"docs/source/vscode:/vscode.git/clone" did not exist on "376725ce74d2d75490eed1840b41de00c0e4acd6"
server.rs 44.5 KB
Newer Older
1
/// HTTP Server logic
2
use crate::health::Health;
3
4
use crate::infer::{InferError, InferResponse, InferStreamResponse};
use crate::validation::ValidationError;
5
use crate::{
6
    BestOfSequence, ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionDelta,
7
    ChatCompletionLogprobs, ChatRequest, CompatGenerateRequest, Details, ErrorResponse,
drbh's avatar
drbh committed
8
    FinishReason, GenerateParameters, GenerateRequest, GenerateResponse, GrammarType, HubModelInfo,
9
    HubTokenizerConfig, Infer, Info, Message, PrefillToken, SimpleToken, StreamDetails,
drbh's avatar
drbh committed
10
    StreamResponse, Token, TokenizeResponse, Validation, VertexRequest, VertexResponse,
11
};
Olivier Dehaene's avatar
Olivier Dehaene committed
12
use axum::extract::Extension;
13
use axum::http::{HeaderMap, Method, StatusCode};
14
use axum::response::sse::{Event, KeepAlive, Sse};
15
use axum::response::{IntoResponse, Response};
Olivier Dehaene's avatar
Olivier Dehaene committed
16
use axum::routing::{get, post};
17
use axum::{http, Json, Router};
Nicolas Patry's avatar
Nicolas Patry committed
18
use axum_tracing_opentelemetry::middleware::OtelAxumLayer;
drbh's avatar
drbh committed
19
use futures::stream::FuturesUnordered;
20
use futures::stream::StreamExt;
21
use futures::Stream;
drbh's avatar
drbh committed
22
use futures::TryStreamExt;
23
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
24
use std::convert::Infallible;
Olivier Dehaene's avatar
Olivier Dehaene committed
25
use std::net::SocketAddr;
26
27
use std::sync::atomic::AtomicBool;
use std::sync::Arc;
28
use text_generation_client::{ShardInfo, ShardedClient};
Olivier Dehaene's avatar
Olivier Dehaene committed
29
use tokenizers::Tokenizer;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
30
use tokio::signal;
Olivier Dehaene's avatar
Olivier Dehaene committed
31
use tokio::time::Instant;
32
use tower_http::cors::{AllowOrigin, CorsLayer};
33
use tracing::{info_span, instrument, Instrument};
34
35
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;
Olivier Dehaene's avatar
Olivier Dehaene committed
36

37
38
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
#[utoipa::path(
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
post,
tag = "Text Generation Inference",
path = "/",
request_body = CompatGenerateRequest,
responses(
(status = 200, description = "Generated Text",
content(
("application/json" = GenerateResponse),
("text/event-stream" = StreamResponse),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
58
)]
59
#[instrument(skip(infer, req))]
60
async fn compat_generate(
61
    Extension(default_return_full_text): Extension<bool>,
62
    infer: Extension<Infer>,
63
    compute_type: Extension<ComputeType>,
64
    Json(mut req): Json<CompatGenerateRequest>,
65
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
66
67
    // default return_full_text given the pipeline_tag
    if req.parameters.return_full_text.is_none() {
68
        req.parameters.return_full_text = Some(default_return_full_text)
69
70
    }

71
72
    // switch on stream
    if req.stream {
73
        Ok(generate_stream(infer, compute_type, Json(req.into()))
74
75
76
            .await
            .into_response())
    } else {
77
        let (headers, Json(generation)) = generate(infer, compute_type, Json(req.into())).await?;
78
        // wrap generation inside a Vec to match api-inference
79
        Ok((headers, Json(vec![generation])).into_response())
80
81
82
    }
}

83
84
/// Text Generation Inference endpoint info
#[utoipa::path(
85
86
87
88
get,
tag = "Text Generation Inference",
path = "/info",
responses((status = 200, description = "Served model info", body = Info))
89
90
)]
#[instrument]
91
92
async fn get_model_info(info: Extension<Info>) -> Json<Info> {
    Json(info.0)
93
94
}

95
#[utoipa::path(
96
97
98
99
100
101
102
103
get,
tag = "Text Generation Inference",
path = "/health",
responses(
(status = 200, description = "Everything is working fine"),
(status = 503, description = "Text generation inference is down", body = ErrorResponse,
example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})),
)
104
105
)]
#[instrument(skip(health))]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
106
/// Health check method
107
108
109
110
111
112
113
114
115
116
117
async fn health(mut health: Extension<Health>) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
    match health.check().await {
        true => Ok(()),
        false => Err((
            StatusCode::SERVICE_UNAVAILABLE,
            Json(ErrorResponse {
                error: "unhealthy".to_string(),
                error_type: "healthcheck".to_string(),
            }),
        )),
    }
Olivier Dehaene's avatar
Olivier Dehaene committed
118
119
}

