reduce.cc 7.46 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

/*!
 * \file tl/op/reduce.cc
 *
 * Define reduce operator.
 */

#include "reduce.h"

#include <tvm/tir/builtin.h>
#include <tvm/tir/op.h>
#include <tvm/tir/op_attr_types.h>

#include "../layout/utils.h"
#include "../transform/loop_partition.h"

namespace tvm {
namespace tl {

using namespace tir;

ReduceOp::ReduceOp(Array<PrimExpr> args, BufferMap vmap) {
  src = vmap[GetVarFromAccessPtr(args[0])];
  dst = vmap[GetVarFromAccessPtr(args[1])];
  String reduce_type = args[2].as<StringImm>().value()->value;
  dim = args[3].as<IntImm>().value()->value;
  if (reduce_type == "sum")
    type = ReduceType::kSum;
  else if (reduce_type == "abssum")
    type = ReduceType::kAbsSum;
  else if (reduce_type == "max")
    type = ReduceType::kMax;
  else if (reduce_type == "min")
    type = ReduceType::kMin;
  else
    ICHECK(0) << "Unknown reduce type: " << reduce_type;
  clear = args[4].as<Bool>().value();
}

PrimExpr ReduceOp::MakeInitValue() const {
  switch (type) {
    case ReduceType::kSum:
      return make_zero(dst->dtype);
    case ReduceType::kAbsSum:
      return make_zero(dst->dtype);
    case ReduceType::kMax:
      return make_const(dst->dtype, -INFINITY);
    case ReduceType::kMin:
      return make_const(dst->dtype, INFINITY);
    default:
      ICHECK(0);
  }
}

PrimExpr ReduceOp::MakeReduce(const PrimExpr& a, const PrimExpr& b) const {
  PrimExpr lhs = a, rhs = b;
  if (lhs->dtype != rhs->dtype) {
    rhs = Cast(lhs->dtype, rhs);
  }
  switch (type) {
    case ReduceType::kSum:
      return lhs + rhs;
    case ReduceType::kAbsSum:
      return lhs + Max(rhs, -rhs);
    case ReduceType::kMax:
      return Max(lhs, rhs);
    case ReduceType::kMin:
      return Min(lhs, rhs);
    default:
      ICHECK(0);
      return PrimExpr(0);
  }
}

std::string ReduceOp::MakeCodegenReducer() const {
  switch (type) {
    case ReduceType::kSum:
      return "tl::SumOp";
    case ReduceType::kAbsSum:
      return "tl::SumOp";
    case ReduceType::kMax:
      return "tl::MaxOp";
    case ReduceType::kMin:
      return "tl::MinOp";
    default:
      ICHECK(0);
      return "";
  }
}

Stmt ReduceOp::Lower(const LowerArgs& T, arith::Analyzer* analyzer) const {
  ICHECK(this->src.scope() == "local.fragment" && this->dst.scope() == "local.fragment")
      << "Reduce for shared memory not implemented.";
  auto src_buffer = T.buffer_remap[this->src];
  auto dst_buffer = T.buffer_remap[this->dst];
  Fragment src_layout = T.layout_map[this->src].as<Fragment>().value();
  Fragment dst_layout = T.layout_map[this->dst].as<Fragment>().value();
  ICHECK(src_layout->InputDim() == dst_layout->InputDim() + 1);
  Array<IterVar> dst_vars;
  for (size_t i = 0; i < dst_layout->InputDim(); i++) {
    Var var = Var(std::string{char('i' + i)});
    dst_vars.push_back(IterVar(Range(0, dst_layout->InputShape()[i]), var, IterVarType::kDataPar));
  }
  Array<IterVar> src_vars = dst_vars;
  src_vars.insert(src_vars.begin() + this->dim, {Range(0, src_layout->InputShape()[this->dim]),
                                                 Var("rv"), IterVarType::kDataPar});
  Array<PrimExpr> src_indices =
      src_layout->Forward(src_vars.Map([](const auto& iv) { return PrimExpr(iv->var); }));
  Array<PrimExpr> dst_indices =
      dst_layout->Forward(dst_vars.Map([](const auto& iv) { return PrimExpr(iv->var); }));

  Array<Stmt> stmts;

  // make reduce-init stmt
  if (this->clear) stmts.push_back(BufferStore(dst_buffer, this->MakeInitValue(), dst_indices));

