README.md 9.62 KB
Newer Older
1
<div align="center">
Nicolas Patry's avatar
Nicolas Patry committed
2
3
  
<a href="https://www.youtube.com/watch?v=jlMAX2Oaht0">
Nicolas Patry's avatar
Nicolas Patry committed
4
  <img width=560 width=315 alt="Making TGI deployment optimal" src="https://huggingface.co/datasets/Narsil/tgi_assets/resolve/main/thumbnail.png">
Nicolas Patry's avatar
Nicolas Patry committed
5
</a>
6

7
# Text Generation Inference
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
8

9
10
11
12
13
14
<a href="https://github.com/huggingface/text-generation-inference">
  <img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/huggingface/text-generation-inference?style=social">
</a>
<a href="https://huggingface.github.io/text-generation-inference">
  <img alt="Swagger API documentation" src="https://img.shields.io/badge/API-Swagger-informational">
</a>
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
15

16
A Rust, Python and gRPC server for text generation inference. Used in production at [HuggingFace](https://huggingface.co)
OlivierDehaene's avatar
OlivierDehaene committed
17
18
19
to power Hugging Chat, the Inference API and Inference Endpoint.

</div>
20
21
22
23

## Table of contents

- [Get Started](#get-started)
24
  - [API Documentation](#api-documentation)
OlivierDehaene's avatar
OlivierDehaene committed
25
  - [Using a private or gated model](#using-a-private-or-gated-model)
26
  - [A note on Shared Memory](#a-note-on-shared-memory-shm)
27
  - [Distributed Tracing](#distributed-tracing)
28
29
  - [Local Install](#local-install)
  - [CUDA Kernels](#cuda-kernels)
30
- [Optimized architectures](#optimized-architectures)
OlivierDehaene's avatar
OlivierDehaene committed
31
- [Run Falcon](#run-falcon)
32
33
34
35
  - [Run](#run)
  - [Quantization](#quantization)
- [Develop](#develop)
- [Testing](#testing)
36

37
Text Generation Inference (TGI) is a toolkit for deploying and serving Large Language Models (LLMs). TGI enables high-performance text generation for the most popular open-source LLMs, including Llama, Falcon, StarCoder, BLOOM, GPT-NeoX, and [more](https://huggingface.co/docs/text-generation-inference/supported_models). TGI implements many features, such as:
Olivier Dehaene's avatar
Olivier Dehaene committed
38

39
40
- Simple launcher to serve most popular LLMs
- Production ready (distributed tracing with Open Telemetry, Prometheus metrics)
OlivierDehaene's avatar
OlivierDehaene committed
41
- Tensor Parallelism for faster inference on multiple GPUs
Yannic Kilcher's avatar
Yannic Kilcher committed
42
- Token streaming using Server-Sent Events (SSE)
43
44
- Continuous batching of incoming requests for increased total throughput
- Optimized transformers code for inference using [Flash Attention](https://github.com/HazyResearch/flash-attention) and [Paged Attention](https://github.com/vllm-project/vllm) on the most popular architectures
45
- Quantization with [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) and [GPT-Q](https://arxiv.org/abs/2210.17323)
46
- [Safetensors](https://github.com/huggingface/safetensors) weight loading
OlivierDehaene's avatar
OlivierDehaene committed
47
- Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
48
- Logits warper (temperature scaling, top-p, top-k, repetition penalty, more details see [transformers.LogitsProcessor](https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor))
49
- Stop sequences
OlivierDehaene's avatar
OlivierDehaene committed
50
- Log probabilities
51
52
- Custom Prompt Generation: Easily generate text by providing custom prompts to guide the model's output
- Fine-tuning Support: Utilize fine-tuned models for specific tasks to achieve higher accuracy and performance
53
54


55
## Get Started
56
57

### Docker
Olivier Dehaene's avatar
Olivier Dehaene committed
58

59
For a detailed starting guide, please see the [Quick Tour](https://huggingface.co/docs/text-generation-inference/quicktour). The easiest way of getting started is using the official Docker container:
60
61

```shell
Nicolas Patry's avatar
Nicolas Patry committed
62
model=HuggingFaceH4/zephyr-7b-beta
63
64
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run

OlivierDehaene's avatar
v1.3.0  
OlivierDehaene committed
65
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.3 --model-id $model
66
```
67

68
And then you can make requests like
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
69

70
```bash
71
72
curl 127.0.0.1:8080/generate \
    -X POST \
OlivierDehaene's avatar
OlivierDehaene committed
73
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
74
75
    -H 'Content-Type: application/json'
```
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
76

fxmarty's avatar
fxmarty committed
77
78
**Note:** To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 11.8 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar.

OlivierDehaene's avatar
v1.3.0  
OlivierDehaene committed
79
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/supported_models#supported-hardware). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.3-rocm --model-id $model` instead of the command above.
OlivierDehaene's avatar
OlivierDehaene committed
80

81
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli):
OlivierDehaene's avatar
OlivierDehaene committed
82
```
83
text-generation-launcher --help
84
```
OlivierDehaene's avatar
OlivierDehaene committed
85

86
### API documentation
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
87

88
89
90
You can consult the OpenAPI documentation of the `text-generation-inference` REST API using the `/docs` route.
The Swagger UI is also available at: [https://huggingface.github.io/text-generation-inference](https://huggingface.github.io/text-generation-inference).

