README.md 10.5 KB
Newer Older
1
<div align="center">
OlivierDehaene's avatar
OlivierDehaene committed
2

Nicolas Patry's avatar
Nicolas Patry committed
3
<a href="https://www.youtube.com/watch?v=jlMAX2Oaht0">
Nicolas Patry's avatar
Nicolas Patry committed
4
  <img width=560 width=315 alt="Making TGI deployment optimal" src="https://huggingface.co/datasets/Narsil/tgi_assets/resolve/main/thumbnail.png">
Nicolas Patry's avatar
Nicolas Patry committed
5
</a>
6

7
# Text Generation Inference
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
8

9
10
11
12
13
14
<a href="https://github.com/huggingface/text-generation-inference">
  <img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/huggingface/text-generation-inference?style=social">
</a>
<a href="https://huggingface.github.io/text-generation-inference">
  <img alt="Swagger API documentation" src="https://img.shields.io/badge/API-Swagger-informational">
</a>
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
15

16
A Rust, Python and gRPC server for text generation inference. Used in production at [HuggingFace](https://huggingface.co)
OlivierDehaene's avatar
OlivierDehaene committed
17
18
19
to power Hugging Chat, the Inference API and Inference Endpoint.

</div>
20
21
22

## Table of contents

vinkamath's avatar
vinkamath committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
  - [Get Started](#get-started)
    - [Docker](#docker)
    - [API documentation](#api-documentation)
    - [Using a private or gated model](#using-a-private-or-gated-model)
    - [A note on Shared Memory (shm)](#a-note-on-shared-memory-shm)
    - [Distributed Tracing](#distributed-tracing)
    - [Architecture](#architecture)
    - [Local install](#local-install)
  - [Optimized architectures](#optimized-architectures)
  - [Run locally](#run-locally)
    - [Run](#run)
    - [Quantization](#quantization)
  - [Develop](#develop)
  - [Testing](#testing)
37

38
Text Generation Inference (TGI) is a toolkit for deploying and serving Large Language Models (LLMs). TGI enables high-performance text generation for the most popular open-source LLMs, including Llama, Falcon, StarCoder, BLOOM, GPT-NeoX, and [more](https://huggingface.co/docs/text-generation-inference/supported_models). TGI implements many features, such as:
Olivier Dehaene's avatar
Olivier Dehaene committed
39

40
41
- Simple launcher to serve most popular LLMs
- Production ready (distributed tracing with Open Telemetry, Prometheus metrics)
OlivierDehaene's avatar
OlivierDehaene committed
42
- Tensor Parallelism for faster inference on multiple GPUs
Yannic Kilcher's avatar
Yannic Kilcher committed
43
- Token streaming using Server-Sent Events (SSE)
44
45
- Continuous batching of incoming requests for increased total throughput
- Optimized transformers code for inference using [Flash Attention](https://github.com/HazyResearch/flash-attention) and [Paged Attention](https://github.com/vllm-project/vllm) on the most popular architectures
Nicolas Patry's avatar
Nicolas Patry committed
46
47
48
49
50
- Quantization with :
  - [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)
  - [GPT-Q](https://arxiv.org/abs/2210.17323)
  - [EETQ](https://github.com/NetEase-FuXi/EETQ)
  - [AWQ](https://github.com/casper-hansen/AutoAWQ)
51
- [Safetensors](https://github.com/huggingface/safetensors) weight loading
OlivierDehaene's avatar
OlivierDehaene committed
52
- Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
53
- Logits warper (temperature scaling, top-p, top-k, repetition penalty, more details see [transformers.LogitsProcessor](https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor))
54
- Stop sequences
OlivierDehaene's avatar
OlivierDehaene committed
55
- Log probabilities
Nicolas Patry's avatar
Nicolas Patry committed
56
57
- [Speculation](https://huggingface.co/docs/text-generation-inference/conceptual/speculation) ~2x latency
- [Guidance/JSON](https://huggingface.co/docs/text-generation-inference/conceptual/guidance). Specify output format to speed up inference and make sure the output is valid according to some specs..
58
59
- Custom Prompt Generation: Easily generate text by providing custom prompts to guide the model's output
- Fine-tuning Support: Utilize fine-tuned models for specific tasks to achieve higher accuracy and performance
60

