README.md 10.4 KB
Newer Older
1
<div align="center">
OlivierDehaene's avatar
OlivierDehaene committed
2

Nicolas Patry's avatar
Nicolas Patry committed
3
<a href="https://www.youtube.com/watch?v=jlMAX2Oaht0">
Nicolas Patry's avatar
Nicolas Patry committed
4
  <img width=560 width=315 alt="Making TGI deployment optimal" src="https://huggingface.co/datasets/Narsil/tgi_assets/resolve/main/thumbnail.png">
Nicolas Patry's avatar
Nicolas Patry committed
5
</a>
6

7
# Text Generation Inference
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
8

9
10
11
12
13
14
<a href="https://github.com/huggingface/text-generation-inference">
  <img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/huggingface/text-generation-inference?style=social">
</a>
<a href="https://huggingface.github.io/text-generation-inference">
  <img alt="Swagger API documentation" src="https://img.shields.io/badge/API-Swagger-informational">
</a>
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
15

16
A Rust, Python and gRPC server for text generation inference. Used in production at [HuggingFace](https://huggingface.co)
OlivierDehaene's avatar
OlivierDehaene committed
17
18
19
to power Hugging Chat, the Inference API and Inference Endpoint.

</div>
20
21
22
23

## Table of contents

- [Get Started](#get-started)
24
  - [API Documentation](#api-documentation)
OlivierDehaene's avatar
OlivierDehaene committed
25
  - [Using a private or gated model](#using-a-private-or-gated-model)
26
  - [A note on Shared Memory](#a-note-on-shared-memory-shm)
27
  - [Distributed Tracing](#distributed-tracing)
28
29
  - [Local Install](#local-install)
  - [CUDA Kernels](#cuda-kernels)
30
- [Optimized architectures](#optimized-architectures)
Nicolas Patry's avatar
Nicolas Patry committed
31
- [Run Mistral](#run-a-model)
32
33
34
35
  - [Run](#run)
  - [Quantization](#quantization)
- [Develop](#develop)
- [Testing](#testing)
36

37
Text Generation Inference (TGI) is a toolkit for deploying and serving Large Language Models (LLMs). TGI enables high-performance text generation for the most popular open-source LLMs, including Llama, Falcon, StarCoder, BLOOM, GPT-NeoX, and [more](https://huggingface.co/docs/text-generation-inference/supported_models). TGI implements many features, such as:
Olivier Dehaene's avatar
Olivier Dehaene committed
38

39
40
- Simple launcher to serve most popular LLMs
- Production ready (distributed tracing with Open Telemetry, Prometheus metrics)
OlivierDehaene's avatar
OlivierDehaene committed
41
- Tensor Parallelism for faster inference on multiple GPUs
Yannic Kilcher's avatar
Yannic Kilcher committed
42
- Token streaming using Server-Sent Events (SSE)
43
44
- Continuous batching of incoming requests for increased total throughput
- Optimized transformers code for inference using [Flash Attention](https://github.com/HazyResearch/flash-attention) and [Paged Attention](https://github.com/vllm-project/vllm) on the most popular architectures
Nicolas Patry's avatar
Nicolas Patry committed
45
46
47
48
49
- Quantization with :
  - [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)
  - [GPT-Q](https://arxiv.org/abs/2210.17323)
  - [EETQ](https://github.com/NetEase-FuXi/EETQ)
  - [AWQ](https://github.com/casper-hansen/AutoAWQ)
50
- [Safetensors](https://github.com/huggingface/safetensors) weight loading
OlivierDehaene's avatar
OlivierDehaene committed
51
- Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
52
- Logits warper (temperature scaling, top-p, top-k, repetition penalty, more details see [transformers.LogitsProcessor](https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor))
53
- Stop sequences
OlivierDehaene's avatar
OlivierDehaene committed
54
- Log probabilities
Nicolas Patry's avatar
Nicolas Patry committed
55
56
- [Speculation](https://huggingface.co/docs/text-generation-inference/conceptual/speculation) ~2x latency
- [Guidance/JSON](https://huggingface.co/docs/text-generation-inference/conceptual/guidance). Specify output format to speed up inference and make sure the output is valid according to some specs..
57
58
- Custom Prompt Generation: Easily generate text by providing custom prompts to guide the model's output
- Fine-tuning Support: Utilize fine-tuned models for specific tasks to achieve higher accuracy and performance
59

