lower_tile_op.cc 12.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership. The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

/*!
 * \file lower_tile_op.cc
 * \brief Lower the tile op for further codegen.
 */

#include <tvm/tir/builtin.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>
#include <tvm/tir/utils.h>

#include "arith/ir_mutator_with_analyzer.h"
#include "../layout/layout.h"
#include "../layout/utils.h"
#include "../op/op.h"
#include "loop_partition.h"

namespace tvm {
namespace tl {

using namespace tir;

static Buffer makeBufferWithLayout(const Buffer& buffer, const Layout& layout) {
  const auto* ptr_type = TVM_TYPE_AS(buffer->data->type_annotation, PointerTypeNode);
  Type new_type;
  // convert fragments to normal local buffer
  if (ptr_type->storage_scope == "local.fragment") {
    new_type = PointerType(ptr_type->element_type, "local");
  } else {
    new_type = buffer->data->type_annotation;
  }
  Var new_var;
  if (ptr_type->storage_scope == "global") {
    new_var = buffer->data;
  } else {
    new_var = Var(buffer->data->name_hint, new_type);
  }
  return Buffer(new_var, buffer->dtype, layout->OutputShape(), {}, buffer->elem_offset,
                buffer->name, buffer->data_alignment, buffer->offset_factor, buffer->buffer_type);
}

class LowerTileOpPass : arith::IRMutatorWithAnalyzer {
 public:
  static PrimFunc Substitute(PrimFunc f) {
    arith::Analyzer analyzer;
    LowerTileOpPass substituter(&analyzer);
    // Trace the buffer map for tvm_access_ptr
    substituter.buffer_map_.insert(f->buffer_map.begin(), f->buffer_map.end());
    for (const auto& [_, buffer] : f->buffer_map) {
      substituter.buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    auto target = f->GetAttr<Target>(tvm::attr::kTarget);
    ICHECK(target.defined()) << "LowerTileOpPass: Require the target attribute";
    substituter.target_ = target.value();
    PrimFuncNode* fptr = f.CopyOnWrite();
    fptr->body = substituter.VisitStmt(f->body);
    return f;
  }

 private:
  using arith::IRMutatorWithAnalyzer::IRMutatorWithAnalyzer;

  Stmt VisitStmt_(const BlockNode* op) final {
    // Record the mapping from buffer data var to buffer for later lookup
    for (auto buffer : op->alloc_buffers) {
      buffer_map_.insert({buffer->data, buffer});
    }
    for (auto match_buffer : op->match_buffers) {
      buffer_map_.insert({match_buffer->buffer->data, match_buffer->buffer});
    }
    for (auto buffer : op->alloc_buffers) {
      buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    Map<Var, Layout> vmap;
    if (op->annotations.count(attr::kLayoutMap)) {
      auto layout_map = op->annotations.at(attr::kLayoutMap).as<Map<Buffer, Layout>>().value();
      for (auto [buffer, layout] : layout_map) {
        buffer_remap_.Set(buffer, makeBufferWithLayout(buffer, layout));
        layout_map_.Set(buffer, layout);
      }
    }
    auto block = Downcast<Block>(arith::IRMutatorWithAnalyzer::VisitStmt_(op));
    auto block_ptr = block.CopyOnWrite();
    for (size_t i = 0; i < block->alloc_buffers.size(); i++) {
      auto buffer = block->alloc_buffers[i];
      if (buffer_remap_.count(buffer)) {
        block_ptr->alloc_buffers.Set(i, buffer_remap_[buffer]);
      }
    }
    for (const auto& buffer : workspaces_) block_ptr->alloc_buffers.push_back(buffer);
    workspaces_.clear();
    block_ptr->annotations.erase(attr::kLayoutMap);
    return block;
  }

  int CheckAndGetBufferRowSize(Buffer buffer) {
    CHECK(buffer->shape.size() >= 2)
        << "The dimension of Buffer \"" << buffer->name << "\" with shape " << buffer->shape
        << " should be at least 2";

    auto dim = buffer->shape.size();
    auto buffer_row_size = buffer->shape[dim - 1].as<IntImmNode>()->value;
    return buffer_row_size;
  }

