reduce.cc 18.7 KB
Newer Older
1
2
/*!
 * \file tl/op/reduce.cc
3
 * \brief Implementation of reduction operators
4
5
6
7
8
9
10
 */

#include "reduce.h"

#include <tvm/tir/builtin.h>
#include <tvm/tir/op.h>
#include <tvm/tir/op_attr_types.h>
11
#include <tvm/tir/stmt_functor.h>
12
13

#include "../layout/utils.h"
14
#include "../op/parallel.h"
15
#include "../target/utils.h"
16
#include "../transform/loop_partition.h"
17
#include "tir/transforms/ir_utils.h"
18
19
20
21
22
23
24

namespace tvm {
namespace tl {

using namespace tir;

ReduceOp::ReduceOp(Array<PrimExpr> args, BufferMap vmap) {
25
  ObjectPtr<ReduceOpNode> node = tvm::ffi::make_object<ReduceOpNode>();
26
27
28
29
  node->src = vmap[GetVarFromAccessPtr(args[0])];
  node->dst = vmap[GetVarFromAccessPtr(args[1])];
  std::string reduce_type = args[2].as<StringImm>().value()->value;
  node->dim = args[3].as<IntImm>().value()->value;
30
  node->type = ReduceType(reduce_type);
31
32
  node->clear = args[4].as<Bool>().value();
  data_ = std::move(node);
33
34
}

35
TileOperator ReduceOpNode::Clone() const {
36
  auto op = tvm::ffi::make_object<ReduceOpNode>(*this);
37
38
39
40
  return ReduceOp(op);
}

TileOperator CumSumOpNode::Clone() const {
41
  auto op = tvm::ffi::make_object<CumSumOpNode>(*this);
42
43
44
45
  return CumSumOp(op);
}

PrimExpr ReduceOpNode::MakeInitValue() const {
46
47
48
49
50
  auto dst_dtype = dst->dtype;
  auto is_int = dst_dtype.is_int();
  bool is_uint = dst_dtype.is_uint();
  auto bits = dst_dtype.bits();

51
  if (type->isSum()) {
52
    return make_zero(dst->dtype);
53
  } else if (type->isAbsSum()) {
54
    return make_zero(dst->dtype);
55
  } else if (type->isMax()) {
56
57
58
59
60
61
62
    if (is_int) {
      return make_const(dst->dtype, -(1 << (bits - 1)));
    } else if (is_uint) {
      return make_const(dst->dtype, 0);
    } else {
      return make_const(dst->dtype, -INFINITY);
    }
63
  } else if (type->isMin()) {
64
65
66
67
68
69
70
    if (is_int) {
      return make_const(dst->dtype, (1 << (bits - 1)) - 1);
    } else if (is_uint) {
      return make_const(dst->dtype, (1 << bits) - 1);
    } else {
      return make_const(dst->dtype, INFINITY);
    }
71
  } else if (type->isAbsMax()) {
72
    return make_const(dst->dtype, 0);
73
74
75
76
77
78
79
80
81
82
83
84
85
  } else if (type->isBitAnd()) {
    if (is_int) {
      return make_const(dst->dtype, -1);
    } else if (is_uint) {
      return make_const(dst->dtype, (1 << bits) - 1);
    } else {
      // Should not arrive here
      return make_const(dst->dtype, -INFINITY);
    }
  } else if (type->isBitOr()) {
    return make_zero(dst->dtype);
  } else if (type->isBitXor()) {
    return make_zero(dst->dtype);
86
87
  } else {
    LOG(FATAL) << "Unsupported reduce type: " << type->type;
88
    return PrimExpr();
89
90
91
  }
}