120
121
/// Generate tokens
#[utoipa::path(
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
post,
tag = "Text Generation Inference",
path = "/generate",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = GenerateResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
137
)]
138
#[instrument(
139
140
skip_all,
fields(
141
parameters = ? req.parameters,
142
143
144
145
146
147
148
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
149
)]
Olivier Dehaene's avatar
Olivier Dehaene committed
150
async fn generate(
151
    infer: Extension<Infer>,
152
    Extension(ComputeType(compute_type)): Extension<ComputeType>,
153
    Json(req): Json<GenerateRequest>,
154
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
155
    let span = tracing::Span::current();
156
    let start_time = Instant::now();
157
    metrics::increment_counter!("tgi_request_count");
158

159
    tracing::debug!("Input: {}", req.inputs);
160

161
    let compute_characters = req.inputs.chars().count();
162
    let mut add_prompt = None;
163
164
    if req.parameters.return_full_text.unwrap_or(false) {
        add_prompt = Some(req.inputs.clone());
165
166
    }

Nicolas Patry's avatar
Nicolas Patry committed
167
    let details: bool = req.parameters.details || req.parameters.decoder_input_details;
168
169

    // Inference
170
    let (response, best_of_responses) = match req.parameters.best_of {
171
        Some(best_of) if best_of > 1 => {
172
            let (response, best_of_responses) = infer.generate_best_of(req, best_of).await?;
173
174
            (response, Some(best_of_responses))
        }
175
        _ => (infer.generate(req).await?, None),
176
    };
Olivier Dehaene's avatar
Olivier Dehaene committed
177

OlivierDehaene's avatar
OlivierDehaene committed
178
    // Token details
179
    let input_length = response._input_length;
OlivierDehaene's avatar
OlivierDehaene committed
180
    let details = match details {
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
        true => {
            // convert best_of_responses
            let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| {
                responses
                    .into_iter()
                    .map(|response: InferResponse| {
                        // Add prompt if return_full_text
                        let mut output_text = response.generated_text.text;
                        if let Some(prompt) = &add_prompt {
                            output_text = prompt.clone() + &output_text;
                        }

                        BestOfSequence {
                            generated_text: output_text,
                            finish_reason: FinishReason::from(
                                response.generated_text.finish_reason,
                            ),
                            generated_tokens: response.generated_text.generated_tokens,
                            prefill: response.prefill,
                            tokens: response.tokens,
Nicolas Patry's avatar
Nicolas Patry committed
201
                            top_tokens: response.top_tokens,
202
203
204
205
206
207
208
209
210
211
212
213
214
                            seed: response.generated_text.seed,
                        }
                    })
                    .collect()
            });

            Some(Details {
                finish_reason: FinishReason::from(response.generated_text.finish_reason),
                generated_tokens: response.generated_text.generated_tokens,
                prefill: response.prefill,
                tokens: response.tokens,
                seed: response.generated_text.seed,
                best_of_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
215
                top_tokens: response.top_tokens,
216
217
            })
        }
OlivierDehaene's avatar
OlivierDehaene committed
218
219
220
        false => None,
    };

221
222
223
224
    // Timings
    let total_time = start_time.elapsed();
    let validation_time = response.queued - start_time;
    let queue_time = response.start - response.queued;
225
226
    let inference_time = Instant::now() - response.start;
    let time_per_token = inference_time / response.generated_text.generated_tokens;
227

228
229
230
231
232
233
234
235
    // Tracing metadata
    span.record("total_time", format!("{total_time:?}"));
    span.record("validation_time", format!("{validation_time:?}"));
    span.record("queue_time", format!("{queue_time:?}"));
    span.record("inference_time", format!("{inference_time:?}"));
    span.record("time_per_token", format!("{time_per_token:?}"));
    span.record("seed", format!("{:?}", response.generated_text.seed));

236
237
    // Headers
    let mut headers = HeaderMap::new();
238
    headers.insert("x-compute-type", compute_type.parse().unwrap());
239
240
241
242
243
244
245
246
    headers.insert(
        "x-compute-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
247
248
249
250
251
252
253
254
255
256
257
    headers.insert(
        "x-total-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-validation-time",
        validation_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-queue-time",
        queue_time.as_millis().to_string().parse().unwrap(),
Olivier Dehaene's avatar
Olivier Dehaene committed
258
    );
259
260
261
262
263
264
265
266
    headers.insert(
        "x-inference-time",
        inference_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-time-per-token",
        time_per_token.as_millis().to_string().parse().unwrap(),
    );
267
268
269
270
271
    headers.insert("x-prompt-tokens", input_length.into());
    headers.insert(
        "x-generated-tokens",
        response.generated_text.generated_tokens.into(),
    );
272

273
274
    // Metrics
    metrics::increment_counter!("tgi_request_success");
275
276
277
278
279
280
281
282
283
284
285
286
287
288
    metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
    metrics::histogram!(
        "tgi_request_validation_duration",
        validation_time.as_secs_f64()
    );
    metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
    metrics::histogram!(
        "tgi_request_inference_duration",
        inference_time.as_secs_f64()
    );
    metrics::histogram!(
        "tgi_request_mean_time_per_token_duration",
        time_per_token.as_secs_f64()
    );
289
290
291
292
293
    metrics::histogram!(
        "tgi_request_generated_tokens",
        response.generated_text.generated_tokens as f64
    );

