reduce.cc 21.1 KB
Newer Older
1
2
/*!
 * \file tl/op/reduce.cc
3
 * \brief Implementation of reduction operators
4
5
6
7
8
9
10
 */

#include "reduce.h"

#include <tvm/tir/builtin.h>
#include <tvm/tir/op.h>
#include <tvm/tir/op_attr_types.h>
11
#include <tvm/tir/stmt_functor.h>
12
13

#include "../layout/utils.h"
14
#include "../op/parallel.h"
15
#include "../target/utils.h"
16
#include "../transform/loop_partition.h"
17
#include "tir/transforms/ir_utils.h"
18
#include "tvm/tir/stmt.h"
19
#include "utils.h"
20
21
22
23
24
25

namespace tvm {
namespace tl {

using namespace tir;

26
// NormalizeToBufferRegion moved to src/op/utils.{h,cc}
27

28
// MakeAccessPtrFromRegion moved to src/op/utils.{h,cc}
29

30
ReduceOp::ReduceOp(Array<PrimExpr> args) {
31
  ObjectPtr<ReduceOpNode> node = tvm::ffi::make_object<ReduceOpNode>();
32
33
34
  // Accept BufferRegion/BufferLoad for src/dst
  node->srcRegion_ = NormalizeToBufferRegion(args[0]);
  node->dstRegion_ = NormalizeToBufferRegion(args[1]);
35
36
  node->src = node->srcRegion_->buffer;
  node->dst = node->dstRegion_->buffer;
37
38
  std::string reduce_type = args[2].as<StringImm>().value()->value;
  node->dim = args[3].as<IntImm>().value()->value;
39
  node->type = ReduceType(reduce_type);
40
41
  node->clear = args[4].as<Bool>().value();
  data_ = std::move(node);
42
43
}

44
TileOperator ReduceOpNode::Clone() const {
45
  auto op = tvm::ffi::make_object<ReduceOpNode>(*this);
46
47
48
49
  return ReduceOp(op);
}

TileOperator CumSumOpNode::Clone() const {
50
  auto op = tvm::ffi::make_object<CumSumOpNode>(*this);
51
52
53
54
  return CumSumOp(op);
}

PrimExpr ReduceOpNode::MakeInitValue() const {
55
56
57
58
59
  auto dst_dtype = dst->dtype;
  auto is_int = dst_dtype.is_int();
  bool is_uint = dst_dtype.is_uint();
  auto bits = dst_dtype.bits();

60
  if (type->isSum()) {
61
    return make_zero(dst->dtype);
62
  } else if (type->isAbsSum()) {
63
    return make_zero(dst->dtype);
64
  } else if (type->isMax()) {
65
66
67
68
69
70
71
    if (is_int) {
      return make_const(dst->dtype, -(1 << (bits - 1)));
    } else if (is_uint) {
      return make_const(dst->dtype, 0);
    } else {
      return make_const(dst->dtype, -INFINITY);
    }
72
  } else if (type->isMin()) {
73
74
75
76
77
78
79
    if (is_int) {
      return make_const(dst->dtype, (1 << (bits - 1)) - 1);
    } else if (is_uint) {
      return make_const(dst->dtype, (1 << bits) - 1);
    } else {
      return make_const(dst->dtype, INFINITY);
    }
80
  } else if (type->isAbsMax()) {
81
    return make_const(dst->dtype, 0);
82
83
84
85
86
87
88
89
90
91
92
93
94
  } else if (type->isBitAnd()) {
    if (is_int) {
      return make_const(dst->dtype, -1);
    } else if (is_uint) {
      return make_const(dst->dtype, (1 << bits) - 1);
    } else {
      // Should not arrive here
      return make_const(dst->dtype, -INFINITY);
    }
  } else if (type->isBitOr()) {
    return make_zero(dst->dtype);
  } else if (type->isBitXor()) {
    return make_zero(dst->dtype);
95
96
  } else {
    LOG(FATAL) << "Unsupported reduce type: " << type->type;
97
    return PrimExpr();
98
99
100
  }
}

