layers.py 20.1 KB
Newer Older
1
import os
2
import torch
3
import torch.distributed
4
5

from torch import nn
6
from torch.nn import functional as F
7
from typing import List
8
9
10

HAS_BITS_AND_BYTES = True
try:
11
    import bitsandbytes as bnb
Nicolas Patry's avatar
Nicolas Patry committed
12
    from bitsandbytes.nn import Int8Params, Params4bit
13
14

except ImportError:
15
16
    HAS_BITS_AND_BYTES = False

17
18
from accelerate import init_empty_weights

19
from text_generation_server.utils.gptq.quant_linear import QuantLinear
20

21
22
HAS_EXLLAMA = True
if os.getenv("DISABLE_EXLLAMA") == "True":
23
    HAS_EXLLAMA = False
24
25
26
27
try:
    from text_generation_server.utils.gptq.exllama import Ex4bitLinear
except ImportError:
    HAS_EXLLAMA = False
28

29
from typing import Optional
30
31
32
33
34
35
36
37
38
39
40
41
42
43

# Monkey patching
@classmethod
def load_layer_norm(cls, prefix, weights, eps):
    weight = weights.get_tensor(f"{prefix}.weight")
    bias = weights.get_tensor(f"{prefix}.bias")
    with init_empty_weights():
        ln = cls(weight.shape, eps=eps)

    ln.weight = nn.Parameter(weight)
    ln.bias = nn.Parameter(bias)
    return ln


44
45
46
47
48
49
50
51
52
53
@classmethod
def load_layer_norm_no_bias(cls, prefix, weights, eps):
    weight = weights.get_tensor(f"{prefix}.weight")
    with init_empty_weights():
        ln = cls(weight.shape, eps=eps)

    ln.weight = nn.Parameter(weight)
    ln.bias = None
    return ln

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
@classmethod
def load_conv2d(cls, prefix, weights, in_channels, out_channels, kernel_size, stride):
    weight = weights.get_tensor(f"{prefix}.weight")
    bias = weights.get_tensor(f"{prefix}.bias")
    with init_empty_weights():
        conv2d = cls(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride)

    conv2d.weight = nn.Parameter(weight)
    conv2d.bias = nn.Parameter(bias)
    return conv2d


@classmethod
def load_conv2d_no_bias(cls, prefix, weights, in_channels, out_channels, kernel_size, stride):
    weight = weights.get_tensor(f"{prefix}.weight")
    with init_empty_weights():
        conv2d = cls(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride)

    conv2d.weight = nn.Parameter(weight)
    conv2d.bias = None
    return conv2d

76

77
78
torch.nn.Conv2d.load = load_conv2d
torch.nn.Conv2d.load_no_bias = load_conv2d_no_bias
79
torch.nn.LayerNorm.load = load_layer_norm
80
torch.nn.LayerNorm.load_no_bias = load_layer_norm_no_bias
81

82
83

class FastLinear(nn.Module):
84
85
    def __init__(
        self,
86
87
        weight,
        bias,
88
    ) -> None:
89
90
91
92
93
        super().__init__()
        self.weight = nn.Parameter(weight)
        if bias is not None:
            self.bias = nn.Parameter(bias)
        else:
94
            self.bias = None
95
96
97
98
99
100

    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
        weight = weights.get_tensor(f"{prefix}.weight")
        if bias:
            bias = weights.get_tensor(f"{prefix}.bias")
101
        else:
102
103
            bias = None
        return cls(weight, bias)
104
105

    def forward(self, input: torch.Tensor) -> torch.Tensor:
106
        return F.linear(input, self.weight, self.bias)
107
108


109
class Linear8bitLt(nn.Module):
110
111
    def __init__(
        self,
112
113
114
115
116
117
        weight,
        bias,
        has_fp16_weights=True,
        memory_efficient_backward=False,
        threshold=0.0,
        index=None,
118
    ):
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
        super().__init__()
        assert (
            not memory_efficient_backward
        ), "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
        self.state = bnb.MatmulLtState()
        self.index = index

