README.md 8.95 KB
Newer Older
1
2
<div align="center">

3
4
![image](https://github.com/huggingface/text-generation-inference/assets/3841370/38ba1531-ea0d-4851-b31a-a6d4ddc944b0)

5
# Text Generation Inference
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
6

7
8
9
10
11
12
<a href="https://github.com/huggingface/text-generation-inference">
  <img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/huggingface/text-generation-inference?style=social">
</a>
<a href="https://huggingface.github.io/text-generation-inference">
  <img alt="Swagger API documentation" src="https://img.shields.io/badge/API-Swagger-informational">
</a>
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
13

14
A Rust, Python and gRPC server for text generation inference. Used in production at [HuggingFace](https://huggingface.co)
OlivierDehaene's avatar
OlivierDehaene committed
15
16
17
to power Hugging Chat, the Inference API and Inference Endpoint.

</div>
18
19
20
21

## Table of contents

- [Get Started](#get-started)
22
  - [API Documentation](#api-documentation)
OlivierDehaene's avatar
OlivierDehaene committed
23
  - [Using a private or gated model](#using-a-private-or-gated-model)
24
  - [A note on Shared Memory](#a-note-on-shared-memory-shm)
25
  - [Distributed Tracing](#distributed-tracing)
26
27
  - [Local Install](#local-install)
  - [CUDA Kernels](#cuda-kernels)
28
- [Optimized architectures](#optimized-architectures)
OlivierDehaene's avatar
OlivierDehaene committed
29
- [Run Falcon](#run-falcon)
30
31
32
33
  - [Run](#run)
  - [Quantization](#quantization)
- [Develop](#develop)
- [Testing](#testing)
34

35
Text Generation Inference (TGI) is a toolkit for deploying and serving Large Language Models (LLMs). TGI enables high-performance text generation for the most popular open-source LLMs, including Llama, Falcon, StarCoder, BLOOM, GPT-NeoX, and [more](https://huggingface.co/docs/text-generation-inference/supported_models). TGI implements many features, such as:
Olivier Dehaene's avatar
Olivier Dehaene committed
36

37
38
- Simple launcher to serve most popular LLMs
- Production ready (distributed tracing with Open Telemetry, Prometheus metrics)
OlivierDehaene's avatar
OlivierDehaene committed
39
- Tensor Parallelism for faster inference on multiple GPUs
Yannic Kilcher's avatar
Yannic Kilcher committed
40
- Token streaming using Server-Sent Events (SSE)
41
42
- Continuous batching of incoming requests for increased total throughput
- Optimized transformers code for inference using [Flash Attention](https://github.com/HazyResearch/flash-attention) and [Paged Attention](https://github.com/vllm-project/vllm) on the most popular architectures
43
- Quantization with [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) and [GPT-Q](https://arxiv.org/abs/2210.17323)
44
- [Safetensors](https://github.com/huggingface/safetensors) weight loading
OlivierDehaene's avatar
OlivierDehaene committed
45
- Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
46
- Logits warper (temperature scaling, top-p, top-k, repetition penalty, more details see [transformers.LogitsProcessor](https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor))
47
- Stop sequences
OlivierDehaene's avatar
OlivierDehaene committed
48
- Log probabilities
49
50
- Custom Prompt Generation: Easily generate text by providing custom prompts to guide the model's output
- Fine-tuning Support: Utilize fine-tuned models for specific tasks to achieve higher accuracy and performance
51
52


53
## Get Started
54
55

### Docker
Olivier Dehaene's avatar
Olivier Dehaene committed
56

57
For a detailed starting guide, please see the [Quick Tour](https://huggingface.co/docs/text-generation-inference/quicktour). The easiest way of getting started is using the official Docker container:
58
59

```shell
OlivierDehaene's avatar
OlivierDehaene committed
60
model=tiiuae/falcon-7b-instruct
61
62
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run

Nicolas Patry's avatar
Nicolas Patry committed
63
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.1.0 --model-id $model
64
```
65

66
And then you can make requests like
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
67

68
```bash
69
70
curl 127.0.0.1:8080/generate \
    -X POST \
OlivierDehaene's avatar
OlivierDehaene committed
71
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
72
73
    -H 'Content-Type: application/json'
```
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
74

75
**Note:** To use GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 11.8 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar.
OlivierDehaene's avatar
OlivierDehaene committed
76

77
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli):
OlivierDehaene's avatar
OlivierDehaene committed
78
```
79
text-generation-launcher --help
80
```
OlivierDehaene's avatar
OlivierDehaene committed
81

82
### API documentation
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
83

84
85
86
You can consult the OpenAPI documentation of the `text-generation-inference` REST API using the `/docs` route.
The Swagger UI is also available at: [https://huggingface.github.io/text-generation-inference](https://huggingface.github.io/text-generation-inference).