Nicolas Patry's avatar
Nicolas Patry committed
61
62
63
64
65
66
67
### Hardware support

- [Nvidia](https://github.com/huggingface/text-generation-inference/pkgs/container/text-generation-inference)
- [AMD](https://github.com/huggingface/text-generation-inference/pkgs/container/text-generation-inference) (-rocm)
- [Inferentia](https://github.com/huggingface/optimum-neuron/tree/main/text-generation-inference)
- [Intel GPU](https://github.com/huggingface/text-generation-inference/pull/1475)
- [Gaudi](https://github.com/huggingface/tgi-gaudi)
68
- [Google TPU](https://huggingface.co/docs/optimum-tpu/howto/serving)
Nicolas Patry's avatar
Nicolas Patry committed
69

70

71
## Get Started
72
73

### Docker
Olivier Dehaene's avatar
Olivier Dehaene committed
74

75
For a detailed starting guide, please see the [Quick Tour](https://huggingface.co/docs/text-generation-inference/quicktour). The easiest way of getting started is using the official Docker container:
76
77

```shell
Nicolas Patry's avatar
Nicolas Patry committed
78
model=HuggingFaceH4/zephyr-7b-beta
Nicolas Patry's avatar
Nicolas Patry committed
79
80
# share a volume with the Docker container to avoid downloading weights every run
volume=$PWD/data
81

Nicolas Patry's avatar
Nicolas Patry committed
82
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \
83
    ghcr.io/huggingface/text-generation-inference:2.1.1 --model-id $model
84
```
85

86
And then you can make requests like
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
87

88
```bash
89
curl 127.0.0.1:8080/generate_stream \
90
    -X POST \
OlivierDehaene's avatar
OlivierDehaene committed
91
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
92
93
    -H 'Content-Type: application/json'
```
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
94

95
**Note:** To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 12.2 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar.
fxmarty's avatar
fxmarty committed
96

97
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/supported_models#supported-hardware). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.1.1-rocm --model-id $model` instead of the command above.
OlivierDehaene's avatar
OlivierDehaene committed
98

99
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli):
OlivierDehaene's avatar
OlivierDehaene committed
100
```
101
text-generation-launcher --help
102
```
OlivierDehaene's avatar
OlivierDehaene committed
103

104
### API documentation
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
105

106
107
108
You can consult the OpenAPI documentation of the `text-generation-inference` REST API using the `/docs` route.
The Swagger UI is also available at: [https://huggingface.github.io/text-generation-inference](https://huggingface.github.io/text-generation-inference).

OlivierDehaene's avatar
OlivierDehaene committed
109
### Using a private or gated model
Nicolas Patry's avatar
Nicolas Patry committed
110

111
You have the option to utilize the `HF_TOKEN` environment variable for configuring the token employed by
OlivierDehaene's avatar
OlivierDehaene committed
112
`text-generation-inference`. This allows you to gain access to protected resources.
Nicolas Patry's avatar
Nicolas Patry committed
113

OlivierDehaene's avatar
OlivierDehaene committed
114
For example, if you want to serve the gated Llama V2 model variants:
115

OlivierDehaene's avatar
OlivierDehaene committed
116
117
1. Go to https://huggingface.co/settings/tokens
2. Copy your cli READ token
118
3. Export `HF_TOKEN=<your cli READ token>`
OlivierDehaene's avatar
OlivierDehaene committed
119
120
121

or with Docker:

122
```shell
OlivierDehaene's avatar
OlivierDehaene committed
123
124
125
126
model=meta-llama/Llama-2-7b-chat-hf
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
token=<your cli READ token>

127
docker run --gpus all --shm-size 1g -e HF_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.0 --model-id $model
OlivierDehaene's avatar
OlivierDehaene committed
128
```
129

130
131
### A note on Shared Memory (shm)

132
[`NCCL`](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html) is a communication framework used by
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
`PyTorch` to do distributed training/inference. `text-generation-inference` make
use of `NCCL` to enable Tensor Parallelism to dramatically speed up inference for large language models.