92
93
94
PrimExpr ReduceOpNode::MakeReduce(const PrimExpr &lhs,
                                  const PrimExpr &b) const {
  PrimExpr rhs = b;
95
96
97
  if (lhs->dtype != rhs->dtype) {
    rhs = Cast(lhs->dtype, rhs);
  }
98
  if (type->isSum()) {
99
    return lhs + rhs;
100
  } else if (type->isAbsSum()) {
101
    return lhs + Max(rhs, -rhs);
102
  } else if (type->isMax()) {
103
    return Max(lhs, rhs);
104
  } else if (type->isMin()) {
105
    return Min(lhs, rhs);
106
  } else if (type->isAbsMax()) {
107
    return Max(tvm::abs(lhs), tvm::abs(rhs));
108
109
110
111
112
113
  } else if (type->isBitAnd()) {
    return lhs & rhs;
  } else if (type->isBitOr()) {
    return lhs | rhs;
  } else if (type->isBitXor()) {
    return lhs ^ rhs;
114
115
  } else {
    LOG(FATAL) << "Unsupported reduce type: " << type->type;
116
117
118
  }
}

119
std::string ReduceOpNode::MakeCodegenReducer() const {
120
  if (type->isSum()) {
121
    return "tl::SumOp";
122
  } else if (type->isAbsSum()) {
123
    return "tl::SumOp";
124
  } else if (type->isMax()) {
125
    return "tl::MaxOp";
126
  } else if (type->isMin()) {
127
    return "tl::MinOp";
128
  } else if (type->isAbsMax()) {
129
    return "tl::MaxOp";
130
131
132
133
134
135
  } else if (type->isBitAnd()) {
    return "tl::BitAndOp";
  } else if (type->isBitOr()) {
    return "tl::BitOrOp";
  } else if (type->isBitXor()) {
    return "tl::BitXorOp";
136
137
  } else {
    LOG(FATAL) << "Unsupported reduce type: " << type->type;
138
    return "";
139
140
141
  }
}

142
/**
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
 * @brief Lower the Reduce operator to a TIR statement.
 *
 * Lowers a ReduceOpNode operating on fragment-scoped buffers into a sequence of
 * TIR statements implementing: optional initialization, thread-local reduction
 * (unrolled inner loops), inter-thread reduction via a runtime AllReduce call
 * (Hopper-specific `run_hopper` variant when TargetIsHopper(T.target) is true),
 * and an optional accumulation or copy back to the destination buffer when a
 * temporary clear buffer is used.
 *
 * Behavior notes:
 * - Only supports src and dst in "local.fragment" scope; otherwise it checks
 *   and aborts with "Reduce for shared memory not implemented.".
 * - Supports both 1D reductions (scalar output) and reductions along a single
 *   extra dimension; validates layout dimensionality consistency.
 * - If `clear` is set (or for sum/abssum reductions), an initial value is
 *   written to the clear buffer; for non-clearing sum/abssum a duplicate
 *   temporary buffer is allocated and accumulated back into dst after
 * reduction.
 * - Performs iterator compression for local reduction loops using `analyzer`.
 * - Detects parallel thread splitting from the normalized iterator sum and
 *   emits a call to a templated `tl::AllReduce<...>::run` (or `run_hopper`)
 *   via `builtin::call_extern`. For sufficiently large reducing thread counts
 *   (>= 32) a workspace is allocated via T.AddWorkspace and passed to the
 *   AllReduce call.
 * - The final body is wrapped in parallel loops over the destination spatial
 *   dimensions and partitioned by the lowering thread variable. If a temporary
 *   clear buffer is used, it is allocated for the body.
 *
 * @param T Lowering context providing buffer and layout maps, thread bounds,
 *          target information, thread variable, and workspace allocation
 * helper.
 * @param analyzer Analyzer used for iterator compression and arithmetic
 * normalization.
 * @return Stmt Lowered TIR statement implementing the reduction.
177
 */
178
Stmt ReduceOpNode::Lower(const LowerArgs &T, arith::Analyzer *analyzer) const {
179
180
181
182
183
  auto get_buffer = [&](const Buffer &buf) {
    if (T.buffer_remap.count(buf))
      return T.buffer_remap[buf];
    return buf;
  };
184

