reduce.cc 21.8 KB
Newer Older
1
2
/*!
 * \file tl/op/reduce.cc
3
 * \brief Implementation of reduction operators
4
5
6
7
8
9
10
 */

#include "reduce.h"

#include <tvm/tir/builtin.h>
#include <tvm/tir/op.h>
#include <tvm/tir/op_attr_types.h>
11
#include <tvm/tir/stmt_functor.h>
12
13

#include "../layout/utils.h"
14
#include "../op/parallel.h"
15
#include "../target/utils.h"
16
#include "../transform/loop_partition.h"
17
#include "region.h"
18
#include "tir/transforms/ir_utils.h"
19
20
21
22
23
24

namespace tvm {
namespace tl {

using namespace tir;

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
// Normalize an argument (BufferRegion/BufferLoad/tl.region)
// to BufferRegion so Reduce can uniformly consume regions.
static BufferRegion NormalizeToBufferRegion(const PrimExpr &arg,
                                            const BufferMap &vmap) {
  // Case 1: Already a BufferRegion
  if (arg->IsInstance<BufferRegionNode>()) {
    return Downcast<BufferRegion>(arg);
  }

  // Case 2: BufferLoad — convert indices to ranges (Ramp -> lanes, else
  // extent=1)
  if (const auto *load = arg.as<BufferLoadNode>()) {
    Array<Range> ranges;
    for (const PrimExpr &index : load->indices) {
      if (const auto *ramp = index.as<RampNode>()) {
        ICHECK(ramp->stride.as<IntImmNode>()) << "Ramp stride must be IntImm";
        ICHECK_EQ(ramp->stride.as<IntImmNode>()->value, 1)
            << "Only stride-1 Ramp is supported in region conversion";
        ICHECK(ramp->lanes.as<IntImmNode>())
            << "Scalable vector lanes not supported in region conversion";
        ranges.push_back(Range::FromMinExtent(ramp->base, ramp->lanes));
      } else {
        ranges.push_back(Range::FromMinExtent(index, 1));
      }
    }
    return BufferRegion(load->buffer, ranges);
  }

  // Case 3: Call nodes (only tl.region)
  if (const auto *call = arg.as<CallNode>()) {
    // tl.region(...) — reconstruct via RegionOp
    if (call->op.same_as(RegionOp::Get())) {
      RegionOp region(call->args, vmap);
      return BufferRegion(region->GetBuffer(), region->GetRanges());
    }
  }

  LOG(FATAL) << "Unsupported argument for BufferRegion in reduce: " << arg;
  throw; // Unreachable
}

66
ReduceOp::ReduceOp(Array<PrimExpr> args, BufferMap vmap) {
67
  ObjectPtr<ReduceOpNode> node = tvm::ffi::make_object<ReduceOpNode>();
68
69
70
71
72
  // Accept BufferRegion/BufferLoad/tl.region for src/dst
  node->srcRegion_ = NormalizeToBufferRegion(args[0], vmap);
  node->dstRegion_ = NormalizeToBufferRegion(args[1], vmap);
  node->src = node->srcRegion_->buffer;
  node->dst = node->dstRegion_->buffer;
73
74
  std::string reduce_type = args[2].as<StringImm>().value()->value;
  node->dim = args[3].as<IntImm>().value()->value;
75
  node->type = ReduceType(reduce_type);
76
77
  node->clear = args[4].as<Bool>().value();
  data_ = std::move(node);
78
79
}

80
TileOperator ReduceOpNode::Clone() const {
81
  auto op = tvm::ffi::make_object<ReduceOpNode>(*this);
82
83
84
85
  return ReduceOp(op);
}

TileOperator CumSumOpNode::Clone() const {
86
  auto op = tvm::ffi::make_object<CumSumOpNode>(*this);
87
88
89
90
  return CumSumOp(op);
}

PrimExpr ReduceOpNode::MakeInitValue() const {
91
92
93
94
95
  auto dst_dtype = dst->dtype;
  auto is_int = dst_dtype.is_int();
  bool is_uint = dst_dtype.is_uint();
  auto bits = dst_dtype.bits();