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
294
    // Send response
295
296
297
298
299
    let mut output_text = response.generated_text.text;
    if let Some(prompt) = add_prompt {
        output_text = prompt + &output_text;
    }

300
301
    tracing::debug!("Output: {}", output_text);
    tracing::info!("Success");
302

303
    let response = GenerateResponse {
304
        generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
305
        details,
306
    };
307
    Ok((headers, Json(response)))
Olivier Dehaene's avatar
Olivier Dehaene committed
308
309
}

Yannic Kilcher's avatar
Yannic Kilcher committed
310
/// Generate a stream of token using Server-Sent Events
311
#[utoipa::path(
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
post,
tag = "Text Generation Inference",
path = "/generate_stream",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = StreamResponse,
content_type = "text/event-stream"),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"}),
content_type = "text/event-stream"),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"}),
content_type = "text/event-stream"),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"}),
content_type = "text/event-stream"),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"}),
content_type = "text/event-stream"),
)
332
)]
333
#[instrument(
334
335
skip_all,
fields(
336
parameters = ? req.parameters,
337
338
339
340
341
342
343
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
344
345
)]
async fn generate_stream(
346
    Extension(infer): Extension<Infer>,
347
    Extension(compute_type): Extension<ComputeType>,
348
    Json(req): Json<GenerateRequest>,
349
350
351
352
) -> (
    HeaderMap,
    Sse<impl Stream<Item = Result<Event, Infallible>>>,
) {
353
354
355
356
357
    let on_message_callback = |stream_token: StreamResponse| {
        let event = Event::default();
        event.json_data(stream_token).unwrap()
    };
    let (headers, response_stream) =
358
        generate_stream_internal(infer, compute_type, Json(req), on_message_callback).await;
359
360
361
362
363
364
    let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
    (headers, sse)
}

async fn generate_stream_internal(
    infer: Infer,
365
    ComputeType(compute_type): ComputeType,
366
367
368
    Json(req): Json<GenerateRequest>,
    on_message_callback: impl Fn(StreamResponse) -> Event,
) -> (HeaderMap, impl Stream<Item = Result<Event, Infallible>>) {
369
370
    let span = tracing::Span::current();
    let start_time = Instant::now();
371
    metrics::increment_counter!("tgi_request_count");
372

373
    tracing::debug!("Input: {}", req.inputs);
374

375
    let compute_characters = req.inputs.chars().count();
376
377

    let mut headers = HeaderMap::new();
378
    headers.insert("x-compute-type", compute_type.parse().unwrap());
379
380
381
382
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
383
    headers.insert("X-Accel-Buffering", "no".parse().unwrap());
384

385
386
387
388
    let stream = async_stream::stream! {
        // Inference
        let mut end_reached = false;
        let mut error = false;
389
390

        let mut add_prompt = None;
391
392
        if req.parameters.return_full_text.unwrap_or(false) {
            add_prompt = Some(req.inputs.clone());
393
        }
394
        let details = req.parameters.details;
395

396
        let best_of = req.parameters.best_of.unwrap_or(1);
397
398
399
400
401
        if best_of != 1 {
            let err = InferError::from(ValidationError::BestOfStream);
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            yield Ok(Event::from(err));
402
        } else if req.parameters.decoder_input_details {
403
404
405
406
407
            let err = InferError::from(ValidationError::PrefillDetailsStream);
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            yield Ok(Event::from(err));
        } else {
408
            match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await {
409
                // Keep permit as long as generate_stream lives
410
                Ok((_permit, _input_length, mut response_stream)) => {
411
                    let mut index = 0;
412
413
                    // Server-Sent Event stream
                    while let Some(response) = response_stream.next().await {
414
                        index += 1;
415
416
417
418
419
420
                        match response {
                            Ok(response) => {
                                match response {
                                    // Prefill is ignored
                                    InferStreamResponse::Prefill(_) => {}
                                    // Yield event for every new token
Nicolas Patry's avatar
Nicolas Patry committed
421
422
423
424
                                    InferStreamResponse::Intermediate{
                                        token,
                                        top_tokens,
                                    } => {
425
426
                                        tracing::debug!(parent: &span, "Token: {:?}", token);

427
428
                                        // StreamResponse
                                        let stream_token = StreamResponse {
429
                                            index,
430
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
431
                                            top_tokens,
432
433
434
                                            generated_text: None,
                                            details: None,
                                        };
435
436
                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
437
                                    }
438
439
                                    // Yield event for last token and compute timings
                                    InferStreamResponse::End {
440
                                        token,
441
442
443
                                        generated_text,
                                        start,
                                        queued,
Nicolas Patry's avatar
Nicolas Patry committed
444
                                        top_tokens,
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
                                    } => {
                                        // Token details
                                        let details = match details {
                                            true => Some(StreamDetails {
                                                finish_reason: FinishReason::from(generated_text.finish_reason),
                                                generated_tokens: generated_text.generated_tokens,
                                                seed: generated_text.seed,
                                            }),
                                            false => None,
                                        };