101
102
103
PrimExpr ReduceOpNode::MakeReduce(const PrimExpr &lhs,
                                  const PrimExpr &b) const {
  PrimExpr rhs = b;
104
105
106
  if (lhs->dtype != rhs->dtype) {
    rhs = Cast(lhs->dtype, rhs);
  }
107
  if (type->isSum()) {
108
    return lhs + rhs;
109
  } else if (type->isAbsSum()) {
110
    return lhs + Max(rhs, -rhs);
111
  } else if (type->isMax()) {
112
    return Max(lhs, rhs);
113
  } else if (type->isMin()) {
114
    return Min(lhs, rhs);
115
  } else if (type->isAbsMax()) {
116
    return Max(tvm::abs(lhs), tvm::abs(rhs));
117
118
119
120
121
122
  } else if (type->isBitAnd()) {
    return lhs & rhs;
  } else if (type->isBitOr()) {
    return lhs | rhs;
  } else if (type->isBitXor()) {
    return lhs ^ rhs;
123
124
  } else {
    LOG(FATAL) << "Unsupported reduce type: " << type->type;
125
126
127
  }
}

128
std::string ReduceOpNode::MakeCodegenReducer() const {
129
  if (type->isSum()) {
130
    return "tl::SumOp";
131
  } else if (type->isAbsSum()) {
132
    return "tl::SumOp";
133
  } else if (type->isMax()) {
134
    return "tl::MaxOp";
135
  } else if (type->isMin()) {
136
    return "tl::MinOp";
137
  } else if (type->isAbsMax()) {
138
    return "tl::MaxOp";
139
140
141
142
143
144
  } else if (type->isBitAnd()) {
    return "tl::BitAndOp";
  } else if (type->isBitOr()) {
    return "tl::BitOrOp";
  } else if (type->isBitXor()) {
    return "tl::BitXorOp";
145
146
  } else {
    LOG(FATAL) << "Unsupported reduce type: " << type->type;
147
    return "";
148
149
150
  }
}

151
/**
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
 * @brief Lower the Reduce operator to a TIR statement.
 *
 * Lowers a ReduceOpNode operating on fragment-scoped buffers into a sequence of
 * TIR statements implementing: optional initialization, thread-local reduction
 * (unrolled inner loops), inter-thread reduction via a runtime AllReduce call
 * (Hopper-specific `run_hopper` variant when TargetIsHopper(T.target) is true),
 * and an optional accumulation or copy back to the destination buffer when a
 * temporary clear buffer is used.
 *
 * Behavior notes:
 * - Only supports src and dst in "local.fragment" scope; otherwise it checks
 *   and aborts with "Reduce for shared memory not implemented.".
 * - Supports both 1D reductions (scalar output) and reductions along a single
 *   extra dimension; validates layout dimensionality consistency.
 * - If `clear` is set (or for sum/abssum reductions), an initial value is
 *   written to the clear buffer; for non-clearing sum/abssum a duplicate
 *   temporary buffer is allocated and accumulated back into dst after
 * reduction.
 * - Performs iterator compression for local reduction loops using `analyzer`.
 * - Detects parallel thread splitting from the normalized iterator sum and
 *   emits a call to a templated `tl::AllReduce<...>::run` (or `run_hopper`)
 *   via `builtin::call_extern`. For sufficiently large reducing thread counts
 *   (>= 32) a workspace is allocated via T.AddWorkspace and passed to the
 *   AllReduce call.
 * - The final body is wrapped in parallel loops over the destination spatial
 *   dimensions and partitioned by the lowering thread variable. If a temporary
 *   clear buffer is used, it is allocated for the body.
 *
 * @param T Lowering context providing buffer and layout maps, thread bounds,
 *          target information, thread variable, and workspace allocation
 * helper.
 * @param analyzer Analyzer used for iterator compression and arithmetic
 * normalization.
 * @return Stmt Lowered TIR statement implementing the reduction.
186
 */
187
Stmt ReduceOpNode::Lower(const LowerArgs &T, arith::Analyzer *analyzer) const {
188
189
190
191
192
  auto get_buffer = [&](const Buffer &buf) {
    if (T.buffer_remap.count(buf))
      return T.buffer_remap[buf];
    return buf;
  };
193

194
195
  auto src_scope = this->src.scope();
  auto dst_scope = this->dst.scope();
196

197
  if (src_scope == "local.fragment" && dst_scope == "local.fragment") {
198

199
200
201
202
203
204
    Buffer src_buffer = get_buffer(this->src);
    Buffer dst_buffer = get_buffer(this->dst);
    Fragment src_layout = T.layout_map[this->src].as<Fragment>().value();
    Fragment dst_layout = T.layout_map[this->dst].as<Fragment>().value();
    size_t src_dim = src_layout->InputDim();
    size_t dst_dim = dst_layout->InputDim();
205