96
  if (type->isSum()) {
97
    return make_zero(dst->dtype);
98
  } else if (type->isAbsSum()) {
99
    return make_zero(dst->dtype);
100
  } else if (type->isMax()) {
101
102
103
104
105
106
107
    if (is_int) {
      return make_const(dst->dtype, -(1 << (bits - 1)));
    } else if (is_uint) {
      return make_const(dst->dtype, 0);
    } else {
      return make_const(dst->dtype, -INFINITY);
    }
108
  } else if (type->isMin()) {
109
110
111
112
113
114
115
    if (is_int) {
      return make_const(dst->dtype, (1 << (bits - 1)) - 1);
    } else if (is_uint) {
      return make_const(dst->dtype, (1 << bits) - 1);
    } else {
      return make_const(dst->dtype, INFINITY);
    }
116
  } else if (type->isAbsMax()) {
117
    return make_const(dst->dtype, 0);
118
119
120
121
122
123
124
125
126
127
128
129
130
  } else if (type->isBitAnd()) {
    if (is_int) {
      return make_const(dst->dtype, -1);
    } else if (is_uint) {
      return make_const(dst->dtype, (1 << bits) - 1);
    } else {
      // Should not arrive here
      return make_const(dst->dtype, -INFINITY);
    }
  } else if (type->isBitOr()) {
    return make_zero(dst->dtype);
  } else if (type->isBitXor()) {
    return make_zero(dst->dtype);
131
132
  } else {
    LOG(FATAL) << "Unsupported reduce type: " << type->type;
133
    return PrimExpr();
134
135
136
  }
}

137
138
139
PrimExpr ReduceOpNode::MakeReduce(const PrimExpr &lhs,
                                  const PrimExpr &b) const {
  PrimExpr rhs = b;
140
141
142
  if (lhs->dtype != rhs->dtype) {
    rhs = Cast(lhs->dtype, rhs);
  }
143
  if (type->isSum()) {
144
    return lhs + rhs;
145
  } else if (type->isAbsSum()) {
146
    return lhs + Max(rhs, -rhs);
147
  } else if (type->isMax()) {
148
    return Max(lhs, rhs);
149
  } else if (type->isMin()) {
150
    return Min(lhs, rhs);
151
  } else if (type->isAbsMax()) {
152
    return Max(tvm::abs(lhs), tvm::abs(rhs));
153
154
155
156
157
158
  } else if (type->isBitAnd()) {
    return lhs & rhs;
  } else if (type->isBitOr()) {
    return lhs | rhs;
  } else if (type->isBitXor()) {
    return lhs ^ rhs;
159
160
  } else {
    LOG(FATAL) << "Unsupported reduce type: " << type->type;
161
162
163
  }
}

164
std::string ReduceOpNode::MakeCodegenReducer() const {
165
  if (type->isSum()) {
166
    return "tl::SumOp";
167
  } else if (type->isAbsSum()) {
168
    return "tl::SumOp";
169
  } else if (type->isMax()) {
170
    return "tl::MaxOp";
171
  } else if (type->isMin()) {
172
    return "tl::MinOp";
173
  } else if (type->isAbsMax()) {
174
    return "tl::MaxOp";
175
176
177
178
179
180
  } else if (type->isBitAnd()) {
    return "tl::BitAndOp";
  } else if (type->isBitOr()) {
    return "tl::BitOrOp";
  } else if (type->isBitXor()) {
    return "tl::BitXorOp";
181
182
  } else {
    LOG(FATAL) << "Unsupported reduce type: " << type->type;
183
    return "";
184
185
186
  }
}

187
/**
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
 * @brief Lower the Reduce operator to a TIR statement.
 *
 * Lowers a ReduceOpNode operating on fragment-scoped buffers into a sequence of
 * TIR statements implementing: optional initialization, thread-local reduction
 * (unrolled inner loops), inter-thread reduction via a runtime AllReduce call
 * (Hopper-specific `run_hopper` variant when TargetIsHopper(T.target) is true),
 * and an optional accumulation or copy back to the destination buffer when a
 * temporary clear buffer is used.
 *
 * Behavior notes:
 * - Only supports src and dst in "local.fragment" scope; otherwise it checks
 *   and aborts with "Reduce for shared memory not implemented.".
 * - Supports both 1D reductions (scalar output) and reductions along a single
 *   extra dimension; validates layout dimensionality consistency.
 * - If `clear` is set (or for sum/abssum reductions), an initial value is
 *   written to the clear buffer; for non-clearing sum/abssum a duplicate
 *   temporary buffer is allocated and accumulated back into dst after
 * reduction.
 * - Performs iterator compression for local reduction loops using `analyzer`.
 * - Detects parallel thread splitting from the normalized iterator sum and
 *   emits a call to a templated `tl::AllReduce<...>::run` (or `run_hopper`)
 *   via `builtin::call_extern`. For sufficiently large reducing thread counts
 *   (>= 32) a workspace is allocated via T.AddWorkspace and passed to the
 *   AllReduce call.
 * - The final body is wrapped in parallel loops over the destination spatial
 *   dimensions and partitioned by the lowering thread variable. If a temporary
 *   clear buffer is used, it is allocated for the body.
 *
 * @param T Lowering context providing buffer and layout maps, thread bounds,
 *          target information, thread variable, and workspace allocation
 * helper.
 * @param analyzer Analyzer used for iterator compression and arithmetic
 * normalization.
 * @return Stmt Lowered TIR statement implementing the reduction.
222
 */
223
Stmt ReduceOpNode::Lower(const LowerArgs &T, arith::Analyzer *analyzer) const {
224
225
226
227
228
  auto get_buffer = [&](const Buffer &buf) {
    if (T.buffer_remap.count(buf))
      return T.buffer_remap[buf];
    return buf;
  };
229