                                        // Timings
                                        let total_time = start_time.elapsed();
                                        let validation_time = queued - start_time;
                                        let queue_time = start - queued;
                                        let inference_time = Instant::now() - start;
                                        let time_per_token = inference_time / generated_text.generated_tokens;

                                        // Tracing metadata
                                        span.record("total_time", format!("{total_time:?}"));
                                        span.record("validation_time", format!("{validation_time:?}"));
                                        span.record("queue_time", format!("{queue_time:?}"));
                                        span.record("inference_time", format!("{inference_time:?}"));
                                        span.record("time_per_token", format!("{time_per_token:?}"));
                                        span.record("seed", format!("{:?}", generated_text.seed));

                                        // Metrics
                                        metrics::increment_counter!("tgi_request_success");
473
474
475
476
477
                                        metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_validation_duration", validation_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_inference_duration", inference_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_mean_time_per_token_duration", time_per_token.as_secs_f64());
478
479
480
481
482
483
484
485
486
487
                                        metrics::histogram!("tgi_request_generated_tokens", generated_text.generated_tokens as f64);

                                        // StreamResponse
                                        end_reached = true;

                                        let mut output_text = generated_text.text;
                                        if let Some(prompt) = add_prompt {
                                            output_text = prompt + &output_text;
                                        }

488
489
                                        tracing::debug!(parent: &span, "Output: {}", output_text);
                                        tracing::info!(parent: &span, "Success");
490

491
                                        let stream_token = StreamResponse {
492
                                            index,
493
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
494
                                            top_tokens,
495
496
497
498
                                            generated_text: Some(output_text),
                                            details
                                        };

499
500
501

                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
502
503
                                        break;
                                    }
504
505
                                }
                            }
506
507
508
509
510
511
                            // yield error
                            Err(err) => {
                                error = true;
                                yield Ok(Event::from(err));
                                break;
                            }
512
513
                        }
                    }
514
515
516
517
518
                },
                // yield error
                Err(err) => {
                    error = true;
                    yield Ok(Event::from(err));
519
                }
520
521
522
523
524
525
526
            }
            // Check if generation reached the end
            // Skip if we already sent an error
            if !end_reached && !error {
                let err = InferError::IncompleteGeneration;
                metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
                tracing::error!("{err}");
527
                yield Ok(Event::from(err));
528
529
530
531
            }
        }
    };

532
533
534
535
536
537
538
539
540
541
    (headers, stream)
}

/// Generate tokens
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/v1/chat/completions",
    request_body = ChatRequest,
    responses(
542
    (status = 200, description = "Generated Text", body = ChatCompletionChunk),
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
    (status = 424, description = "Generation Error", body = ErrorResponse,
    example = json ! ({"error": "Request failed during generation"})),
    (status = 429, description = "Model is overloaded", body = ErrorResponse,
    example = json ! ({"error": "Model is overloaded"})),
    (status = 422, description = "Input validation error", body = ErrorResponse,
    example = json ! ({"error": "Input validation error"})),
    (status = 500, description = "Incomplete generation", body = ErrorResponse,
    example = json ! ({"error": "Incomplete generation"})),
    )
    )]
#[instrument(
    skip_all,
    fields(
    // parameters = ? req.parameters,
    total_time,
    validation_time,
    queue_time,
    inference_time,
    time_per_token,
    seed,
    )
    )]
async fn chat_completions(
    Extension(infer): Extension<Infer>,
567
    Extension(compute_type): Extension<ComputeType>,
568
569
570
571
572
573
574
575
    Extension(info): Extension<Info>,
    Json(req): Json<ChatRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
    metrics::increment_counter!("tgi_request_count");

    let stream = req.stream;
    let max_new_tokens = req.max_tokens.or(Some(100));
    let repetition_penalty = req
576
577
        .presence_penalty
        // rescale repetition_penalty from (-2.0, 2.0) to (0.0, 4.0)
578
579
580
581
582
        .map(|x| x + 2.0);
    let logprobs = req.logprobs.unwrap_or(false);
    let seed = req.seed;

    // apply chat template to flatten the request into a single input
583
    let inputs = match infer.apply_chat_template(req.messages) {
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
        Ok(inputs) => inputs,
        Err(err) => {
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            return Err((
                StatusCode::UNPROCESSABLE_ENTITY,
                Json(ErrorResponse {
                    error: err.to_string(),
                    error_type: err.error_type().to_string(),
                }),
            ));
        }
    };

    // build the request passing some parameters
    let generate_request = GenerateRequest {
        inputs: inputs.to_string(),
        parameters: GenerateParameters {
            best_of: None,
603
            temperature: req.temperature,
604
            repetition_penalty,
605
            frequency_penalty: req.frequency_penalty,
606
            top_k: None,
607
            top_p: req.top_p,
608
609
610
611
612
613
614
615
            typical_p: None,
            do_sample: true,
            max_new_tokens,
            return_full_text: None,
            stop: Vec::new(),
            truncate: None,
            watermark: false,
            details: true,
616
            decoder_input_details: !stream,
617
618
            seed,
            top_n_tokens: None,
drbh's avatar
drbh committed
619
            grammar: None,
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
        },
    };

