = iv->dom->extent.as<IntImmNode>()->value;
      }
    }
    return arith::IRMutatorWithAnalyzer::VisitStmt_(op);
  }

  Target target_;
  Map<Var, Buffer> buffer_data_to_buffer_;
  Map<Buffer, Layout> layout_map_;
702
  Map<Buffer, Layout> layout_remap_;
703
  Map<Buffer, Buffer> buffer_remap_;
704
705
706
707
  // This is a workaround for cpu backend,
  // we need to define a thread_var for the serial loop.
  IterVar thread_var_ = IterVar(Range::FromMinExtent(0, 1), Var("v_thread"),
                                IterVarType::kDataPar);
708
709
710
711
712
  size_t thread_block_size_ = 0;
  Array<Buffer> workspaces_;
  // For ptx Node, we need to remap the buffer and indices
  // By access CallNode instead of BufferLoad Node.
  bool is_ptx_{false};
713
714
  std::unordered_map<Var, PrimExpr, ObjectPtrHash, ObjectPtrEqual>
      let_bindings_;
715
716
  // Mapping from data Var of a Buffer to Buffer, for lookup
  std::unordered_map<Var, Buffer, ObjectPtrHash, ObjectPtrEqual> buffer_map_;
717
  Map<Var, Var> var_remap_;
718
  bool has_tma_{false};
719
  Array<Var> buffer_var_gemm_;
720
721
722
723
724
725
726
};

namespace transform {

using namespace tir::transform;

tvm::transform::Pass LowerTileOp() {
727
  auto pass_func = [=](PrimFunc f, const IRModule &m, const PassContext &ctx) {
728
729
730
731
732
    return LowerTileOpPass::Substitute(std::move(f));
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.LowerTileOp", {});
}

733
734
735
736
TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.LowerTileOp", LowerTileOp);
});
737
} // namespace transform
738

739
740
} // namespace tl
} // namespace tvm