  // make thread-local reduce
  Array<PrimExpr> src_indice_compressed;
  Array<IterVar> src_var_compressed;
  for (size_t i = 0; i < src_layout->OutputDim(); i++) {
    PrimExpr expr;
    IterVar var;
    std::tie(expr, var) =
        CompressIterator(src_indices[i], src_vars, src_vars[this->dim]->var, analyzer);
    src_indice_compressed.push_back(expr);
    src_var_compressed.push_back(var);
  }
  Stmt reduce_local = BufferStore(dst_buffer,
                                  this->MakeReduce(BufferLoad(dst_buffer, dst_indices),
                                                   BufferLoad(src_buffer, src_indice_compressed)),
                                  dst_indices);
  for (int i = src_layout->OutputDim() - 1; i >= 0; i--) {
    reduce_local =
        For(src_var_compressed[i]->var, 0, src_var_compressed[i]->dom->extent, ForKind::kUnrolled,
            reduce_local, NullOpt, {{tir::attr::pragma_unroll_explicit, Bool(false)}});
  }
  stmts.push_back(reduce_local);

  // make inter-thread reduce
  PrimExpr src_thread =
      src_layout->ForwardThread(src_vars.Map([](const auto& iv) { return PrimExpr(iv->var); }), {});
  auto iter_sum = arith::NormalizeToIterSum(src_thread, ToVMap(src_vars), analyzer);
  for (const auto& iter_split : iter_sum->args) {
    auto mark = iter_split->source->source.as<Var>();
    ICHECK(mark.defined());
    if (mark.value().same_as(src_vars[this->dim]->var)) {
      auto scale = as_const_int(iter_split->scale);
      auto extent = as_const_int(iter_split->extent);
      ICHECK(scale != nullptr && extent != nullptr);
      if (*extent == 1) continue;
      int reducing_threads = (*extent) * (*scale);
      std::stringstream ss;
      ss << "tl::AllReduce<" << this->MakeCodegenReducer() << ", " << reducing_threads << ", "
         << (*scale) << ">::run";
      Array<PrimExpr> thread_reduce_args = {StringImm(ss.str()),
                                            BufferLoad(dst_buffer, dst_indices)};
      if (reducing_threads >= 32) {
        PrimExpr workspace = T.AddWorkspace(T.block_size, dst_buffer->dtype);
        thread_reduce_args.push_back(workspace);
      }
      auto call = Call(dst_buffer->dtype, builtin::call_extern(), thread_reduce_args);
      stmts.push_back(BufferStore(dst_buffer, call, dst_indices));
    }
  }
  Stmt reduce_interthread =
      BufferStore(dst_buffer, BufferLoad(dst_buffer, dst_indices), dst_indices);

  // make the outer spatial loop
  Stmt body = stmts.size() > 1 ? SeqStmt(stmts) : stmts[0];
  for (int i = dst_layout->InputDim() - 1; i >= 0; i--) {
    body = For(dst_vars[i]->var, 0, dst_vars[i]->dom->extent, ForKind::kParallel, body);
  }

  body = PartitionLoop(Downcast<For>(body), T.thread_var, analyzer, dst_layout);
  return body;
}

LayoutMap ReduceOp::InferLayout(const LayoutInferArgs& T, InferLevel level) {
  if (level >= InferLevel::kStrict) return {};
  if (src.scope() == "local.fragment" && dst.scope() == "local.fragment" &&
      T.layout_map.count(src) && !T.layout_map.count(dst)) {
    auto src_layout = T.layout_map[src].as<Fragment>().value();

    PrimExpr indice_rep_extent = src->shape[dim];
    PrimExpr src_rep_extent = src_layout->ReplicateExtent();
    PrimExpr dest_buffer_rep_extent = indice_rep_extent * src_rep_extent;

    Array<PrimExpr> fwd;
    for (int i = 0; i < static_cast<int>(src->shape.size()); i++) {
      if (i == dim) {
        fwd.push_back(FloorMod(ReplicationPlaceholder(), indice_rep_extent));
      } else if (i < dim) {
        fwd.push_back(InputPlaceholder(i));
      } else if (i > dim) {
        fwd.push_back(InputPlaceholder(i - 1));
      }
    }
    auto thd =
        src_layout->ForwardThread(fwd, FloorDiv(ReplicationPlaceholder(), indice_rep_extent));
    Fragment dst_layout =
        Fragment(dst->shape, {}, thd, dest_buffer_rep_extent, NullOpt)->CondenseReplicateVar();
    return {{dst, dst_layout}};
  }
  return {};
}

TIR_REGISTER_TL_OP(ReduceOp, reduce)
    .set_num_inputs(4)
    .set_attr<TCallEffectKind>("TCallEffectKind", Integer(CallEffectKind::kOpaque));

}  // namespace tl
}  // namespace tvm