OlivierDehaene's avatar
OlivierDehaene committed
87
### Using a private or gated model
Nicolas Patry's avatar
Nicolas Patry committed
88

89
You have the option to utilize the `HUGGING_FACE_HUB_TOKEN` environment variable for configuring the token employed by
OlivierDehaene's avatar
OlivierDehaene committed
90
`text-generation-inference`. This allows you to gain access to protected resources.
Nicolas Patry's avatar
Nicolas Patry committed
91

OlivierDehaene's avatar
OlivierDehaene committed
92
For example, if you want to serve the gated Llama V2 model variants:
93

OlivierDehaene's avatar
OlivierDehaene committed
94
95
96
97
98
99
1. Go to https://huggingface.co/settings/tokens
2. Copy your cli READ token
3. Export `HUGGING_FACE_HUB_TOKEN=<your cli READ token>`

or with Docker:

100
```shell
OlivierDehaene's avatar
OlivierDehaene committed
101
102
103
104
model=meta-llama/Llama-2-7b-chat-hf
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
token=<your cli READ token>

OlivierDehaene's avatar
OlivierDehaene committed
105
docker run --gpus all --shm-size 1g -e HUGGING_FACE_HUB_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.1.0 --model-id $model
OlivierDehaene's avatar
OlivierDehaene committed
106
```
107

108
109
### A note on Shared Memory (shm)

110
[`NCCL`](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html) is a communication framework used by
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
`PyTorch` to do distributed training/inference. `text-generation-inference` make
use of `NCCL` to enable Tensor Parallelism to dramatically speed up inference for large language models.

In order to share data between the different devices of a `NCCL` group, `NCCL` might fall back to using the host memory if
peer-to-peer using NVLink or PCI is not possible.

To allow the container to use 1G of Shared Memory and support SHM sharing, we add `--shm-size 1g` on the above command.

If you are running `text-generation-inference` inside `Kubernetes`. You can also add Shared Memory to the container by
creating a volume with:

```yaml
- name: shm
  emptyDir:
   medium: Memory
   sizeLimit: 1Gi
```

and mounting it to `/dev/shm`.

131
Finally, you can also disable SHM sharing by using the `NCCL_SHM_DISABLE=1` environment variable. However, note that
132
133
this will impact performance.

OlivierDehaene's avatar
OlivierDehaene committed
134
135
136
137
138
### Distributed Tracing

`text-generation-inference` is instrumented with distributed tracing using OpenTelemetry. You can use this feature
by setting the address to an OTLP collector with the `--otlp-endpoint` argument.

139
140
### Local install

141
You can also opt to install `text-generation-inference` locally.
142

143
First [install Rust](https://rustup.rs/) and create a Python virtual environment with at least
144
145
146
147
148
Python 3.9, e.g. using `conda`:

```shell
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

149
conda create -n text-generation-inference python=3.9
150
151
152
conda activate text-generation-inference
```

153
154
155
156
157
158
159
160
161
162
163
164
You may also need to install Protoc.

On Linux:

```shell
PROTOC_ZIP=protoc-21.12-linux-x86_64.zip
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP
sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc
sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*'
rm -f $PROTOC_ZIP
```

165
On MacOS, using Homebrew:
166
167
168
169
170

```shell
brew install protobuf
```

171
Then run:
172

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
173
```shell
174
BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels
175
make run-falcon-7b-instruct
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
176
177
```

178
**Note:** on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run:
179
180

```shell
181
sudo apt-get install libssl-dev gcc -y
182
183
```

184
185
### CUDA Kernels

186
The custom CUDA kernels are only tested on NVIDIA A100s. If you have any installation or runtime issues, you can remove
Nicolas Patry's avatar
Nicolas Patry committed
187
the kernels by using the `DISABLE_CUSTOM_KERNELS=True` environment variable.
188
189
190

Be aware that the official Docker image has them enabled by default.

191
192
193
194
195
196
197
198
199
200
201
202
203
204
## Optimized architectures

TGI works out of the box to serve optimized models in [this list](https://huggingface.co/docs/text-generation-inference/supported_models).

Other architectures are supported on a best-effort basis using:

`AutoModelForCausalLM.from_pretrained(<model>, device_map="auto")`

or

`AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")`



OlivierDehaene's avatar
OlivierDehaene committed
205
## Run Falcon
206

207
208
### Run

209
```shell
210
make run-falcon-7b-instruct
211
212
```

213
214
### Quantization

215
216
217
You can also quantize the weights with bitsandbytes to reduce the VRAM requirement:

```shell
OlivierDehaene's avatar
OlivierDehaene committed
218
make run-falcon-7b-instruct-quantize
219
220
```

Nicolas Patry's avatar
Nicolas Patry committed
221
222
4bit quantization is available using the [NF4 and FP4 data types from bitsandbytes](https://arxiv.org/pdf/2305.14314.pdf). It can be enabled by providing `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` as a command line argument to `text-generation-launcher`.

223
## Develop
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
224

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
225
```shell
226
227
make server-dev
make router-dev
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
228
229
```

230
## Testing
Nicolas Patry's avatar
Nicolas Patry committed
231
232

```shell
233
234
235
236
# python
make python-server-tests
make python-client-tests
# or both server and client tests
237
make python-tests
238
# rust cargo tests
239
240
make rust-tests
# integration tests
241
make integration-tests
242
```