"...dcu-process-montor.git" did not exist on "fd13705bd692b024f81c688d60ae4ed54d734da2"
layers.py 14.3 KB
Newer Older
1
import os
2
import torch
3
import torch.distributed
4
5

from torch import nn
6
from torch.nn import functional as F
7
from typing import List
8
9
10

HAS_BITS_AND_BYTES = True
try:
11
12
13
14
    import bitsandbytes as bnb
    from bitsandbytes.nn import Int8Params

except ImportError:
15
16
    HAS_BITS_AND_BYTES = False

17
18
from accelerate import init_empty_weights

19
from text_generation_server.utils.gptq.quant_linear import QuantLinear
20
21
22
23
24
25
26
HAS_EXLLAMA = True
if os.getenv("DISABLE_EXLLAMA") == "True":
    HAS_EXLLAMA=False
try:
    from text_generation_server.utils.gptq.exllama import Ex4bitLinear
except ImportError:
    HAS_EXLLAMA = False
27

28
from typing import Optional
29
30
31
32
33
34
35
36
37
38
39
40
41
42

# Monkey patching
@classmethod
def load_layer_norm(cls, prefix, weights, eps):
    weight = weights.get_tensor(f"{prefix}.weight")
    bias = weights.get_tensor(f"{prefix}.bias")
    with init_empty_weights():
        ln = cls(weight.shape, eps=eps)

    ln.weight = nn.Parameter(weight)
    ln.bias = nn.Parameter(bias)
    return ln


43
44
45
46
47
48
49
50
51
52
53
@classmethod
def load_layer_norm_no_bias(cls, prefix, weights, eps):
    weight = weights.get_tensor(f"{prefix}.weight")
    with init_empty_weights():
        ln = cls(weight.shape, eps=eps)

    ln.weight = nn.Parameter(weight)
    ln.bias = None
    return ln


54
torch.nn.LayerNorm.load = load_layer_norm
55
torch.nn.LayerNorm.load_no_bias = load_layer_norm_no_bias
56

57
58

class FastLinear(nn.Module):
59
60
    def __init__(
        self,
61
62
        weight,
        bias,
63
    ) -> None:
64
65
66
67
68
        super().__init__()
        self.weight = nn.Parameter(weight)
        if bias is not None:
            self.bias = nn.Parameter(bias)
        else:
69
            self.bias = None
70
71
72
73
74
75

    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
        weight = weights.get_tensor(f"{prefix}.weight")
        if bias:
            bias = weights.get_tensor(f"{prefix}.bias")
76
        else:
77
78
            bias = None
        return cls(weight, bias)
79
80

    def forward(self, input: torch.Tensor) -> torch.Tensor:
81
        return F.linear(input, self.weight, self.bias)
82
83


84
class Linear8bitLt(nn.Module):
85
86
    def __init__(
        self,
87
88
89
90
91
92
        weight,
        bias,
        has_fp16_weights=True,
        memory_efficient_backward=False,
        threshold=0.0,
        index=None,
93
    ):
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
        super().__init__()
        assert (
            not memory_efficient_backward
        ), "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
        self.state = bnb.MatmulLtState()
        self.index = index

        # Necessary for stacked layers
        self.state.threshold = threshold
        self.state.has_fp16_weights = has_fp16_weights
        self.state.memory_efficient_backward = memory_efficient_backward
        if threshold > 0.0 and not has_fp16_weights:
            self.state.use_pool = True

        self.weight = Int8Params(
            weight.data,
            has_fp16_weights=has_fp16_weights,
            requires_grad=has_fp16_weights,
112
        )
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
        self.weight.cuda(weight.device)
        self.bias = bias

    def init_8bit_state(self):
        self.state.CB = self.weight.CB
        self.state.SCB = self.weight.SCB
        self.weight.CB = None
        self.weight.SCB = None

    def forward(self, x: torch.Tensor):
        self.state.is_training = self.training
        if self.weight.CB is not None:
            self.init_8bit_state()

        # weights are cast automatically as Int8Params, but the bias has to be cast manually
        if self.bias is not None and self.bias.dtype != x.dtype:
            self.bias.data = self.bias.data.to(x.dtype)

        out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)

        if not self.state.has_fp16_weights:
            if self.state.CB is not None and self.state.CxB is not None:
                # we converted 8-bit row major to turing/ampere format in the first inference pass
                # we no longer need the row-major weight
                del self.state.CB
                self.weight.data = self.state.CxB
        return out
140
141