  PrimExpr HandleAccessPtrAndOffset(PrimExpr access_ptr, Optional<PrimExpr> offset = NullOpt,
                                    DataType dtype = DataType::Int(32)) {
    // The 2th arg of T.tvm_access_ptr call is offset, we set it to 0 and accumulate it to
    // smem_offset
    CHECK(access_ptr->IsInstance<CallNode>())
        << "Invalid access ptr for permuted layout: " << access_ptr;
    auto access_ptr_call = Downcast<Call>(access_ptr);
    if (access_ptr_call->op.same_as(builtin::tvm_access_ptr())) {
      LOG(FATAL) << "Transformation for tvm_access_ptr is not implemented yet";
    } else if (access_ptr_call->op.same_as(builtin::address_of())) {
      BufferLoad load = Downcast<BufferLoad>(access_ptr_call->args[0]);
      Array<PrimExpr> indices = load->indices;
      Array<PrimExpr> shape = load->buffer->shape;

      CHECK_EQ(indices.size(), shape.size())
          << "Indices size and shape size must match for general N-dimensional buffer "
          << "but got indices size: " << indices.size() << " and shape size: " << shape.size();

      PrimExpr elem_offset = 0;
      PrimExpr stride = 1;

      for (int i = static_cast<int>(shape.size()) - 1; i >= 0; --i) {
        elem_offset += indices[i] * stride;
        stride *= shape[i];
      }

      PrimExpr smem_offset = elem_offset + (offset.defined() ? offset.value() : 0);

      auto new_buffer = buffer_remap_[load->buffer];

      auto buffer_map_iter = buffer_map_.find(Downcast<Var>(load->buffer->data));
      CHECK(buffer_map_iter != buffer_map_.end())
          << "The buffer corresponding to data Var " << access_ptr_call->args[0] << " is not found";

      int buffer_row_size = CheckAndGetBufferRowSize(buffer_map_iter->second);
      (void)buffer_row_size;

      // Convert offset to target-dimension, reindex it and convert it back
      Array<PrimExpr> multi_dim_indices;
      PrimExpr remaining_offset = smem_offset;

      for (int i = static_cast<int>(shape.size()) - 1; i >= 0; --i) {
        multi_dim_indices.insert(multi_dim_indices.begin(), floormod(remaining_offset, shape[i]));
        remaining_offset = floordiv(remaining_offset, shape[i]);
      }

      auto forward_indices = layout_map_[load->buffer]->Forward(multi_dim_indices);
      PrimExpr new_offset = 0;
      PrimExpr stride_offset = 1;
      for (int i = static_cast<int>(shape.size()) - 1; i >= 0; --i) {
        new_offset += forward_indices[i] * stride_offset;
        stride_offset *= shape[i];
      }
      new_offset = analyzer_->Simplify(new_offset);

      Array<PrimExpr> new_indices;
      for (int i = static_cast<int>(shape.size()) - 1; i >= 0; --i) {
        new_indices.insert(new_indices.begin(), floormod(new_offset, shape[i]));
        new_offset = floordiv(new_offset, shape[i]);
      }

      auto new_access_ptr = access_ptr_call.CopyOnWrite();
      new_access_ptr->args.Set(0, BufferLoad(new_buffer, new_indices));
    } else {
      LOG(FATAL) << "Invalid access op for permuted layout: " << access_ptr;
    }

    return access_ptr_call;
  }

  PrimExpr VisitExpr_(const tir::CallNode* op) final {
    if (!op->op.same_as(builtin::ptx_ldmatrix()) && !op->op.same_as(builtin::mma_store())) {
      return Downcast<Call>(IRMutatorWithAnalyzer::VisitExpr_(op));
    } else {
      is_ptx_ = true;
    }
    // Rewrite from/to shared or shared.dyn to/from local
    auto call = Downcast<Call>(IRMutatorWithAnalyzer::VisitExpr_(op));
    if (call->op.same_as(builtin::ptx_ldmatrix())) {
      // form: T.ptx_ldmatrix(..., smem_ptr, smem_offset)
      // smem_ptr: T.tvm_access_ptr(ptype, data, offset, extent, rw_mask)
      // or T.address_of(buffer, offset)
      auto access_ptr = call->args[5];
      PrimExpr smem_offset = call->args[6];
      Call address_of_call = Downcast<Call>(access_ptr);
      if (!address_of_call->op.same_as(builtin::address_of())) {
        LOG(FATAL) << "Invalid access ptr for permuted layout: " << access_ptr;
      }
      BufferLoad load = Downcast<BufferLoad>(address_of_call->args[0]);

      if (buffer_remap_.count(load->buffer)) {
        auto new_access_ptr = HandleAccessPtrAndOffset(access_ptr, smem_offset, call->dtype);
        auto new_call = call.CopyOnWrite();
        new_call->args.Set(5, new_access_ptr);
        new_call->args.Set(6, IntImm(smem_offset->dtype, 0));
      }
    } else if (call->op.same_as(builtin::mma_store())) {
      // because we will directly store result to Buffer instead of calling mma_store now
      auto access_ptr = call->args[2];
      auto new_access_ptr = HandleAccessPtrAndOffset(access_ptr, NullOpt, call->dtype);
      auto new_call = call.CopyOnWrite();
      new_call->args.Set(2, new_access_ptr);
    } else {
      LOG(FATAL) << "Invalid call node: " << call;
    }
    is_ptx_ = false;
    return call;
  }