OlivierDehaene's avatar
OlivierDehaene committed
91
### Using a private or gated model
Nicolas Patry's avatar
Nicolas Patry committed
92

93
You have the option to utilize the `HUGGING_FACE_HUB_TOKEN` environment variable for configuring the token employed by
OlivierDehaene's avatar
OlivierDehaene committed
94
`text-generation-inference`. This allows you to gain access to protected resources.
Nicolas Patry's avatar
Nicolas Patry committed
95

OlivierDehaene's avatar
OlivierDehaene committed
96
For example, if you want to serve the gated Llama V2 model variants:
97

OlivierDehaene's avatar
OlivierDehaene committed
98
99
100
101
102
103
1. Go to https://huggingface.co/settings/tokens
2. Copy your cli READ token
3. Export `HUGGING_FACE_HUB_TOKEN=<your cli READ token>`

or with Docker:

104
```shell
OlivierDehaene's avatar
OlivierDehaene committed
105
106
107
108
model=meta-llama/Llama-2-7b-chat-hf
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
token=<your cli READ token>

OlivierDehaene's avatar
v1.3.0  
OlivierDehaene committed
109
docker run --gpus all --shm-size 1g -e HUGGING_FACE_HUB_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.3 --model-id $model
OlivierDehaene's avatar
OlivierDehaene committed
110
```
111

112
113
### A note on Shared Memory (shm)

114
[`NCCL`](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html) is a communication framework used by
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
`PyTorch` to do distributed training/inference. `text-generation-inference` make
use of `NCCL` to enable Tensor Parallelism to dramatically speed up inference for large language models.

In order to share data between the different devices of a `NCCL` group, `NCCL` might fall back to using the host memory if
peer-to-peer using NVLink or PCI is not possible.

To allow the container to use 1G of Shared Memory and support SHM sharing, we add `--shm-size 1g` on the above command.

If you are running `text-generation-inference` inside `Kubernetes`. You can also add Shared Memory to the container by
creating a volume with:

```yaml
- name: shm
  emptyDir:
   medium: Memory
   sizeLimit: 1Gi
```

and mounting it to `/dev/shm`.

135
Finally, you can also disable SHM sharing by using the `NCCL_SHM_DISABLE=1` environment variable. However, note that
136
137
this will impact performance.

OlivierDehaene's avatar
OlivierDehaene committed
138
139
140
141
142
### Distributed Tracing

`text-generation-inference` is instrumented with distributed tracing using OpenTelemetry. You can use this feature
by setting the address to an OTLP collector with the `--otlp-endpoint` argument.

143
144
### Architecture

fxmarty's avatar
fxmarty committed
145
![TGI architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/TGI.png)
146

147
148
### Local install

149
You can also opt to install `text-generation-inference` locally.
150

151
First [install Rust](https://rustup.rs/) and create a Python virtual environment with at least
152
153
154
155
156
Python 3.9, e.g. using `conda`:

```shell
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

157
conda create -n text-generation-inference python=3.9
158
159
160
conda activate text-generation-inference
```

161
162
163
164
165
166
167
168
169
170
171
172
You may also need to install Protoc.

On Linux:

```shell
PROTOC_ZIP=protoc-21.12-linux-x86_64.zip
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP
sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc
sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*'
rm -f $PROTOC_ZIP
```

173
On MacOS, using Homebrew:
174
175
176
177
178

```shell
brew install protobuf
```

179
Then run:
180

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
181
```shell
182
BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels
183
make run-falcon-7b-instruct
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
184
185
```

186
**Note:** on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run:
187
188

```shell
189
sudo apt-get install libssl-dev gcc -y
190
191
```

192
193
### CUDA Kernels

fxmarty's avatar
fxmarty committed
194
The custom CUDA kernels are only tested on NVIDIA A100, AMD MI210 and AMD MI250. If you have any installation or runtime issues, you can remove
Nicolas Patry's avatar
Nicolas Patry committed
195
the kernels by using the `DISABLE_CUSTOM_KERNELS=True` environment variable.
196
197
198

Be aware that the official Docker image has them enabled by default.

199
200
201
202
203
204
205
206
207
208
209
210
211
212
## Optimized architectures

TGI works out of the box to serve optimized models in [this list](https://huggingface.co/docs/text-generation-inference/supported_models).

Other architectures are supported on a best-effort basis using:

`AutoModelForCausalLM.from_pretrained(<model>, device_map="auto")`

or

`AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")`



OlivierDehaene's avatar
OlivierDehaene committed
213
## Run Falcon
214

215
216
### Run

217
```shell
218
make run-falcon-7b-instruct
219
220
```

221
222
### Quantization

223
224
225
You can also quantize the weights with bitsandbytes to reduce the VRAM requirement:

```shell
OlivierDehaene's avatar
OlivierDehaene committed
226
make run-falcon-7b-instruct-quantize
227
228
```

Nicolas Patry's avatar
Nicolas Patry committed
229
230
4bit quantization is available using the [NF4 and FP4 data types from bitsandbytes](https://arxiv.org/pdf/2305.14314.pdf). It can be enabled by providing `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` as a command line argument to `text-generation-launcher`.

231
## Develop
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
232

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
233
```shell
234
235
make server-dev
make router-dev
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
236
237
```

238
## Testing
Nicolas Patry's avatar
Nicolas Patry committed
239
240

```shell
241
242
243
244
# python
make python-server-tests
make python-client-tests
# or both server and client tests
245
make python-tests
246
# rust cargo tests
247
248
make rust-tests
# integration tests
249
make integration-tests
250
```