230
231
  auto src_scope = this->src.scope();
  auto dst_scope = this->dst.scope();
232

233
234
235
236
237
238
239
  if (src_scope == "local.fragment" && dst_scope == "local.fragment") {
    Buffer src_buffer = get_buffer(this->src);
    Buffer dst_buffer = get_buffer(this->dst);
    Fragment src_layout = T.layout_map[this->src].as<Fragment>().value();
    Fragment dst_layout = T.layout_map[this->dst].as<Fragment>().value();
    size_t src_dim = src_layout->InputDim();
    size_t dst_dim = dst_layout->InputDim();
240

241
    bool is_1d_reduce = src_dim == dst_dim && dst_dim == 1;
242

243
244
245
246
247
248
    if (is_1d_reduce) {
      ICHECK(is_one(dst_layout->OutputShape().back()))
          << "Reduce for scalar not implemented.";
    } else {
      ICHECK_EQ(src_dim, dst_dim + 1) << "Reduce dimension mismatch.";
    }
249

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
    Array<IterVar> dst_vars;
    for (size_t i = 0; i < dst_dim; ++i) {
      Var var = Var(std::string{char('i' + i)});
      dst_vars.push_back(IterVar(Range(0, dst_layout->InputShape()[i]), var,
                                 IterVarType::kDataPar));
    }

    Array<IterVar> src_vars;
    if (!is_1d_reduce) {
      src_vars = dst_vars;
    }
    Range reduce_dom(0, src_layout->InputShape()[this->dim]);
    IterVar reduce_iv(reduce_dom, Var("rv"), IterVarType::kDataPar);
    src_vars.insert(src_vars.begin() + this->dim, reduce_iv);

    Array<PrimExpr> src_indices = src_layout->Forward(
        src_vars.Map([](const auto &iv) { return PrimExpr(iv->var); }));
    Array<PrimExpr> dst_indices = dst_layout->Forward(
        dst_vars.Map([](const auto &iv) { return PrimExpr(iv->var); }));

    Array<Stmt> stmts;

    bool require_init = this->clear;
    if (this->type->isSum() || this->type->isAbsSum() ||
        this->type->isBitAnd() || this->type->isBitOr() ||
        this->type->isBitXor()) {
      require_init = true;
    }

    Buffer clear_buffer = dst_buffer;
    bool need_duplicate = false;
    if ((this->type->isSum() || this->type->isAbsSum()) && !this->clear) {
      need_duplicate = true;
    } else if (this->type->isBitAnd() && !this->clear) {
      need_duplicate = true;
    } else if ((this->type->isBitOr() || this->type->isBitXor()) &&
               !this->clear) {
      need_duplicate = true;
    }

    if (need_duplicate) {
      // Create a new buffer with same shape and dtype as dst_buffer
      clear_buffer = decl_buffer(dst_buffer->shape, dst_buffer->dtype,
                                 dst_buffer->name + "_clear",
                                 GetPtrStorageScope(dst_buffer->data));
    }
    // make reduce-init stmt
    if (require_init) {
      stmts.push_back(
          BufferStore(clear_buffer, this->MakeInitValue(), dst_indices));
    }