206
    bool is_1d_reduce = src_dim == dst_dim && dst_dim == 1;
207

208
209
210
211
212
213
    if (is_1d_reduce) {
      ICHECK(is_one(dst_layout->OutputShape().back()))
          << "Reduce for scalar not implemented.";
    } else {
      ICHECK_EQ(src_dim, dst_dim + 1) << "Reduce dimension mismatch.";
    }
214

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
    Array<IterVar> dst_vars;
    for (size_t i = 0; i < dst_dim; ++i) {
      Var var = Var(std::string{char('i' + i)});
      dst_vars.push_back(IterVar(Range(0, dst_layout->InputShape()[i]), var,
                                 IterVarType::kDataPar));
    }

    Array<IterVar> src_vars;
    if (!is_1d_reduce) {
      src_vars = dst_vars;
    }
    Range reduce_dom(0, src_layout->InputShape()[this->dim]);
    IterVar reduce_iv(reduce_dom, Var("rv"), IterVarType::kDataPar);
    src_vars.insert(src_vars.begin() + this->dim, reduce_iv);

    Array<PrimExpr> src_indices = src_layout->Forward(
        src_vars.Map([](const auto &iv) { return PrimExpr(iv->var); }));
    Array<PrimExpr> dst_indices = dst_layout->Forward(
        dst_vars.Map([](const auto &iv) { return PrimExpr(iv->var); }));

    Array<Stmt> stmts;

    bool require_init = this->clear;
    if (this->type->isSum() || this->type->isAbsSum() ||
        this->type->isBitAnd() || this->type->isBitOr() ||
        this->type->isBitXor()) {
      require_init = true;
    }

    Buffer clear_buffer = dst_buffer;
    bool need_duplicate = false;
    if ((this->type->isSum() || this->type->isAbsSum()) && !this->clear) {
      need_duplicate = true;
    } else if (this->type->isBitAnd() && !this->clear) {
      need_duplicate = true;
    } else if ((this->type->isBitOr() || this->type->isBitXor()) &&
               !this->clear) {
      need_duplicate = true;
    }

    if (need_duplicate) {
      // Create a new buffer with same shape and dtype as dst_buffer
      clear_buffer = decl_buffer(dst_buffer->shape, dst_buffer->dtype,
                                 dst_buffer->name + "_clear",
                                 GetPtrStorageScope(dst_buffer->data));
    }
    // make reduce-init stmt
    if (require_init) {
      stmts.push_back(
          BufferStore(clear_buffer, this->MakeInitValue(), dst_indices));
    }

    // make thread-local reduce
    Array<PrimExpr> src_indice_compressed;
    Array<IterVar> src_var_compressed;
    for (size_t i = 0; i < src_layout->OutputDim(); ++i) {
      PrimExpr expr;
      IterVar var;
      std::tie(expr, var) = CompressIterator(
          src_indices[i], src_vars, src_vars[this->dim]->var, analyzer);
      src_indice_compressed.push_back(expr);
      src_var_compressed.push_back(var);
    }

    Stmt reduce_local = BufferStore(
        clear_buffer,
        this->MakeReduce(BufferLoad(clear_buffer, dst_indices),
                         BufferLoad(src_buffer, src_indice_compressed)),
        dst_indices);

    for (int i = static_cast<int>(src_layout->OutputDim()) - 1; i >= 0; --i) {
      reduce_local =
          For(src_var_compressed[i]->var, 0, src_var_compressed[i]->dom->extent,
              ForKind::kUnrolled, reduce_local, std::nullopt,
              {{tir::attr::pragma_unroll_explicit, Bool(false)}});
    }
    stmts.push_back(reduce_local);