185
186
  auto src_scope = this->src.scope();
  auto dst_scope = this->dst.scope();
187

188
189
190
191
192
193
194
  if (src_scope == "local.fragment" && dst_scope == "local.fragment") {
    Buffer src_buffer = get_buffer(this->src);
    Buffer dst_buffer = get_buffer(this->dst);
    Fragment src_layout = T.layout_map[this->src].as<Fragment>().value();
    Fragment dst_layout = T.layout_map[this->dst].as<Fragment>().value();
    size_t src_dim = src_layout->InputDim();
    size_t dst_dim = dst_layout->InputDim();
195

196
    bool is_1d_reduce = src_dim == dst_dim && dst_dim == 1;
197

198
199
200
201
202
203
    if (is_1d_reduce) {
      ICHECK(is_one(dst_layout->OutputShape().back()))
          << "Reduce for scalar not implemented.";
    } else {
      ICHECK_EQ(src_dim, dst_dim + 1) << "Reduce dimension mismatch.";
    }
204

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
    Array<IterVar> dst_vars;
    for (size_t i = 0; i < dst_dim; ++i) {
      Var var = Var(std::string{char('i' + i)});
      dst_vars.push_back(IterVar(Range(0, dst_layout->InputShape()[i]), var,
                                 IterVarType::kDataPar));
    }

    Array<IterVar> src_vars;
    if (!is_1d_reduce) {
      src_vars = dst_vars;
    }
    Range reduce_dom(0, src_layout->InputShape()[this->dim]);
    IterVar reduce_iv(reduce_dom, Var("rv"), IterVarType::kDataPar);
    src_vars.insert(src_vars.begin() + this->dim, reduce_iv);

    Array<PrimExpr> src_indices = src_layout->Forward(
        src_vars.Map([](const auto &iv) { return PrimExpr(iv->var); }));
    Array<PrimExpr> dst_indices = dst_layout->Forward(
        dst_vars.Map([](const auto &iv) { return PrimExpr(iv->var); }));

    Array<Stmt> stmts;

    bool require_init = this->clear;
    if (this->type->isSum() || this->type->isAbsSum() ||
        this->type->isBitAnd() || this->type->isBitOr() ||
        this->type->isBitXor()) {
      require_init = true;
    }

    Buffer clear_buffer = dst_buffer;
    bool need_duplicate = false;
    if ((this->type->isSum() || this->type->isAbsSum()) && !this->clear) {
      need_duplicate = true;
    } else if (this->type->isBitAnd() && !this->clear) {
      need_duplicate = true;
    } else if ((this->type->isBitOr() || this->type->isBitXor()) &&
               !this->clear) {
      need_duplicate = true;
    }

    if (need_duplicate) {
      // Create a new buffer with same shape and dtype as dst_buffer
      clear_buffer = decl_buffer(dst_buffer->shape, dst_buffer->dtype,
                                 dst_buffer->name + "_clear",
                                 GetPtrStorageScope(dst_buffer->data));
    }
    // make reduce-init stmt
    if (require_init) {
      stmts.push_back(
          BufferStore(clear_buffer, this->MakeInitValue(), dst_indices));
    }

    // make thread-local reduce
    Array<PrimExpr> src_indice_compressed;
    Array<IterVar> src_var_compressed;
    for (size_t i = 0; i < src_layout->OutputDim(); ++i) {
      PrimExpr expr;
      IterVar var;
      std::tie(expr, var) = CompressIterator(
          src_indices[i], src_vars, src_vars[this->dim]->var, analyzer);
      src_indice_compressed.push_back(expr);
      src_var_compressed.push_back(var);
    }