    // make thread-local reduce
    Array<PrimExpr> src_indice_compressed;
    Array<IterVar> src_var_compressed;
    for (size_t i = 0; i < src_layout->OutputDim(); ++i) {
      PrimExpr expr;
      IterVar var;
      std::tie(expr, var) = CompressIterator(
          src_indices[i], src_vars, src_vars[this->dim]->var, analyzer);
      src_indice_compressed.push_back(expr);
      src_var_compressed.push_back(var);
    }

    Stmt reduce_local = BufferStore(
        clear_buffer,
        this->MakeReduce(BufferLoad(clear_buffer, dst_indices),
                         BufferLoad(src_buffer, src_indice_compressed)),
        dst_indices);

    for (int i = static_cast<int>(src_layout->OutputDim()) - 1; i >= 0; --i) {
      reduce_local =
          For(src_var_compressed[i]->var, 0, src_var_compressed[i]->dom->extent,
              ForKind::kUnrolled, reduce_local, std::nullopt,
              {{tir::attr::pragma_unroll_explicit, Bool(false)}});
    }
    stmts.push_back(reduce_local);

    PrimExpr src_thread = src_layout->ForwardThread(
        src_vars.Map([](const auto &iv) { return PrimExpr(iv->var); }), {});
    auto iter_sum =
        arith::NormalizeToIterSum(src_thread, ToVMap(src_vars), analyzer);
    for (const auto &iter_split : iter_sum->args) {
      auto mark = iter_split->source->source.as<Var>();
      ICHECK(mark) << "Not a normalized iterator: " << iter_split->source;
      if (mark.value().same_as(src_vars[this->dim]->var)) {
        auto scale = as_const_int(iter_split->scale);
        auto extent = as_const_int(iter_split->extent);
        ICHECK(scale != nullptr && extent != nullptr);
        if (*extent == 1)
          continue;

        int reducing_threads = (*extent) * (*scale);
        std::stringstream ss;

        auto thread_offset = T.thread_bounds->min;
        if (TargetIsHopper(T.target) || TargetIsSm100(T.target)) {
          auto all_threads = T.thread_bounds->extent;
          ss << "tl::AllReduce<" << this->MakeCodegenReducer() << ", "
             << reducing_threads << ", " << (*scale) << ", " << thread_offset
             << ", " << all_threads << ">::run_hopper";
        } else {
          ss << "tl::AllReduce<" << this->MakeCodegenReducer() << ", "
             << reducing_threads << ", " << (*scale) << ", " << thread_offset
             << ">::run";
        }
        Array<PrimExpr> thread_reduce_args = {
            StringImm(ss.str()), BufferLoad(clear_buffer, dst_indices)};
        if (reducing_threads >= 32) {
          PrimExpr workspace = T.AddWorkspace(
              *as_const_int(T.thread_bounds->extent), clear_buffer->dtype);
          thread_reduce_args.push_back(workspace);
        }
        auto call = Call(clear_buffer->dtype, builtin::call_extern(),
                         thread_reduce_args);
        stmts.push_back(BufferStore(clear_buffer, call, dst_indices));
366
      }
367
    }
368
369
370
371
372
373
374
375
376
377
378
379
380

    if (need_duplicate) {
      PrimExpr src_val = BufferLoad(clear_buffer, dst_indices);
      PrimExpr dst_val = BufferLoad(dst_buffer, dst_indices);
      PrimExpr update;
      if (this->type->isSum() || this->type->isAbsSum()) {
        update = dst_val + src_val;
      } else if (this->type->isBitAnd()) {
        update = this->clear ? src_val : bitwise_and(dst_val, src_val);
      } else if (this->type->isBitOr()) {
        update = bitwise_or(dst_val, src_val);
      } else if (this->type->isBitXor()) {
        update = bitwise_xor(dst_val, src_val);
381
      } else {
382
        LOG(FATAL) << "Unsupported reduce type: " << this->type->type;
383
      }
384
385
386
387
388
389
390
391
392
393
394
395
      stmts.push_back(BufferStore(dst_buffer, update, dst_indices));
    }

    Stmt body = stmts.size() > 1 ? SeqStmt(stmts) : stmts[0];
    for (int i = static_cast<int>(dst_layout->InputDim()) - 1; i >= 0; --i) {
      body = For(dst_vars[i]->var, 0, dst_vars[i]->dom->extent,
                 ForKind::kParallel, body);
    }

    if (dst_layout->InputDim() > 0) {
      body = PartitionLoop(Downcast<For>(body), T.thread_var, analyzer,
                           dst_layout);
396
    } else {
397
398
      PrimExpr guard = (T.thread_var == T.thread_bounds->min);
      body = IfThenElse(guard, body);
399
    }
400
401
402
403
404
405

    if (need_duplicate) {
      body = Allocate(clear_buffer->data, clear_buffer->dtype,
                      clear_buffer->shape, const_true(), body);
    }
    return body;
406
407
  }