    // static values that will be returned in all cases
    let model_id = info.model_id.clone();
    let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));

    // switch on stream
    if stream {
        // pass this callback to the stream generation and build the required event structure
        let on_message_callback = move |stream_token: StreamResponse| {
            let event = Event::default();

            let current_time = std::time::SystemTime::now()
                .duration_since(std::time::UNIX_EPOCH)
                .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                .as_secs();

638
639
640
641
            let logprobs = logprobs.then(|| {
                ChatCompletionLogprobs::from((stream_token.token.clone(), stream_token.top_tokens))
            });

642
643
644
645
646
647
648
            event
                .json_data(ChatCompletionChunk::new(
                    model_id.clone(),
                    system_fingerprint.clone(),
                    stream_token.token.text,
                    current_time,
                    stream_token.index,
649
                    logprobs,
650
651
652
653
654
655
656
657
658
659
660
                    stream_token.details.map(|d| d.finish_reason.to_string()),
                ))
                .map_or_else(
                    |e| {
                        println!("Failed to serialize ChatCompletionChunk: {:?}", e);
                        Event::default()
                    },
                    |data| data,
                )
        };

661
662
663
664
665
666
667
        let (headers, response_stream) = generate_stream_internal(
            infer,
            compute_type,
            Json(generate_request),
            on_message_callback,
        )
        .await;
668
669
670
        let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
        Ok((headers, sse).into_response())
    } else {
671
672
673
674
675
676
        let (headers, Json(generation)) = generate(
            Extension(infer),
            Extension(compute_type),
            Json(generate_request),
        )
        .await?;
677
678
679
680
681
682
683
684
685
686

        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

        // build the complete response object with the full text
        let response = ChatCompletion::new(
            model_id,
            system_fingerprint,
687
            generation.generated_text,
688
689
690
691
692
693
694
695
            current_time,
            generation.details.unwrap(),
            logprobs,
        );

        // wrap generation inside a Vec to match api-inference
        Ok((headers, Json(response)).into_response())
    }
696
697
}

drbh's avatar
drbh committed
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
/// Generate tokens from Vertex request
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/vertex",
    request_body = VertexRequest,
    responses(
    (status = 200, description = "Generated Text", body = VertexResponse),
    (status = 424, description = "Generation Error", body = ErrorResponse,
    example = json ! ({"error": "Request failed during generation"})),
    (status = 429, description = "Model is overloaded", body = ErrorResponse,
    example = json ! ({"error": "Model is overloaded"})),
    (status = 422, description = "Input validation error", body = ErrorResponse,
    example = json ! ({"error": "Input validation error"})),
    (status = 500, description = "Incomplete generation", body = ErrorResponse,
    example = json ! ({"error": "Incomplete generation"})),
    )
    )]
#[instrument(
    skip_all,
    fields(
        total_time,
        validation_time,
        queue_time,
        inference_time,
        time_per_token,
        seed,
    )
)]
async fn vertex_compatibility(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Json(req): Json<VertexRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
    metrics::increment_counter!("tgi_request_count");

    // check that theres at least one instance
    if req.instances.is_empty() {
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Input validation error".to_string(),
                error_type: "Input validation error".to_string(),
            }),
        ));
    }

    // Process all instances
    let predictions = req
        .instances
        .iter()
        .map(|instance| {
            let generate_request = GenerateRequest {
                inputs: instance.inputs.clone(),
                parameters: GenerateParameters {
                    do_sample: true,
                    max_new_tokens: instance.parameters.as_ref().and_then(|p| p.max_new_tokens),
                    seed: instance.parameters.as_ref().and_then(|p| p.seed),
                    details: true,
                    decoder_input_details: true,
                    ..Default::default()
                },
            };

            async {
                generate(
                    Extension(infer.clone()),
                    Extension(compute_type.clone()),
                    Json(generate_request),
                )
                .await
                .map(|(_, Json(generation))| generation.generated_text)
                .map_err(|_| {
                    (
                        StatusCode::INTERNAL_SERVER_ERROR,
                        Json(ErrorResponse {
                            error: "Incomplete generation".into(),
                            error_type: "Incomplete generation".into(),
                        }),
                    )
                })
            }
        })
        .collect::<FuturesUnordered<_>>()
        .try_collect::<Vec<_>>()
        .await?;

    let response = VertexResponse { predictions };
    Ok((HeaderMap::new(), Json(response)).into_response())
}