    Stmt reduce_local = BufferStore(
        clear_buffer,
        this->MakeReduce(BufferLoad(clear_buffer, dst_indices),
                         BufferLoad(src_buffer, src_indice_compressed)),
        dst_indices);

    for (int i = static_cast<int>(src_layout->OutputDim()) - 1; i >= 0; --i) {
      reduce_local =
          For(src_var_compressed[i]->var, 0, src_var_compressed[i]->dom->extent,
              ForKind::kUnrolled, reduce_local, std::nullopt,
              {{tir::attr::pragma_unroll_explicit, Bool(false)}});
    }
    stmts.push_back(reduce_local);

    PrimExpr src_thread = src_layout->ForwardThread(
        src_vars.Map([](const auto &iv) { return PrimExpr(iv->var); }), {});
    auto iter_sum =
        arith::NormalizeToIterSum(src_thread, ToVMap(src_vars), analyzer);
    for (const auto &iter_split : iter_sum->args) {
      auto mark = iter_split->source->source.as<Var>();
      ICHECK(mark) << "Not a normalized iterator: " << iter_split->source;
      if (mark.value().same_as(src_vars[this->dim]->var)) {
        auto scale = as_const_int(iter_split->scale);
        auto extent = as_const_int(iter_split->extent);
        ICHECK(scale != nullptr && extent != nullptr);
        if (*extent == 1)
          continue;

        int reducing_threads = (*extent) * (*scale);
        std::stringstream ss;

        auto thread_offset = T.thread_bounds->min;
        if (TargetIsHopper(T.target) || TargetIsSm100(T.target)) {
          auto all_threads = T.thread_bounds->extent;
          ss << "tl::AllReduce<" << this->MakeCodegenReducer() << ", "
             << reducing_threads << ", " << (*scale) << ", " << thread_offset
             << ", " << all_threads << ">::run_hopper";
        } else {
          ss << "tl::AllReduce<" << this->MakeCodegenReducer() << ", "
             << reducing_threads << ", " << (*scale) << ", " << thread_offset
             << ">::run";
        }
        Array<PrimExpr> thread_reduce_args = {
            StringImm(ss.str()), BufferLoad(clear_buffer, dst_indices)};
        if (reducing_threads >= 32) {
          PrimExpr workspace = T.AddWorkspace(
              *as_const_int(T.thread_bounds->extent), clear_buffer->dtype);
          thread_reduce_args.push_back(workspace);
        }
        auto call = Call(clear_buffer->dtype, builtin::call_extern(),
                         thread_reduce_args);
        stmts.push_back(BufferStore(clear_buffer, call, dst_indices));
321
      }
322
    }
323
324
325
326
327
328
329
330
331
332
333
334
335

    if (need_duplicate) {
      PrimExpr src_val = BufferLoad(clear_buffer, dst_indices);
      PrimExpr dst_val = BufferLoad(dst_buffer, dst_indices);
      PrimExpr update;
      if (this->type->isSum() || this->type->isAbsSum()) {
        update = dst_val + src_val;
      } else if (this->type->isBitAnd()) {
        update = this->clear ? src_val : bitwise_and(dst_val, src_val);
      } else if (this->type->isBitOr()) {
        update = bitwise_or(dst_val, src_val);
      } else if (this->type->isBitXor()) {
        update = bitwise_xor(dst_val, src_val);
336
      } else {
337
        LOG(FATAL) << "Unsupported reduce type: " << this->type->type;
338
      }
339
340
341
342
343
344
345
346
347
348
349
350
      stmts.push_back(BufferStore(dst_buffer, update, dst_indices));
    }