    PrimExpr src_thread = src_layout->ForwardThread(
        src_vars.Map([](const auto &iv) { return PrimExpr(iv->var); }), {});
    auto iter_sum =
        arith::NormalizeToIterSum(src_thread, ToVMap(src_vars), analyzer);
    for (const auto &iter_split : iter_sum->args) {
      auto mark = iter_split->source->source.as<Var>();
      ICHECK(mark) << "Not a normalized iterator: " << iter_split->source;
      if (mark.value().same_as(src_vars[this->dim]->var)) {
        auto scale = as_const_int(iter_split->scale);
        auto extent = as_const_int(iter_split->extent);
        ICHECK(scale != nullptr && extent != nullptr);
        if (*extent == 1)
          continue;

        int reducing_threads = (*extent) * (*scale);
        std::stringstream ss;

        auto thread_offset = T.thread_bounds->min;
        if (TargetIsHopper(T.target) || TargetIsSm100(T.target)) {
          auto all_threads = T.thread_bounds->extent;
          ss << "tl::AllReduce<" << this->MakeCodegenReducer() << ", "
             << reducing_threads << ", " << (*scale) << ", " << thread_offset
             << ", " << all_threads << ">::run_hopper";
        } else {
          ss << "tl::AllReduce<" << this->MakeCodegenReducer() << ", "
             << reducing_threads << ", " << (*scale) << ", " << thread_offset
             << ">::run";
        }
        Array<PrimExpr> thread_reduce_args = {
            StringImm(ss.str()), BufferLoad(clear_buffer, dst_indices)};
        if (reducing_threads >= 32) {
          PrimExpr workspace = T.AddWorkspace(
              *as_const_int(T.thread_bounds->extent), clear_buffer->dtype);
          thread_reduce_args.push_back(workspace);
        }
        auto call = Call(clear_buffer->dtype, builtin::call_extern(),
                         thread_reduce_args);
        stmts.push_back(BufferStore(clear_buffer, call, dst_indices));
331
      }
332
    }
333
334
335
336
337
338
339
340
341
342
343
344
345

    if (need_duplicate) {
      PrimExpr src_val = BufferLoad(clear_buffer, dst_indices);
      PrimExpr dst_val = BufferLoad(dst_buffer, dst_indices);
      PrimExpr update;
      if (this->type->isSum() || this->type->isAbsSum()) {
        update = dst_val + src_val;
      } else if (this->type->isBitAnd()) {
        update = this->clear ? src_val : bitwise_and(dst_val, src_val);
      } else if (this->type->isBitOr()) {
        update = bitwise_or(dst_val, src_val);
      } else if (this->type->isBitXor()) {
        update = bitwise_xor(dst_val, src_val);
346
      } else {
347
        LOG(FATAL) << "Unsupported reduce type: " << this->type->type;
348
      }
349
350
351
352
353
354
355
356
357
358
359
360
      stmts.push_back(BufferStore(dst_buffer, update, dst_indices));
    }

    Stmt body = stmts.size() > 1 ? SeqStmt(stmts) : stmts[0];
    for (int i = static_cast<int>(dst_layout->InputDim()) - 1; i >= 0; --i) {
      body = For(dst_vars[i]->var, 0, dst_vars[i]->dom->extent,
                 ForKind::kParallel, body);
    }

    if (dst_layout->InputDim() > 0) {
      body = PartitionLoop(Downcast<For>(body), T.thread_var, analyzer,
                           dst_layout);
361
    } else {
362
363
      PrimExpr guard = (T.thread_var == T.thread_bounds->min);
      body = IfThenElse(guard, body);
364
    }
365
366
367
368
369
370

    if (need_duplicate) {
      body = Allocate(clear_buffer->data, clear_buffer->dtype,
                      clear_buffer->shape, const_true(), body);
    }
    return body;
371
372
  }

373
374
375
  LOG(FATAL) << "Reduce for buffers in scope (" << src_scope << ", "
             << dst_scope << ") is not implemented.";
  return Stmt();
376
377
}

378
379
LayoutMap ReduceOpNode::InferLayout(const LayoutInferArgs &T,
                                    InferLevel level) const {
380
381
  if (level >= InferLevel::kStrict)
    return {};
382

383
  if (src.scope() == "local.fragment" && dst.scope() == "local.fragment" &&
384
      T.layout_map.count(src)) {
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
    auto src_layout = T.layout_map[src].as<Fragment>().value();

    PrimExpr indice_rep_extent = src->shape[dim];
    PrimExpr src_rep_extent = src_layout->ReplicateExtent();
    PrimExpr dest_buffer_rep_extent = indice_rep_extent * src_rep_extent;