142
143
144
145
146
147
148
149
150
151
152
153
154
def get_linear(weight, bias, quantize):
    if quantize is None:
        linear = FastLinear(weight, bias)
    elif quantize == "bitsandbytes":
        linear = Linear8bitLt(
            weight,
            bias,
            has_fp16_weights=False,
            threshold=6.0,
        )
        if bias is not None:
            linear.bias = nn.Parameter(bias)
    elif quantize == "gptq":
155
        try:
156
            qweight, qzeros, scales, g_idx, bits, groupsize, use_exllama = weight
157
158
159
160
161
        except Exception:
            raise NotImplementedError(
                f"The passed weight is not `gptq` compatible, loader needs to be updated."
            )

162
163
164
165
166
167
168
169
170
171
172
173
        if use_exllama:
            linear = Ex4bitLinear(qweight, qzeros, scales, g_idx, bias, bits, groupsize)
        else:
            linear = QuantLinear(
                qweight,
                qzeros,
                scales,
                g_idx,
                bias,
                bits,
                groupsize,
            )
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    else:
        raise NotImplementedError(f"Quantization `{quantize}` is not implemented yet.")
    return linear


class SuperLayer(nn.Module):
    def __init__(self, linear):
        super().__init__()
        self.linear = linear

    def forward(self, x):
        return self.linear.forward(x)


class TensorParallelHead(SuperLayer):
189
    def __init__(self, linear, process_group, should_gather: bool):
190
        super().__init__(linear)
191
        self.process_group = process_group
192
        self.should_gather = should_gather
193
194
195

    @staticmethod
    def load(config, prefix: str, weights):
196
197
198
199
200
201
202
203
204
205
206
207
        if weights.process_group.size() > 1:
            try:
                weight = weights.get_sharded(f"{prefix}.weight", dim=0)
                should_gather = True
            except AssertionError:
                # If the vocab size is not divisible by number of shards
                # just load the entire thing.
                weight = weights.get_tensor(f"{prefix}.weight")
                should_gather = False
        else:
            weight = weights.get_tensor(f"{prefix}.weight")
            should_gather = False
208
209
210
211
212
213

        # GPTQ doesn't quantize heads (nor embeddings)
        if config.quantize == "gptq":
            quantize = None
        else:
            quantize = config.quantize
214
        return TensorParallelHead(
215
            get_linear(weight, bias=None, quantize=quantize),
216
            process_group=weights.process_group,
217
            should_gather=should_gather,
218
219
220
        )

    def forward(self, input: torch.Tensor) -> torch.Tensor:
221
        if not self.should_gather:
222
223
            return super().forward(input)

224
        world_size = self.process_group.size()
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        if len(input.shape) == 2 and isinstance(self.linear, FastLinear):
            out_dim = self.linear.weight.shape[0]

            if input.shape[0] == 1:
                world_out = input.new_empty(1, out_dim * world_size)
                local_out = input.new_empty(1, out_dim)
                gather_input = local_out
            else:
                world_out = input.new_empty(out_dim * world_size, input.shape[0])
                gather_input = input.new_empty(out_dim, input.shape[0])
                local_out = gather_input.T

            torch.mm(input, self.linear.weight.T, out=local_out)

            torch.distributed.all_gather_into_tensor(
                world_out, gather_input, group=self.process_group
            )

            if input.shape[0] == 1:
                return world_out
            return world_out.T

247
248
249
250
251
252
253
254
255
256
257
258
        output = super().forward(input)
        world_output = [
            torch.empty_like(output) for _ in range(self.process_group.size())
        ]
        torch.distributed.all_gather(world_output, output, group=self.process_group)
        world_output = torch.cat(world_output, dim=-1)
        return world_output


class TensorParallelColumnLinear(SuperLayer):
    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
259
        return cls.load_multi(config, [prefix], weights, bias, dim=0)
260

261
262
    @classmethod
    def load_multi(cls, config, prefixes: List[str], weights, bias: bool, dim: int):
263
264
265
        weight = weights.get_multi_weights_col(
            prefixes, quantize=config.quantize, dim=dim
        )
266

267
268
        if bias:
            b = [weights.get_sharded(f"{p}.bias", dim=0) for p in prefixes]
269
            bias = torch.cat(b, dim=dim)
270
271
        else:
            bias = None
272
273
        linear = get_linear(weight, bias, config.quantize)
        return cls(linear)
274

275
276
277
278

class TensorParallelRowLinear(SuperLayer):
    def __init__(self, linear, process_group):
        super().__init__(linear)
279
280
        self.process_group = process_group

281
282
    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
283
284
        weight = weights.get_multi_weights_row(prefix, quantize=config.quantize)

285
286
287
288
289
290
291
292
293
        if bias and weights.process_group.rank() == 0:
            # Rank is only on the first rank process
            bias = weights.get_tensor(f"{prefix}.bias")
        else:
            bias = None
        return cls(
            get_linear(weight, bias, config.quantize),
            process_group=weights.process_group,
        )
294