    Stmt body = stmts.size() > 1 ? SeqStmt(stmts) : stmts[0];
    for (int i = static_cast<int>(dst_layout->InputDim()) - 1; i >= 0; --i) {
      body = For(dst_vars[i]->var, 0, dst_vars[i]->dom->extent,
                 ForKind::kParallel, body);
    }

    if (dst_layout->InputDim() > 0) {
      body = PartitionLoop(Downcast<For>(body), T.thread_var, analyzer,
                           dst_layout);
351
    } else {
352
353
      PrimExpr guard = (T.thread_var == T.thread_bounds->min);
      body = IfThenElse(guard, body);
354
    }
355
356
357
358
359
360

    if (need_duplicate) {
      body = Allocate(clear_buffer->data, clear_buffer->dtype,
                      clear_buffer->shape, const_true(), body);
    }
    return body;
361
362
  }

363
364
365
  LOG(FATAL) << "Reduce for buffers in scope (" << src_scope << ", "
             << dst_scope << ") is not implemented.";
  return Stmt();
366
367
}

368
369
LayoutMap ReduceOpNode::InferLayout(const LayoutInferArgs &T,
                                    InferLevel level) const {
370
371
  if (level >= InferLevel::kStrict)
    return {};
372
  if (src.scope() == "local.fragment" && dst.scope() == "local.fragment" &&
373
      T.layout_map.count(src)) {
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
    auto src_layout = T.layout_map[src].as<Fragment>().value();

    PrimExpr indice_rep_extent = src->shape[dim];
    PrimExpr src_rep_extent = src_layout->ReplicateExtent();
    PrimExpr dest_buffer_rep_extent = indice_rep_extent * src_rep_extent;

    Array<PrimExpr> fwd;
    for (int i = 0; i < static_cast<int>(src->shape.size()); i++) {
      if (i == dim) {
        fwd.push_back(FloorMod(ReplicationPlaceholder(), indice_rep_extent));
      } else if (i < dim) {
        fwd.push_back(InputPlaceholder(i));
      } else if (i > dim) {
        fwd.push_back(InputPlaceholder(i - 1));
      }
    }
390
391
    auto thd = src_layout->ForwardThread(
        fwd, FloorDiv(ReplicationPlaceholder(), indice_rep_extent));
392
    Fragment dst_layout =
393
        Fragment(dst->shape, {}, thd, dest_buffer_rep_extent, std::nullopt)
394
395
            ->CondenseReplicateVar()
            ->BindThreadRange(T.thread_bounds);
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
    if (!T.layout_map.count(dst))
      return {{dst, dst_layout}};
    else {
      // Check if computed layout is compatible with existing: the existing one
      // must strictly contains the computed layout
      auto orig_dst_layout =
          T.layout_map.Get(dst).value().as<Fragment>().value();
      ICHECK(dst_layout->InputDim() == orig_dst_layout->InputDim());
      Array<PrimExpr> indices;
      indices.reserve(dst_layout->InputDim());
      arith::Analyzer inner_analyzer;
      for (int i = 0; i < dst_layout->InputDim(); ++i) {
        auto x = InputPlaceholder(i);
        indices.push_back(x);
        // should be literal - literal = 0, any analyzer will work
        ICHECK(is_zero(inner_analyzer.Simplify(
            dst_layout->InputShape()[i] - orig_dst_layout->InputShape()[i])));
        inner_analyzer.Bind(x, Range(0, dst_layout->InputShape()[i]));
      }

      ICHECK(as_const_int(dst_layout->ReplicateExtent()));
      ICHECK(as_const_int(src_layout->ReplicateExtent()));
      auto dst_rep = *as_const_int(dst_layout->ReplicateExtent());
      auto src_rep = *as_const_int(src_layout->ReplicateExtent());
      if (dst_rep < src_rep ||
          !ProveFragmentContains(orig_dst_layout, dst_layout, indices, indices,
                                 inner_analyzer)) {
        std::ostringstream oss;
        oss << "Layout may conflict with ReduceOp for buffer " << dst << " vs. "
            << src << "\nLHS = " << src_layout->DebugOutput()
            << "\nRHS = " << orig_dst_layout->DebugOutput()
            << "\nYou may need to use a shared memory to transform the "
               "layout";
        throw LayoutConflictException(oss.str());
      }

      if (dst_rep > src_rep) {
        return {{dst, dst_layout}};
      }
    }
436
437
438
439
440
441
  }
  return {};
}