789
790
791
792
793
/// Tokenize inputs
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/tokenize",
794
    request_body = GenerateRequest,
795
796
797
798
799
800
801
802
803
804
    responses(
    (status = 200, description = "Tokenized ids", body = TokenizeResponse),
    (status = 404, description = "No tokenizer found", body = ErrorResponse,
    example = json ! ({"error": "No fast tokenizer available"})),
    )
    )]
#[instrument(skip_all)]
async fn tokenize(
    Extension(infer): Extension<Infer>,
    Json(req): Json<GenerateRequest>,
805
) -> Result<Json<TokenizeResponse>, (StatusCode, Json<ErrorResponse>)> {
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
    let input = req.inputs.clone();
    let encoding = infer.tokenize(req).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
                let text: String = input.chars().skip(start).take(stop - start).collect();
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();
823
        Ok(Json(TokenizeResponse(tokens)))
824
825
826
827
828
829
830
831
832
833
834
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

835
836
/// Prometheus metrics scrape endpoint
#[utoipa::path(
837
838
839
840
get,
tag = "Text Generation Inference",
path = "/metrics",
responses((status = 200, description = "Prometheus Metrics", body = String))
841
842
843
844
845
)]
async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String {
    prom_handle.render()
}

846
847
848
#[derive(Clone, Debug)]
pub(crate) struct ComputeType(String);

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
849
850
851
/// Serving method
#[allow(clippy::too_many_arguments)]
pub async fn run(
852
853
    model_info: HubModelInfo,
    shard_info: ShardInfo,
854
    compat_return_full_text: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
855
    max_concurrent_requests: usize,
856
    max_best_of: usize,
857
    max_stop_sequences: usize,
Nicolas Patry's avatar
Nicolas Patry committed
858
    max_top_n_tokens: u32,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
859
    max_input_length: usize,
860
    max_total_tokens: usize,
861
    waiting_served_ratio: f32,
862
    max_batch_prefill_tokens: u32,
863
    max_batch_total_tokens: u32,
864
    max_waiting_tokens: usize,
865
    max_batch_size: Option<usize>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
866
    client: ShardedClient,
867
    tokenizer: Option<Tokenizer>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
868
869
    validation_workers: usize,
    addr: SocketAddr,
870
    allow_origin: Option<AllowOrigin>,
871
872
    ngrok: bool,
    ngrok_authtoken: Option<String>,
873
    ngrok_edge: Option<String>,
874
    tokenizer_config: HubTokenizerConfig,
875
    messages_api_enabled: bool,
drbh's avatar
drbh committed
876
    grammar_support: bool,
877
) -> Result<(), axum::BoxError> {
878
879
880
    // OpenAPI documentation
    #[derive(OpenApi)]
    #[openapi(
881
882
883
884
885
886
    paths(
    health,
    get_model_info,
    compat_generate,
    generate,
    generate_stream,
887
888
    chat_completions,
    tokenize,
889
890
891
892
893
894
895
    metrics,
    ),
    components(
    schemas(
    Info,
    CompatGenerateRequest,
    GenerateRequest,
896
    GrammarType,
897
898
899
900
901
902
    ChatRequest,
    Message,
    ChatCompletionChoice,
    ChatCompletionDelta,
    ChatCompletionChunk,
    ChatCompletion,
903
904
905
906
    GenerateParameters,
    PrefillToken,
    Token,
    GenerateResponse,
907
908
    TokenizeResponse,
    SimpleToken,
909
910
911
912
913
914
    BestOfSequence,
    Details,
    FinishReason,
    StreamResponse,
    StreamDetails,
    ErrorResponse,
drbh's avatar
drbh committed
915
    GrammarType,
916
917
918
919
920
921
922
923
924
925
926
927
    )
    ),
    tags(
    (name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API")
    ),
    info(
    title = "Text Generation Inference",
    license(
    name = "Apache 2.0",
    url = "https://www.apache.org/licenses/LICENSE-2.0"
    )
    )
928
929
930
    )]
    struct ApiDoc;

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
931
    // Create state
932
933
934
    let validation = Validation::new(
        validation_workers,
        tokenizer,
935
        max_best_of,
936
        max_stop_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
937
        max_top_n_tokens,
938
939
        max_input_length,
        max_total_tokens,
drbh's avatar
drbh committed
940
        grammar_support,
941
    );
942
943
    let generation_health = Arc::new(AtomicBool::new(false));
    let health_ext = Health::new(client.clone(), generation_health.clone());
944
945
    let infer = Infer::new(
        client,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
946
        validation,
947
        waiting_served_ratio,
948
        max_batch_prefill_tokens,
949
        max_batch_total_tokens,
950
        max_waiting_tokens,
951
        max_batch_size,
952
        max_concurrent_requests,
953
        shard_info.requires_padding,
954
        shard_info.window_size,
Nicolas Patry's avatar
Nicolas Patry committed
955
        shard_info.speculate,
956
        generation_health,
957
        tokenizer_config,
958
    );
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
959

960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
    // Duration buckets
    let duration_matcher = Matcher::Suffix(String::from("duration"));
    let n_duration_buckets = 35;
    let mut duration_buckets = Vec::with_capacity(n_duration_buckets);
    // Minimum duration in seconds
    let mut value = 0.0001;
    for _ in 0..n_duration_buckets {
        // geometric sequence
        value *= 1.5;
        duration_buckets.push(value);
    }
    // Input Length buckets
    let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
    let input_length_buckets: Vec<f64> = (0..100)
        .map(|x| (max_input_length as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Generated tokens buckets
    let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
    let generated_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Input Length buckets
    let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens"));
    let max_new_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Batch size buckets
    let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size"));
988
    let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect();
OlivierDehaene's avatar
OlivierDehaene committed
989
990
991
    // Speculated tokens buckets
    let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens"));
    let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect();
992