295
296
    def forward(self, input: torch.Tensor) -> torch.Tensor:
        out = super().forward(input)
297
298
        if self.process_group.size() > 1:
            torch.distributed.all_reduce(out, group=self.process_group)
299
        return out
300
301


302
303
304
class TensorParallelEmbedding(nn.Module):
    def __init__(self, prefix: str, weights, reduce=True):
        super().__init__()
305
        weight = weights.get_partial_sharded(f"{prefix}.weight", dim=0)
306
307
308
309
310
311
312
313
314
315
316
317
318
        num_embeddings = weights.get_shape(f"{prefix}.weight")[0]

        process_group = weights.process_group

        world_size = process_group.size()
        rank = process_group.rank()

        block_size = num_embeddings // world_size
        self.min_id = rank * block_size
        self.max_id = min(num_embeddings, (rank + 1) * block_size)
        self.null_idx = block_size
        self.process_group = weights.process_group
        self.reduce = reduce
319
320

        """Additional 0 entry used for masking"""
321
        self.weight = nn.Parameter(F.pad(weight, (0, 0, 0, 1)))
322
323
324
325
326
327
328
329
330

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        # default all out of bounds values to `self.null_idx` that will then be mapped to 0
        # translate for [0, self.max_id - self.min_id[
        input = torch.where(
            (self.min_id > input) | (input >= self.max_id),
            self.null_idx,
            input - self.min_id,
        )
331
        out = torch.nn.functional.embedding(input, self.weight)
332
        if self.reduce and self.process_group.size() > 1:
333
            torch.distributed.all_reduce(out, group=self.process_group)
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
        return out


try:
    import dropout_layer_norm

    class FastLayerNorm(nn.LayerNorm):
        def forward(self, hidden_states, residual=None):
            if hidden_states.shape[-1] > 8192:
                if residual is not None:
                    hidden_states += residual
                residual = hidden_states

                return super(FastLayerNorm, self).forward(hidden_states), residual
            else:
                (
                    normed_hidden_states,
                    residual,
                    *rest,
                ) = dropout_layer_norm.dropout_add_ln_fwd(
                    hidden_states,
                    residual,
                    self.weight,
                    self.bias,
                    None,
                    None,
                    None,
                    None,
                    0.0,
                    self.eps,
                    1.0,
                    0,
                    None,
                    False,
                    False,
                )
                if residual is None:
                    residual = hidden_states

                return normed_hidden_states, residual

except ImportError:
    pass


try:
    from flash_attn.layers.rotary import RotaryEmbedding
    import rotary_emb

383
384
385
386
    class PositionRotaryEmbedding(nn.Module):
        def __init__(self, inv_freq):
            super().__init__()

387
            self.inv_freq = inv_freq
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
            self._seq_len_cached = 0
            self._cos_cached = None
            self._sin_cached = None
            self._cos_k_cached = None
            self._sin_k_cached = None

        @classmethod
        def static(cls, dim, base, device):
            inv_freq = 1.0 / (
                base
                ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim)
            )
            return cls(inv_freq)

        @classmethod
        def load(cls, prefix, weights):
            # XXX: Always load this in float32 !
            dtype = weights.dtype
            weights.dtype = torch.float32
            inv_freq = weights.get_tensor(f"{prefix}.inv_freq")
            weights.dtype = dtype
            return cls(inv_freq)

411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
        def _update_cos_sin_cache(self, dtype, device, seqlen):
            # Reset the tables if the sequence length has changed,
            # or if we're on a new device (possibly due to tracing for instance)
            if (
                seqlen > self._seq_len_cached
                or self._cos_cached.device != device
                or self._cos_cached.dtype != dtype
            ):
                self._seq_len_cached = seqlen
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
                # Don't do einsum, it converts fp32 to fp16
                # freqs = torch.einsum("i,j->ij", t, self.inv_freq)
                freqs = torch.outer(t, self.inv_freq.to(device=t.device))
                self._cos_cached = torch.cos(freqs).to(dtype)
                self._sin_cached = torch.sin(freqs).to(dtype)

        def get_cos_sin(
            self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype
        ):
            """
            Return cos and sin for the asked position ids
            """

            self._update_cos_sin_cache(dtype, position_ids.device, max_s)

            cos = torch.index_select(self._cos_cached, 0, position_ids)
            sin = torch.index_select(self._sin_cached, 0, position_ids)
            return cos.unsqueeze(1), sin.unsqueeze(1)

440
        def forward(self, x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor):
441
            rotary_dim = cos.shape[-1]
442
443
444
445
446
            x1 = x[..., :rotary_dim]
            x2 = x[..., rotary_dim : 2 * rotary_dim]

            rotary_emb.apply_rotary(x1, x2, cos, sin, x1, x2, False)
            return x
447
448
449

except ImportError:
    pass