    Array<PrimExpr> fwd;
    for (int i = 0; i < static_cast<int>(src->shape.size()); i++) {
      if (i == dim) {
        fwd.push_back(FloorMod(ReplicationPlaceholder(), indice_rep_extent));
      } else if (i < dim) {
        fwd.push_back(InputPlaceholder(i));
      } else if (i > dim) {
        fwd.push_back(InputPlaceholder(i - 1));
      }
    }
401
402
    auto thd = src_layout->ForwardThread(
        fwd, FloorDiv(ReplicationPlaceholder(), indice_rep_extent));
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

    // Ensure the thread count is divisible by the replicate extent.
    // Otherwise, we cannot infer a valid fragment<->fragment layout.
    {
      arith::Analyzer analyzer;
      PrimExpr num_threads = T.thread_bounds->extent;
      // Though the dest_buffer_rep_extent will be compressed at
      // CondenseReplicateVar, we need to check the divisibility here to avoid
      // the issue that the thread count is not divisible by the replicate
      // extent.
      if (!analyzer.CanProve(FloorMod(num_threads, dest_buffer_rep_extent) ==
                             0) &&
          !analyzer.CanProve(FloorMod(dest_buffer_rep_extent, num_threads) ==
                             0)) {
        ICHECK(false) << "ReduceOp fragment layout inference failed: "
                         "num_threads % replicate_extent != 0. "
                      << "This mapping requires the block's thread count to be "
                         "divisible by the "
                      << "replicate extent. "
                      << "Try one of: (1) choose a thread block size divisible "
                         "by replicate_extent; "
                      << "(2) pick a different reduce dimension or adjust the "
                         "source fragment layout; "
                      << "Details: num_threads=" << num_threads
                      << ", replicate_extent=" << indice_rep_extent
                      << ", src=" << src << ", dst=" << dst;
      }
    }

432
    Fragment dst_layout =
433
        Fragment(dst->shape, {}, thd, dest_buffer_rep_extent, std::nullopt)
434
435
            ->CondenseReplicateVar()
            ->BindThreadRange(T.thread_bounds);
436

437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
    if (!T.layout_map.count(dst))
      return {{dst, dst_layout}};
    else {
      // Check if computed layout is compatible with existing: the existing one
      // must strictly contains the computed layout
      auto orig_dst_layout =
          T.layout_map.Get(dst).value().as<Fragment>().value();
      ICHECK(dst_layout->InputDim() == orig_dst_layout->InputDim());
      Array<PrimExpr> indices;
      indices.reserve(dst_layout->InputDim());
      arith::Analyzer inner_analyzer;
      for (int i = 0; i < dst_layout->InputDim(); ++i) {
        auto x = InputPlaceholder(i);
        indices.push_back(x);
        // should be literal - literal = 0, any analyzer will work
        ICHECK(is_zero(inner_analyzer.Simplify(
            dst_layout->InputShape()[i] - orig_dst_layout->InputShape()[i])));
        inner_analyzer.Bind(x, Range(0, dst_layout->InputShape()[i]));
      }

      ICHECK(as_const_int(dst_layout->ReplicateExtent()));
      ICHECK(as_const_int(src_layout->ReplicateExtent()));
      auto dst_rep = *as_const_int(dst_layout->ReplicateExtent());
      auto src_rep = *as_const_int(src_layout->ReplicateExtent());
      if (dst_rep < src_rep ||
          !ProveFragmentContains(orig_dst_layout, dst_layout, indices, indices,
                                 inner_analyzer)) {
        std::ostringstream oss;
        oss << "Layout may conflict with ReduceOp for buffer " << dst << " vs. "
            << src << "\nLHS = " << src_layout->DebugOutput()
            << "\nRHS = " << orig_dst_layout->DebugOutput()
            << "\nYou may need to use a shared memory to transform the "
               "layout";
        throw LayoutConflictException(oss.str());
      }

      if (dst_rep > src_rep) {
        return {{dst, dst_layout}};
      }
    }
477
478
479
480
481
482
  }
  return {};
}

TIR_REGISTER_TL_OP(ReduceOp, reduce)
    .set_num_inputs(4)
483
484
    .set_attr<TCallEffectKind>("TCallEffectKind",
                               Integer(CallEffectKind::kOpaque));
485

486
487
488
489
490
491
492
493
494
495
// Normalize "Buffer" to BufferRegion. Use the shape of the buffer as the
// ranges.
static BufferRegion ConvertBufferToBufferRegion(const Buffer &buf) {
  Array<Range> ranges;
  for (PrimExpr extent : buf->shape) {
    ranges.push_back(Range(IntImm(extent->dtype, 0), extent));
  }
  return BufferRegion(buf, ranges);
}