TIR_REGISTER_TL_OP(ReduceOp, reduce)
    .set_num_inputs(4)
442
443
    .set_attr<TCallEffectKind>("TCallEffectKind",
                               Integer(CallEffectKind::kOpaque));
444

445
CumSumOp::CumSumOp(Array<PrimExpr> args, BufferMap vmap) {
446
447
448
449
450
  /// CumSum constructor arguments:
  /// - src: input buffer
  /// - dst: output buffer
  /// - dim: dimension to cumsum
  /// - reverse: whether to cumsum in reverse order
451
  CHECK_EQ(args.size(), 4);
452
  ObjectPtr<CumSumOpNode> node = tvm::ffi::make_object<CumSumOpNode>();
453
454
455
456
457
458
  node->src = vmap[GetVarFromAccessPtr(args[0])];
  node->dst = vmap[GetVarFromAccessPtr(args[1])];
  node->dim = args[2].as<IntImm>().value()->value;
  node->reverse = args[3].as<Bool>().value();
  CHECK_LT(node->dim, static_cast<int>(node->src->shape.size()));
  data_ = std::move(node);
459
460
}

461
Stmt CumSumOpNode::Lower(const LowerArgs &T, arith::Analyzer *analyzer) const {
462
463
464
465
466
467
468
469
  if (this->src.scope() == "local.fragment" &&
      this->dst.scope() == "local.fragment") {
    LOG(FATAL) << "CumSum for fragment not implemented, please raise an issue "
                  "if you need this feature.";
  } else if (this->src.scope() == "shared.dyn" ||
             this->src.scope() == "shared") {
    ICHECK(this->dst.scope() == "shared.dyn" || this->dst.scope() == "shared");
    std::stringstream ss;
470
    auto threads = T.thread_bounds->extent;
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
    Array<PrimExpr> args;
    int ndim = static_cast<int>(src->shape.size());
    if (ndim == 1) {
      ICHECK_EQ(dim, 0) << "Cumulative sum over a 1D buffer only supports dim "
                           "= 0.";
      ss << "tl::CumSum1D<" << threads << ", " << (reverse ? "true" : "false")
         << ">::run";
      args = {StringImm(ss.str()), src.access_ptr(1), dst.access_ptr(3),
              src->shape[0]};
    } else if (ndim == 2) {
      ss << "tl::CumSum2D<" << threads << ", " << dim << ", "
         << (reverse ? "true" : "false") << ">::run";
      args = {StringImm(ss.str()), src.access_ptr(1), dst.access_ptr(3),
              src->shape[0], src->shape[1]};
    } else {
      LOG(FATAL) << "CumSum currently supports only 1D or 2D buffers, got "
                 << ndim << "D.";
488
489
490
491
492
493
494
495
496
497
    }
    return Evaluate(Call(dst->dtype, builtin::call_extern(), args));
  } else {
    ICHECK(false) << "Cannot lower cumsum for " << this->src.scope() << " and "
                  << this->dst.scope();
  }

  return Stmt();
}

498
499
LayoutMap CumSumOpNode::InferLayout(const LayoutInferArgs &T,
                                    InferLevel level) const {
500
501
502
503
504
505
506
  return {};
}

TIR_REGISTER_TL_OP(CumSumOp, cumsum)
    .set_num_inputs(4)
    .set_attr<TCallEffectKind>("TCallEffectKind",
                               Integer(CallEffectKind::kOpaque));
507
508
509
510
511
512
513

TVM_FFI_STATIC_INIT_BLOCK() {
  ReduceOpNode::RegisterReflection();
  CumSumOpNode::RegisterReflection();
  ReduceTypeNode::RegisterReflection();
}

514
} // namespace tl
515
} // namespace tvm