993
    // Prometheus handler
994
995
996
997
998
999
1000
1001
1002
1003
    let builder = PrometheusBuilder::new()
        .set_buckets_for_metric(duration_matcher, &duration_buckets)
        .unwrap()
        .set_buckets_for_metric(input_length_matcher, &input_length_buckets)
        .unwrap()
        .set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(batch_size_matcher, &batch_size_buckets)
OlivierDehaene's avatar
OlivierDehaene committed
1004
1005
        .unwrap()
        .set_buckets_for_metric(skipped_matcher, &skipped_buckets)
1006
        .unwrap();
1007
1008
1009
1010
    let prom_handle = builder
        .install_recorder()
        .expect("failed to install metrics recorder");

1011
1012
1013
1014
1015
1016
1017
    // CORS layer
    let allow_origin = allow_origin.unwrap_or(AllowOrigin::any());
    let cors_layer = CorsLayer::new()
        .allow_methods([Method::GET, Method::POST])
        .allow_headers([http::header::CONTENT_TYPE])
        .allow_origin(allow_origin);

1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
    // Endpoint info
    let info = Info {
        model_id: model_info.model_id,
        model_sha: model_info.sha,
        model_dtype: shard_info.dtype,
        model_device_type: shard_info.device_type,
        model_pipeline_tag: model_info.pipeline_tag,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
        max_input_length,
        max_total_tokens,
        waiting_served_ratio,
        max_batch_total_tokens,
        max_waiting_tokens,
1033
        max_batch_size,
1034
1035
1036
        validation_workers,
        version: env!("CARGO_PKG_VERSION"),
        sha: option_env!("VERGEN_GIT_SHA"),
1037
        docker_label: option_env!("DOCKER_LABEL"),
1038
1039
    };

drbh's avatar
drbh committed
1040
1041
1042
1043
1044
    // Define VertextApiDoc conditionally only if the "google" feature is enabled
    let doc = {
        // avoid `mut` if possible
        #[cfg(feature = "google")]
        {
1045
1046
1047
1048
1049
1050
1051
1052
1053
            use crate::VertexInstance;

            #[derive(OpenApi)]
            #[openapi(
                paths(vertex_compatibility),
                components(schemas(VertexInstance, VertexRequest, VertexResponse))
            )]
            struct VertextApiDoc;

drbh's avatar
drbh committed
1054
            // limiting mutability to the smallest scope necessary
1055
            let mut doc = ApiDoc::openapi();
drbh's avatar
drbh committed
1056
1057
1058
1059
1060
1061
1062
            doc.merge(VertextApiDoc::openapi());
            doc
        }
        #[cfg(not(feature = "google"))]
        ApiDoc::openapi()
    };

1063
    // Configure Swagger UI
drbh's avatar
drbh committed
1064
    let swagger_ui = SwaggerUi::new("/docs").url("/api-doc/openapi.json", doc);
1065
1066
1067

    // Define base and health routes
    let base_routes = Router::new()
1068
        .route("/", post(compat_generate))
1069
        .route("/", get(health))
1070
        .route("/info", get(get_model_info))
Olivier Dehaene's avatar
Olivier Dehaene committed
1071
        .route("/generate", post(generate))
1072
        .route("/generate_stream", post(generate_stream))
1073
        .route("/v1/chat/completions", post(chat_completions))
drbh's avatar
drbh committed
1074
        .route("/vertex", post(vertex_compatibility))
1075
        .route("/tokenize", post(tokenize))
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1076
        .route("/health", get(health))
1077
        .route("/ping", get(health))
1078
1079
1080
        .route("/metrics", get(metrics));

    // Conditional AWS Sagemaker route
1081
    let aws_sagemaker_route = if messages_api_enabled {
1082
1083
1084
1085
1086
        Router::new().route("/invocations", post(chat_completions)) // Use 'chat_completions' for OAI_ENABLED
    } else {
        Router::new().route("/invocations", post(compat_generate)) // Use 'compat_generate' otherwise
    };

1087
1088
    let compute_type =
        ComputeType(std::env::var("COMPUTE_TYPE").unwrap_or("gpu+optimized".to_string()));
1089

1090
    // Combine routes and layers
drbh's avatar
drbh committed
1091
    let mut app = Router::new()
1092
1093
        .merge(swagger_ui)
        .merge(base_routes)
drbh's avatar
drbh committed
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
        .merge(aws_sagemaker_route);