        # Necessary for stacked layers
        self.state.threshold = threshold
        self.state.has_fp16_weights = has_fp16_weights
        self.state.memory_efficient_backward = memory_efficient_backward
        if threshold > 0.0 and not has_fp16_weights:
            self.state.use_pool = True

        self.weight = Int8Params(
            weight.data,
            has_fp16_weights=has_fp16_weights,
            requires_grad=has_fp16_weights,
137
        )
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
        self.weight.cuda(weight.device)
        self.bias = bias

    def init_8bit_state(self):
        self.state.CB = self.weight.CB
        self.state.SCB = self.weight.SCB
        self.weight.CB = None
        self.weight.SCB = None

    def forward(self, x: torch.Tensor):
        self.state.is_training = self.training
        if self.weight.CB is not None:
            self.init_8bit_state()

        # weights are cast automatically as Int8Params, but the bias has to be cast manually
        if self.bias is not None and self.bias.dtype != x.dtype:
            self.bias.data = self.bias.data.to(x.dtype)

        out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)

        if not self.state.has_fp16_weights:
            if self.state.CB is not None and self.state.CxB is not None:
                # we converted 8-bit row major to turing/ampere format in the first inference pass
                # we no longer need the row-major weight
                del self.state.CB
                self.weight.data = self.state.CxB
        return out
165
166


Nicolas Patry's avatar
Nicolas Patry committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
class Linear4bit(nn.Module):
    def __init__(self, weight, bias, quant_type):
        super().__init__()
        self.weight = Params4bit(
            weight.data, requires_grad=False, compress_statistics=True, quant_type=quant_type
        )
        self.compute_dtype = None
        self.weight.cuda(weight.device)
        self.bias = bias

    def forward(self, x: torch.Tensor):
        # weights are cast automatically as Int8Params, but the bias has to be cast manually
        if self.bias is not None and self.bias.dtype != x.dtype:
            self.bias.data = self.bias.data.to(x.dtype)

        if getattr(self.weight, "quant_state", None) is None:
            print(
                "FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first."
            )
        inp_dtype = x.dtype
        if self.compute_dtype is not None:
            x = x.to(self.compute_dtype)

        bias = None if self.bias is None else self.bias.to(self.compute_dtype)
        out = bnb.matmul_4bit(
            x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state
        )

        out = out.to(inp_dtype)

        return out


200
201
202
203
204
205
206
207
208
209
210
211
def get_linear(weight, bias, quantize):
    if quantize is None:
        linear = FastLinear(weight, bias)
    elif quantize == "bitsandbytes":
        linear = Linear8bitLt(
            weight,
            bias,
            has_fp16_weights=False,
            threshold=6.0,
        )
        if bias is not None:
            linear.bias = nn.Parameter(bias)
Nicolas Patry's avatar
Nicolas Patry committed
212
213
214
215
216
217
218
219
220
221
222
223
    elif quantize == "bitsandbytes-fp4":
        linear = Linear4bit(
            weight,
            bias,
            quant_type="fp4",
        )
    elif quantize == "bitsandbytes-nf4":
        linear = Linear4bit(
            weight,
            bias,
            quant_type="nf4",
        )
224
    elif quantize == "gptq":
225
        try:
226
            qweight, qzeros, scales, g_idx, bits, groupsize, use_exllama = weight
227
228
229
230
231
        except Exception:
            raise NotImplementedError(
                f"The passed weight is not `gptq` compatible, loader needs to be updated."
            )

232
233
234
235
236
237
238
239
240
241
242
243
        if use_exllama:
            linear = Ex4bitLinear(qweight, qzeros, scales, g_idx, bias, bits, groupsize)
        else:
            linear = QuantLinear(
                qweight,
                qzeros,
                scales,
                g_idx,
                bias,
                bits,
                groupsize,
            )
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    else:
        raise NotImplementedError(f"Quantization `{quantize}` is not implemented yet.")
    return linear


class SuperLayer(nn.Module):
    def __init__(self, linear):
        super().__init__()
        self.linear = linear

    def forward(self, x):
        return self.linear.forward(x)


class TensorParallelHead(SuperLayer):
259
    def __init__(self, linear, process_group, should_gather: bool):
260
        super().__init__(linear)
261
        self.process_group = process_group
262
        self.should_gather = should_gather
263
264
265