In order to share data between the different devices of a `NCCL` group, `NCCL` might fall back to using the host memory if
peer-to-peer using NVLink or PCI is not possible.

To allow the container to use 1G of Shared Memory and support SHM sharing, we add `--shm-size 1g` on the above command.

If you are running `text-generation-inference` inside `Kubernetes`. You can also add Shared Memory to the container by
creating a volume with:

```yaml
- name: shm
  emptyDir:
   medium: Memory
   sizeLimit: 1Gi
```

and mounting it to `/dev/shm`.

153
Finally, you can also disable SHM sharing by using the `NCCL_SHM_DISABLE=1` environment variable. However, note that
154
155
this will impact performance.

OlivierDehaene's avatar
OlivierDehaene committed
156
157
158
### Distributed Tracing

`text-generation-inference` is instrumented with distributed tracing using OpenTelemetry. You can use this feature
Nicolas Patry's avatar
Nicolas Patry committed
159
by setting the address to an OTLP collector with the `--otlp-endpoint` argument. The default service name can be
160
overridden with the `--otlp-service-name` argument
OlivierDehaene's avatar
OlivierDehaene committed
161

162
163
### Architecture

fxmarty's avatar
fxmarty committed
164
![TGI architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/TGI.png)
165

166
167
### Local install

168
You can also opt to install `text-generation-inference` locally.
169

170
First [install Rust](https://rustup.rs/) and create a Python virtual environment with at least
171
172
173
174
175
Python 3.9, e.g. using `conda`:

```shell
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

Nicolas Patry's avatar
Nicolas Patry committed
176
conda create -n text-generation-inference python=3.11
177
178
179
conda activate text-generation-inference
```

180
181
182
183
184
185
186
187
188
189
190
191
You may also need to install Protoc.

On Linux:

```shell
PROTOC_ZIP=protoc-21.12-linux-x86_64.zip
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP
sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc
sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*'
rm -f $PROTOC_ZIP
```

192
On MacOS, using Homebrew:
193
194
195
196
197

```shell
brew install protobuf
```

198
Then run:
199

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
200
```shell
201
BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels
Nicolas Patry's avatar
Nicolas Patry committed
202
text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
203
204
```

205
**Note:** on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run:
206
207

```shell
208
sudo apt-get install libssl-dev gcc -y
209
210
```

211
212
## Optimized architectures

Nicolas Patry's avatar
Nicolas Patry committed
213
TGI works out of the box to serve optimized models for all modern models. They can be found in [this list](https://huggingface.co/docs/text-generation-inference/supported_models).
214
215
216
217
218
219
220
221
222
223
224

Other architectures are supported on a best-effort basis using:

`AutoModelForCausalLM.from_pretrained(<model>, device_map="auto")`

or

`AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")`



Nicolas Patry's avatar
Nicolas Patry committed
225
## Run locally
226

227
228
### Run

229
```shell
Nicolas Patry's avatar
Nicolas Patry committed
230
text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2
231
232
```

233
234
### Quantization

235
236
237
You can also quantize the weights with bitsandbytes to reduce the VRAM requirement:

```shell
OlivierDehaene's avatar
OlivierDehaene committed
238
text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2 --quantize
239
240
```

Nicolas Patry's avatar
Nicolas Patry committed
241
242
4bit quantization is available using the [NF4 and FP4 data types from bitsandbytes](https://arxiv.org/pdf/2305.14314.pdf). It can be enabled by providing `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` as a command line argument to `text-generation-launcher`.

243
## Develop
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
244

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
245
```shell
246
247
make server-dev
make router-dev
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
248
249
```

250
## Testing
Nicolas Patry's avatar
Nicolas Patry committed
251
252

```shell
253
254
255
256
# python
make python-server-tests
make python-client-tests
# or both server and client tests
257
make python-tests
258
# rust cargo tests
259
260
make rust-tests
# integration tests
261
make integration-tests
262
```