    #[cfg(feature = "google")]
    {
        tracing::info!("Built with `google` feature");
        tracing::info!(
            "Environment variables `AIP_PREDICT_ROUTE` and `AIP_HEALTH_ROUTE` will be respected."
        );
        if let Ok(env_predict_route) = std::env::var("AIP_PREDICT_ROUTE") {
            app = app.route(&env_predict_route, post(vertex_compatibility));
        }
        if let Ok(env_health_route) = std::env::var("AIP_HEALTH_ROUTE") {
            app = app.route(&env_health_route, get(health));
        }
    }

    // add layers after routes
    app = app
1112
        .layer(Extension(info))
1113
        .layer(Extension(health_ext.clone()))
1114
1115
        .layer(Extension(compat_return_full_text))
        .layer(Extension(infer))
1116
        .layer(Extension(compute_type))
1117
        .layer(Extension(prom_handle.clone()))
Nicolas Patry's avatar
Nicolas Patry committed
1118
        .layer(OtelAxumLayer::default())
1119
        .layer(cors_layer);
Olivier Dehaene's avatar
Olivier Dehaene committed
1120

1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
    if ngrok {
        #[cfg(feature = "ngrok")]
        {
            use ngrok::config::TunnelBuilder;

            let _ = addr;

            let authtoken =
                ngrok_authtoken.expect("`ngrok-authtoken` must be set when using ngrok tunneling");

1131
1132
1133
            let edge = ngrok_edge.expect("`ngrok-edge` must be set when using ngrok tunneling");

            let tunnel = ngrok::Session::builder()
1134
1135
1136
1137
                .authtoken(authtoken)
                .connect()
                .await
                .unwrap()
1138
1139
                .labeled_tunnel()
                .label("edge", edge);
1140
1141

            let listener = tunnel.listen().await.unwrap();
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156

            // Run prom metrics and health locally too
            tokio::spawn(
                axum::Server::bind(&addr)
                    .serve(
                        Router::new()
                            .route("/health", get(health))
                            .route("/metrics", get(metrics))
                            .layer(Extension(health_ext))
                            .layer(Extension(prom_handle))
                            .into_make_service(),
                    )
                    //Wait until all requests are finished to shut down
                    .with_graceful_shutdown(shutdown_signal()),
            );
1157
1158
1159
1160
1161
1162

            // Run server
            axum::Server::builder(listener)
                .serve(app.into_make_service())
                //Wait until all requests are finished to shut down
                .with_graceful_shutdown(shutdown_signal())
1163
                .await?;
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
        }
        #[cfg(not(feature = "ngrok"))]
        {
            let _ngrok_authtoken = ngrok_authtoken;
            let _ngrok_domain = ngrok_domain;
            let _ngrok_username = ngrok_username;
            let _ngrok_password = ngrok_password;

            panic!("`text-generation-router` was compiled without the `ngrok` feature");
        }
    } else {
        // Run server
        axum::Server::bind(&addr)
            .serve(app.into_make_service())
            // Wait until all requests are finished to shut down
            .with_graceful_shutdown(shutdown_signal())
1180
            .await?;
1181
    }
1182
    Ok(())
Olivier Dehaene's avatar
Olivier Dehaene committed
1183
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

/// Shutdown signal handler
async fn shutdown_signal() {
    let ctrl_c = async {
        signal::ctrl_c()
            .await
            .expect("failed to install Ctrl+C handler");
    };

    #[cfg(unix)]
    let terminate = async {
        signal::unix::signal(signal::unix::SignalKind::terminate())
            .expect("failed to install signal handler")
            .recv()
            .await;
    };

    #[cfg(not(unix))]
    let terminate = std::future::pending::<()>();

    tokio::select! {
        _ = ctrl_c => {},
        _ = terminate => {},
    }

    tracing::info!("signal received, starting graceful shutdown");
1210
    opentelemetry::global::shutdown_tracer_provider();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1211
}
1212

1213
1214
impl From<i32> for FinishReason {
    fn from(finish_reason: i32) -> Self {
Nicolas Patry's avatar
Nicolas Patry committed
1215
        let finish_reason = text_generation_client::FinishReason::try_from(finish_reason).unwrap();
1216
1217
1218
1219
1220
1221
1222
1223
        match finish_reason {
            text_generation_client::FinishReason::Length => FinishReason::Length,
            text_generation_client::FinishReason::EosToken => FinishReason::EndOfSequenceToken,
            text_generation_client::FinishReason::StopSequence => FinishReason::StopSequence,
        }
    }
}

1224
1225
1226
1227
1228
1229
1230
1231
/// Convert to Axum supported formats
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
    fn from(err: InferError) -> Self {
        let status_code = match err {
            InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY,
            InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS,
            InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY,
            InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR,
1232
            InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY,
1233
1234
1235
1236
1237
1238
        };

        (
            status_code,
            Json(ErrorResponse {
                error: err.to_string(),
1239
                error_type: err.error_type().to_string(),
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
            }),
        )
    }
}

impl From<InferError> for Event {
    fn from(err: InferError) -> Self {
        Event::default()
            .json_data(ErrorResponse {
                error: err.to_string(),
1250
                error_type: err.error_type().to_string(),
1251
1252
1253
1254
            })
            .unwrap()
    }
}