    @staticmethod
    def load(config, prefix: str, weights):
266
267
268
269
270
271
272
273
274
275
276
277
        if weights.process_group.size() > 1:
            try:
                weight = weights.get_sharded(f"{prefix}.weight", dim=0)
                should_gather = True
            except AssertionError:
                # If the vocab size is not divisible by number of shards
                # just load the entire thing.
                weight = weights.get_tensor(f"{prefix}.weight")
                should_gather = False
        else:
            weight = weights.get_tensor(f"{prefix}.weight")
            should_gather = False
278
279
280
281
282
283

        # GPTQ doesn't quantize heads (nor embeddings)
        if config.quantize == "gptq":
            quantize = None
        else:
            quantize = config.quantize
284
        return TensorParallelHead(
285
            get_linear(weight, bias=None, quantize=quantize),
286
            process_group=weights.process_group,
287
            should_gather=should_gather,
288
289
290
        )

    def forward(self, input: torch.Tensor) -> torch.Tensor:
OlivierDehaene's avatar
OlivierDehaene committed
291
292
293
        if not self.should_gather:
            return super().forward(input)

294
        world_size = self.process_group.size()
OlivierDehaene's avatar
OlivierDehaene committed
295
        if len(input.shape) == 2 and isinstance(self.linear, FastLinear):
296
297
            out_dim = self.linear.weight.shape[0]

OlivierDehaene's avatar
OlivierDehaene committed
298
299
300
301
302
303
304
305
            if input.shape[0] == 1:
                world_out = input.new_empty(1, out_dim * world_size)
                local_out = input.new_empty(1, out_dim)
                gather_input = local_out
            else:
                world_out = input.new_empty(out_dim * world_size, input.shape[0])
                gather_input = input.new_empty(out_dim, input.shape[0])
                local_out = gather_input.T
306
307
308
309

            torch.mm(input, self.linear.weight.T, out=local_out)

            torch.distributed.all_gather_into_tensor(
OlivierDehaene's avatar
OlivierDehaene committed
310
                world_out, gather_input, group=self.process_group
311
312
            )

OlivierDehaene's avatar
OlivierDehaene committed
313
314
315
            if input.shape[0] == 1:
                return world_out
            return world_out.T
316

OlivierDehaene's avatar
OlivierDehaene committed
317
318
319
320
        output = super().forward(input)
        world_output = [
            torch.empty_like(output) for _ in range(self.process_group.size())
        ]
321
322
323
324
325
326
327
328
        torch.distributed.all_gather(world_output, output, group=self.process_group)
        world_output = torch.cat(world_output, dim=-1)
        return world_output


class TensorParallelColumnLinear(SuperLayer):
    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
329
        return cls.load_multi(config, [prefix], weights, bias, dim=0)
330

331
332
    @classmethod
    def load_multi(cls, config, prefixes: List[str], weights, bias: bool, dim: int):
333
334
335
        weight = weights.get_multi_weights_col(
            prefixes, quantize=config.quantize, dim=dim
        )
336

337
338
        if bias:
            b = [weights.get_sharded(f"{p}.bias", dim=0) for p in prefixes]
339
            bias = torch.cat(b, dim=dim)
340
341
        else:
            bias = None
342
343
        linear = get_linear(weight, bias, config.quantize)
        return cls(linear)
344

345
346
347
348

class TensorParallelRowLinear(SuperLayer):
    def __init__(self, linear, process_group):
        super().__init__(linear)
349
350
        self.process_group = process_group

351
352
    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
353
354
        weight = weights.get_multi_weights_row(prefix, quantize=config.quantize)

355
356
357
358
359
360
361
362
363
        if bias and weights.process_group.rank() == 0:
            # Rank is only on the first rank process
            bias = weights.get_tensor(f"{prefix}.bias")
        else:
            bias = None
        return cls(
            get_linear(weight, bias, config.quantize),
            process_group=weights.process_group,
        )
364

365
366
    def forward(self, input: torch.Tensor) -> torch.Tensor:
        out = super().forward(input)
367
368
        if self.process_group.size() > 1:
            torch.distributed.all_reduce(out, group=self.process_group)
369
        return out
370
371


372
373
374
class TensorParallelEmbedding(nn.Module):
    def __init__(self, prefix: str, weights, reduce=True):
        super().__init__()
375
        weight = weights.get_partial_sharded(f"{prefix}.weight", dim=0)
376
377
378
379
380
381
382
383
384
385
386
387
388
        num_embeddings = weights.get_shape(f"{prefix}.weight")[0]

        process_group = weights.process_group

        world_size = process_group.size()
        rank = process_group.rank()

        block_size = num_embeddings // world_size
        self.min_id = rank * block_size
        self.max_id = min(num_embeddings, (rank + 1) * block_size)
        self.null_idx = block_size
        self.process_group = weights.process_group
        self.reduce = reduce
389
390