496
CumSumOp::CumSumOp(Array<PrimExpr> args) {
497
498
499
500
501
  /// CumSum constructor arguments:
  /// - src: input buffer
  /// - dst: output buffer
  /// - dim: dimension to cumsum
  /// - reverse: whether to cumsum in reverse order
502
  CHECK_EQ(args.size(), 4);
503
  ObjectPtr<CumSumOpNode> node = tvm::ffi::make_object<CumSumOpNode>();
504
505
  // node->src = vmap[GetVarFromAccessPtr(args[0])];
  // node->dst = vmap[GetVarFromAccessPtr(args[1])];
506
507
  node->srcRegion_ = NormalizeToBufferRegion(args[0]);
  node->dstRegion_ = NormalizeToBufferRegion(args[1]);
508
509
  node->src = node->srcRegion_->buffer;
  node->dst = node->dstRegion_->buffer;
510
511
  node->dim = args[2].as<IntImm>().value()->value;
  node->reverse = args[3].as<Bool>().value();
512
513
514
515
516
  CHECK_LT(node->dim, static_cast<int>(node->src->shape.size()))
      << "The dim of cumsum should be less than the number of dimensions. Got "
         "dim="
      << node->dim << ", but src has " << node->src->shape.size() << " dims.";

517
  data_ = std::move(node);
518
519
}

520
Stmt CumSumOpNode::Lower(const LowerArgs &T, arith::Analyzer *analyzer) const {
521
522
523
524
525
526
527
528
  if (this->src.scope() == "local.fragment" &&
      this->dst.scope() == "local.fragment") {
    LOG(FATAL) << "CumSum for fragment not implemented, please raise an issue "
                  "if you need this feature.";
  } else if (this->src.scope() == "shared.dyn" ||
             this->src.scope() == "shared") {
    ICHECK(this->dst.scope() == "shared.dyn" || this->dst.scope() == "shared");
    std::stringstream ss;
529
    auto threads = T.thread_bounds->extent;
530
531
    Array<PrimExpr> args;
    int ndim = static_cast<int>(src->shape.size());
532
533
534
535
536

    // Build access pointers from regions locally
    PrimExpr srcPtr = MakeAccessPtrFromRegion(srcRegion_, 1);
    PrimExpr dstPtr = MakeAccessPtrFromRegion(dstRegion_, 2);

537
538
539
540
541
    if (ndim == 1) {
      ICHECK_EQ(dim, 0) << "Cumulative sum over a 1D buffer only supports dim "
                           "= 0.";
      ss << "tl::CumSum1D<" << threads << ", " << (reverse ? "true" : "false")
         << ">::run";
542
      args = {StringImm(ss.str()), srcPtr, dstPtr, src->shape[0]};
543
544
545
    } else if (ndim == 2) {
      ss << "tl::CumSum2D<" << threads << ", " << dim << ", "
         << (reverse ? "true" : "false") << ">::run";
546
547
      args = {StringImm(ss.str()), srcPtr, dstPtr, src->shape[0],
              src->shape[1]};
548
549
550
    } else {
      LOG(FATAL) << "CumSum currently supports only 1D or 2D buffers, got "
                 << ndim << "D.";
551
552
553
554
555
556
557
558
559
560
    }
    return Evaluate(Call(dst->dtype, builtin::call_extern(), args));
  } else {
    ICHECK(false) << "Cannot lower cumsum for " << this->src.scope() << " and "
                  << this->dst.scope();
  }

  return Stmt();
}

561
562
LayoutMap CumSumOpNode::InferLayout(const LayoutInferArgs &T,
                                    InferLevel level) const {
563
564
565
566
567
568
569
  return {};
}

TIR_REGISTER_TL_OP(CumSumOp, cumsum)
    .set_num_inputs(4)
    .set_attr<TCallEffectKind>("TCallEffectKind",
                               Integer(CallEffectKind::kOpaque));
570
571
572
573
574
575
576

TVM_FFI_STATIC_INIT_BLOCK() {
  ReduceOpNode::RegisterReflection();
  CumSumOpNode::RegisterReflection();
  ReduceTypeNode::RegisterReflection();
}

577
} // namespace tl
578
} // namespace tvm