  PrimExpr VisitExpr_(const BufferLoadNode* op) final {
    auto load = Downcast<BufferLoad>(IRMutatorWithAnalyzer::VisitExpr_(op));
    if (is_ptx_) {
      return load;
    }
    if (buffer_remap_.count(load->buffer)) {
      auto new_indices = layout_map_[load->buffer]->Forward(load->indices);
      auto new_buffer = buffer_remap_[load->buffer];
      return BufferLoad(new_buffer, new_indices);
    }
    return load;
  }

  Stmt VisitStmt_(const BufferStoreNode* op) final {
    auto store = Downcast<BufferStore>(IRMutatorWithAnalyzer::VisitStmt_(op));
    if (buffer_remap_.count(store->buffer)) {
      auto new_indices = layout_map_[store->buffer]->Forward(store->indices);
      auto new_buffer = buffer_remap_[store->buffer];
      return BufferStore(new_buffer, store->value, new_indices);
    }
    return store;
  }

  PrimExpr VisitExpr_(const VarNode* op) final {
    auto var = Downcast<Var>(IRMutatorWithAnalyzer::VisitExpr_(op));
    if (buffer_data_to_buffer_.count(var)) {
      auto buffer = buffer_data_to_buffer_[var];
      if (buffer_remap_.count(buffer)) return buffer_remap_[buffer]->data;
    }
    return var;
  }

  Stmt VisitStmt_(const EvaluateNode* op) final {
    const CallNode* call = op->value.as<CallNode>();
    // Do not analysis the call node to the global function.
    if (call && call->op.as<GlobalVarNode>())
      return Downcast<Evaluate>(IRMutatorWithAnalyzer::VisitStmt_(op));

    auto tile_op = ParseOperator(GetRef<Stmt>(op), buffer_data_to_buffer_);
    if (tile_op == nullptr) return IRMutatorWithAnalyzer::VisitStmt_(op);
    AddWorkspaceCallback callback = [this](int num_elem, DataType dtype) {
      auto workspace = decl_buffer({PrimExpr(num_elem)}, dtype, "workspace", "shared.dyn");
      workspaces_.push_back(workspace);
      return workspace.access_ptr(2);  // write
    };

    auto lowered = tile_op->Lower(
        LowerArgs{target_, thread_block_size_, thread_var_, callback, layout_map_, buffer_remap_},
        analyzer_);
    return IRMutatorWithAnalyzer::VisitStmt(lowered);
  }

  Stmt VisitStmt_(const AttrStmtNode* op) final {
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      ICHECK_NE(iv->thread_tag.length(), 0U);
      if (iv->thread_tag == "threadIdx.x") {
        thread_var_ = iv->var;
        ICHECK(iv->dom->extent.as<IntImmNode>());
        thread_block_size_ = iv->dom->extent.as<IntImmNode>()->value;
      }
    }
    return arith::IRMutatorWithAnalyzer::VisitStmt_(op);
  }

  Target target_;
  Map<Var, Buffer> buffer_data_to_buffer_;
  Map<Buffer, Layout> layout_map_;
  Map<Buffer, Buffer> buffer_remap_;
  Var thread_var_;
  size_t thread_block_size_ = 0;
  Array<Buffer> workspaces_;
  // For ptx Node, we need to remap the buffer and indices
  // By access CallNode instead of BufferLoad Node.
  bool is_ptx_{false};
  // Mapping from data Var of a Buffer to Buffer, for lookup
  std::unordered_map<Var, Buffer, ObjectPtrHash, ObjectPtrEqual> buffer_map_;
};

namespace transform {

using namespace tir::transform;

tvm::transform::Pass LowerTileOp() {
  auto pass_func = [=](PrimFunc f, IRModule m, PassContext ctx) {
    return LowerTileOpPass::Substitute(std::move(f));
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.LowerTileOp", {});
}

TVM_REGISTER_GLOBAL("tl.transform.LowerTileOp").set_body_typed(LowerTileOp);
}  // namespace transform

}  // namespace tl
}  // namespace tvm