        """Additional 0 entry used for masking"""
391
        self.weight = nn.Parameter(F.pad(weight, (0, 0, 0, 1)))
392
393
394
395
396
397
398
399
400

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        # default all out of bounds values to `self.null_idx` that will then be mapped to 0
        # translate for [0, self.max_id - self.min_id[
        input = torch.where(
            (self.min_id > input) | (input >= self.max_id),
            self.null_idx,
            input - self.min_id,
        )
401
        out = torch.nn.functional.embedding(input, self.weight)
402
        if self.reduce and self.process_group.size() > 1:
403
            torch.distributed.all_reduce(out, group=self.process_group)
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
        return out


try:
    import dropout_layer_norm

    class FastLayerNorm(nn.LayerNorm):
        def forward(self, hidden_states, residual=None):
            if hidden_states.shape[-1] > 8192:
                if residual is not None:
                    hidden_states += residual
                residual = hidden_states

                return super(FastLayerNorm, self).forward(hidden_states), residual
            else:
                (
                    normed_hidden_states,
                    residual,
                    *rest,
                ) = dropout_layer_norm.dropout_add_ln_fwd(
                    hidden_states,
                    residual,
                    self.weight,
                    self.bias,
                    None,
                    None,
                    None,
                    None,
                    0.0,
                    self.eps,
                    1.0,
                    0,
                    None,
                    False,
                    False,
                )
                if residual is None:
                    residual = hidden_states

                return normed_hidden_states, residual

except ImportError:
    pass


try:
    from flash_attn.layers.rotary import RotaryEmbedding
    import rotary_emb

Nicolas Patry's avatar
Nicolas Patry committed
453
454
455
456
457
458
459
460
461
462
463
464
465
    def _create_inv_freq(dim, base, device):
        inv_freq = 1.0 / (
            base
            ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim)
        )
        return inv_freq

    def _get_rope_config(config):
        if os.getenv("ROPE_SCALING", None) is not None:
            rope_scaling = {"type": os.environ["ROPE_SCALING"], "factor": float(os.environ["ROPE_FACTOR"])}
            return rope_scaling
        return getattr(config, "rope_scaling", None)

466
    class PositionRotaryEmbedding(nn.Module):
Nicolas Patry's avatar
Nicolas Patry committed
467
        def __init__(self, inv_freq, scaling_factor):
468
            super().__init__()
469
            self.inv_freq = inv_freq
470
471
472
473
474
            self._seq_len_cached = 0
            self._cos_cached = None
            self._sin_cached = None
            self._cos_k_cached = None
            self._sin_k_cached = None
Nicolas Patry's avatar
Nicolas Patry committed
475
476
            self.scaling_factor = scaling_factor
            self.dynamic_args = None
477
478

        @classmethod
Nicolas Patry's avatar
Nicolas Patry committed
479
480
481
482
483
484
485
486
487
488
489
490
491
        def static(cls, config, dim, base, device):
            inv_freq = _create_inv_freq(dim, base, device)
            scaling_factor = None
            rope_scaling = _get_rope_config(config)
            if rope_scaling is not None:
                scaling_factor = rope_scaling["factor"]
                if rope_scaling["type"] == "linear":
                    pass
                elif rope_scaling["type"] == "dynamic":
                    return DynamicPositionRotaryEmbedding(dim=dim, max_position_embeddings=config.max_position_embeddings, base=base, device=inv_freq.device, scaling_factor=scaling_factor)
                else:
                    raise NotImplementedError(f"rope scaling type {rope_scaling['type']} is not implemented or invalid")
            return cls(inv_freq, scaling_factor)
492
493