408
409
410
  LOG(FATAL) << "Reduce for buffers in scope (" << src_scope << ", "
             << dst_scope << ") is not implemented.";
  return Stmt();
411
412
}

413
414
LayoutMap ReduceOpNode::InferLayout(const LayoutInferArgs &T,
                                    InferLevel level) const {
415
416
  if (level >= InferLevel::kStrict)
    return {};
417

418
  if (src.scope() == "local.fragment" && dst.scope() == "local.fragment" &&
419
      T.layout_map.count(src)) {
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
    auto src_layout = T.layout_map[src].as<Fragment>().value();

    PrimExpr indice_rep_extent = src->shape[dim];
    PrimExpr src_rep_extent = src_layout->ReplicateExtent();
    PrimExpr dest_buffer_rep_extent = indice_rep_extent * src_rep_extent;

    Array<PrimExpr> fwd;
    for (int i = 0; i < static_cast<int>(src->shape.size()); i++) {
      if (i == dim) {
        fwd.push_back(FloorMod(ReplicationPlaceholder(), indice_rep_extent));
      } else if (i < dim) {
        fwd.push_back(InputPlaceholder(i));
      } else if (i > dim) {
        fwd.push_back(InputPlaceholder(i - 1));
      }
    }
436
437
    auto thd = src_layout->ForwardThread(
        fwd, FloorDiv(ReplicationPlaceholder(), indice_rep_extent));
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466

    // Ensure the thread count is divisible by the replicate extent.
    // Otherwise, we cannot infer a valid fragment<->fragment layout.
    {
      arith::Analyzer analyzer;
      PrimExpr num_threads = T.thread_bounds->extent;
      // Though the dest_buffer_rep_extent will be compressed at
      // CondenseReplicateVar, we need to check the divisibility here to avoid
      // the issue that the thread count is not divisible by the replicate
      // extent.
      if (!analyzer.CanProve(FloorMod(num_threads, dest_buffer_rep_extent) ==
                             0) &&
          !analyzer.CanProve(FloorMod(dest_buffer_rep_extent, num_threads) ==
                             0)) {
        ICHECK(false) << "ReduceOp fragment layout inference failed: "
                         "num_threads % replicate_extent != 0. "
                      << "This mapping requires the block's thread count to be "
                         "divisible by the "
                      << "replicate extent. "
                      << "Try one of: (1) choose a thread block size divisible "
                         "by replicate_extent; "
                      << "(2) pick a different reduce dimension or adjust the "
                         "source fragment layout; "
                      << "Details: num_threads=" << num_threads
                      << ", replicate_extent=" << indice_rep_extent
                      << ", src=" << src << ", dst=" << dst;
      }
    }

467
    Fragment dst_layout =
468
        Fragment(dst->shape, {}, thd, dest_buffer_rep_extent, std::nullopt)
469
470
            ->CondenseReplicateVar()
            ->BindThreadRange(T.thread_bounds);
471

472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
    if (!T.layout_map.count(dst))
      return {{dst, dst_layout}};
    else {
      // Check if computed layout is compatible with existing: the existing one
      // must strictly contains the computed layout
      auto orig_dst_layout =
          T.layout_map.Get(dst).value().as<Fragment>().value();
      ICHECK(dst_layout->InputDim() == orig_dst_layout->InputDim());
      Array<PrimExpr> indices;
      indices.reserve(dst_layout->InputDim());
      arith::Analyzer inner_analyzer;
      for (int i = 0; i < dst_layout->InputDim(); ++i) {
        auto x = InputPlaceholder(i);
        indices.push_back(x);
        // should be literal - literal = 0, any analyzer will work
        ICHECK(is_zero(inner_analyzer.Simplify(
            dst_layout->InputShape()[i] - orig_dst_layout->InputShape()[i])));
        inner_analyzer.Bind(x, Range(0, dst_layout->InputShape()[i]));
      }