        @classmethod
Nicolas Patry's avatar
Nicolas Patry committed
494
        def load(cls, config, prefix, weights):
495
496
497
498
499
            # XXX: Always load this in float32 !
            dtype = weights.dtype
            weights.dtype = torch.float32
            inv_freq = weights.get_tensor(f"{prefix}.inv_freq")
            weights.dtype = dtype
Nicolas Patry's avatar
Nicolas Patry committed
500
501
502
503
504
505
506
507
508
509
510
511

            scaling_factor = None
            rope_scaling = _get_rope_config(config)
            if rope_scaling is not None:
                scaling_factor = rope_scaling["factor"]
                if rope_scaling["type"] == "linear":
                    pass
                elif rope_scaling["type"] == "dynamic":
                    return DynamicPositionRotaryEmbedding(dim=2*inv_freq.shape[0], max_position_embeddings=config.max_position_embeddings, base=10000.0, device=inv_freq.device, scaling_factor=scaling_factor)
                else:
                    raise NotImplementedError(f"rope scaling type {rope_scaling['type']} is not implemented or invalid")
            return cls(inv_freq, scaling_factor)
512

513
514
515
516
517
518
519
520
521
522
        def _update_cos_sin_cache(self, dtype, device, seqlen):
            # Reset the tables if the sequence length has changed,
            # or if we're on a new device (possibly due to tracing for instance)
            if (
                seqlen > self._seq_len_cached
                or self._cos_cached.device != device
                or self._cos_cached.dtype != dtype
            ):
                self._seq_len_cached = seqlen
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
Nicolas Patry's avatar
Nicolas Patry committed
523
524
                if self.scaling_factor is not None:
                    t /= self.scaling_factor
525
526
                # Don't do einsum, it converts fp32 to fp16
                # freqs = torch.einsum("i,j->ij", t, self.inv_freq)
Nicolas Patry's avatar
Nicolas Patry committed
527

528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
                freqs = torch.outer(t, self.inv_freq.to(device=t.device))
                self._cos_cached = torch.cos(freqs).to(dtype)
                self._sin_cached = torch.sin(freqs).to(dtype)

        def get_cos_sin(
            self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype
        ):
            """
            Return cos and sin for the asked position ids
            """

            self._update_cos_sin_cache(dtype, position_ids.device, max_s)

            cos = torch.index_select(self._cos_cached, 0, position_ids)
            sin = torch.index_select(self._sin_cached, 0, position_ids)
            return cos.unsqueeze(1), sin.unsqueeze(1)

545
        def forward(self, x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor):
546
            rotary_dim = cos.shape[-1]
547
548
549
550
551
            x1 = x[..., :rotary_dim]
            x2 = x[..., rotary_dim : 2 * rotary_dim]

            rotary_emb.apply_rotary(x1, x2, cos, sin, x1, x2, False)
            return x
552

Nicolas Patry's avatar
Nicolas Patry committed
553
554
    class DynamicPositionRotaryEmbedding(PositionRotaryEmbedding):
        def __init__(self, dim, max_position_embeddings, base, device, scaling_factor):
Nicolas Patry's avatar
Nicolas Patry committed
555
            inv_freq = _create_inv_freq(dim, base, device)
Nicolas Patry's avatar
Nicolas Patry committed
556
557
558
559
560
561
562
563
564
565
566
567
568
569
            super().__init__(inv_freq, scaling_factor)
            self.dim = dim
            self.max_position_embeddings = max_position_embeddings
            self.base = base

        def _update_cos_sin_cache(self, dtype, device, seqlen):
            # Reset the tables if the sequence length has changed,
            # or if we're on a new device (possibly due to tracing for instance)
            if (
                seqlen > self._seq_len_cached
                or self._cos_cached.device != device
                or self._cos_cached.dtype != dtype
            ):
                if seqlen > self.max_position_embeddings:
Nicolas Patry's avatar
Nicolas Patry committed
570
                    newbase = self.base * ((self.scaling_factor * seqlen / self.max_position_embeddings) - (self.scaling_factor - 1)) ** (self.dim / (self.dim - 2))
Nicolas Patry's avatar
Nicolas Patry committed
571
572
573
574
575
576
577
578
579
580
581
                    self.inv_freq = _create_inv_freq(self.dim, newbase, self.inv_freq.device)
                self._seq_len_cached = seqlen
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
                # Don't do einsum, it converts fp32 to fp16
                # freqs = torch.einsum("i,j->ij", t, self.inv_freq)

                freqs = torch.outer(t, self.inv_freq.to(device=t.device))
                self._cos_cached = torch.cos(freqs).to(dtype)
                self._sin_cached = torch.sin(freqs).to(dtype)


582
583
except ImportError:
    pass