      ICHECK(as_const_int(dst_layout->ReplicateExtent()));
      ICHECK(as_const_int(src_layout->ReplicateExtent()));
      auto dst_rep = *as_const_int(dst_layout->ReplicateExtent());
      auto src_rep = *as_const_int(src_layout->ReplicateExtent());
      if (dst_rep < src_rep ||
          !ProveFragmentContains(orig_dst_layout, dst_layout, indices, indices,
                                 inner_analyzer)) {
        std::ostringstream oss;
        oss << "Layout may conflict with ReduceOp for buffer " << dst << " vs. "
            << src << "\nLHS = " << src_layout->DebugOutput()
            << "\nRHS = " << orig_dst_layout->DebugOutput()
            << "\nYou may need to use a shared memory to transform the "
               "layout";
        throw LayoutConflictException(oss.str());
      }

      if (dst_rep > src_rep) {
        return {{dst, dst_layout}};
      }
    }
512
513
514
515
516
517
  }
  return {};
}

TIR_REGISTER_TL_OP(ReduceOp, reduce)
    .set_num_inputs(4)
518
519
    .set_attr<TCallEffectKind>("TCallEffectKind",
                               Integer(CallEffectKind::kOpaque));
520

521
CumSumOp::CumSumOp(Array<PrimExpr> args, BufferMap vmap) {
522
523
524
525
526
  /// CumSum constructor arguments:
  /// - src: input buffer
  /// - dst: output buffer
  /// - dim: dimension to cumsum
  /// - reverse: whether to cumsum in reverse order
527
  CHECK_EQ(args.size(), 4);
528
  ObjectPtr<CumSumOpNode> node = tvm::ffi::make_object<CumSumOpNode>();
529
530
531
532
533
534
  node->src = vmap[GetVarFromAccessPtr(args[0])];
  node->dst = vmap[GetVarFromAccessPtr(args[1])];
  node->dim = args[2].as<IntImm>().value()->value;
  node->reverse = args[3].as<Bool>().value();
  CHECK_LT(node->dim, static_cast<int>(node->src->shape.size()));
  data_ = std::move(node);
535
536
}

537
Stmt CumSumOpNode::Lower(const LowerArgs &T, arith::Analyzer *analyzer) const {
538
539
540
541
542
543
544
545
  if (this->src.scope() == "local.fragment" &&
      this->dst.scope() == "local.fragment") {
    LOG(FATAL) << "CumSum for fragment not implemented, please raise an issue "
                  "if you need this feature.";
  } else if (this->src.scope() == "shared.dyn" ||
             this->src.scope() == "shared") {
    ICHECK(this->dst.scope() == "shared.dyn" || this->dst.scope() == "shared");
    std::stringstream ss;
546
    auto threads = T.thread_bounds->extent;
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
    Array<PrimExpr> args;
    int ndim = static_cast<int>(src->shape.size());
    if (ndim == 1) {
      ICHECK_EQ(dim, 0) << "Cumulative sum over a 1D buffer only supports dim "
                           "= 0.";
      ss << "tl::CumSum1D<" << threads << ", " << (reverse ? "true" : "false")
         << ">::run";
      args = {StringImm(ss.str()), src.access_ptr(1), dst.access_ptr(3),
              src->shape[0]};
    } else if (ndim == 2) {
      ss << "tl::CumSum2D<" << threads << ", " << dim << ", "
         << (reverse ? "true" : "false") << ">::run";
      args = {StringImm(ss.str()), src.access_ptr(1), dst.access_ptr(3),
              src->shape[0], src->shape[1]};
    } else {
      LOG(FATAL) << "CumSum currently supports only 1D or 2D buffers, got "
                 << ndim << "D.";
564
565
566
567
568
569
570
571
572
573
    }
    return Evaluate(Call(dst->dtype, builtin::call_extern(), args));
  } else {
    ICHECK(false) << "Cannot lower cumsum for " << this->src.scope() << " and "
                  << this->dst.scope();
  }

  return Stmt();
}

574
575
LayoutMap CumSumOpNode::InferLayout(const LayoutInferArgs &T,
                                    InferLevel level) const {
576
577
578
579
580
581
582
  return {};
}

TIR_REGISTER_TL_OP(CumSumOp, cumsum)
    .set_num_inputs(4)
    .set_attr<TCallEffectKind>("TCallEffectKind",
                               Integer(CallEffectKind::kOpaque));
583
584
585
586
587
588
589

TVM_FFI_STATIC_INIT_BLOCK() {
  ReduceOpNode::RegisterReflection();
  CumSumOpNode::RegisterReflection();
  ReduceTypeNode::RegisterReflection();
}

590
} // namespace tl
591
} // namespace tvm