Nicolas Patry's avatar
Nicolas Patry committed
60
61
62
63
64
65
66
### Hardware support

- [Nvidia](https://github.com/huggingface/text-generation-inference/pkgs/container/text-generation-inference)
- [AMD](https://github.com/huggingface/text-generation-inference/pkgs/container/text-generation-inference) (-rocm)
- [Inferentia](https://github.com/huggingface/optimum-neuron/tree/main/text-generation-inference)
- [Intel GPU](https://github.com/huggingface/text-generation-inference/pull/1475)
- [Gaudi](https://github.com/huggingface/tgi-gaudi)
67
- [Google TPU](https://huggingface.co/docs/optimum-tpu/howto/serving)
Nicolas Patry's avatar
Nicolas Patry committed
68

69

70
## Get Started
71
72

### Docker
Olivier Dehaene's avatar
Olivier Dehaene committed
73

74
For a detailed starting guide, please see the [Quick Tour](https://huggingface.co/docs/text-generation-inference/quicktour). The easiest way of getting started is using the official Docker container:
75
76

```shell
Nicolas Patry's avatar
Nicolas Patry committed
77
model=HuggingFaceH4/zephyr-7b-beta
78
79
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run

OlivierDehaene's avatar
OlivierDehaene committed
80
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.0 --model-id $model
81
```
82

83
And then you can make requests like
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
84

85
```bash
86
curl 127.0.0.1:8080/generate_stream \
87
    -X POST \
OlivierDehaene's avatar
OlivierDehaene committed
88
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
89
90
    -H 'Content-Type: application/json'
```
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
91

92
**Note:** To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 12.2 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar.
fxmarty's avatar
fxmarty committed
93

OlivierDehaene's avatar
OlivierDehaene committed
94
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/supported_models#supported-hardware). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.0-rocm --model-id $model` instead of the command above.
OlivierDehaene's avatar
OlivierDehaene committed
95

96
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli):
OlivierDehaene's avatar
OlivierDehaene committed
97
```
98
text-generation-launcher --help
99
```
OlivierDehaene's avatar
OlivierDehaene committed
100

101
### API documentation
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
102

103
104
105
You can consult the OpenAPI documentation of the `text-generation-inference` REST API using the `/docs` route.
The Swagger UI is also available at: [https://huggingface.github.io/text-generation-inference](https://huggingface.github.io/text-generation-inference).

OlivierDehaene's avatar
OlivierDehaene committed
106
### Using a private or gated model
Nicolas Patry's avatar
Nicolas Patry committed
107

108
You have the option to utilize the `HUGGING_FACE_HUB_TOKEN` environment variable for configuring the token employed by
OlivierDehaene's avatar
OlivierDehaene committed
109
`text-generation-inference`. This allows you to gain access to protected resources.
Nicolas Patry's avatar
Nicolas Patry committed
110

OlivierDehaene's avatar
OlivierDehaene committed
111
For example, if you want to serve the gated Llama V2 model variants:
112

OlivierDehaene's avatar
OlivierDehaene committed
113
114
115
116
117
118
1. Go to https://huggingface.co/settings/tokens
2. Copy your cli READ token
3. Export `HUGGING_FACE_HUB_TOKEN=<your cli READ token>`

or with Docker:

119
```shell
OlivierDehaene's avatar
OlivierDehaene committed
120
121
122
123
model=meta-llama/Llama-2-7b-chat-hf
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
token=<your cli READ token>

OlivierDehaene's avatar
OlivierDehaene committed
124
docker run --gpus all --shm-size 1g -e HUGGING_FACE_HUB_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.0 --model-id $model
OlivierDehaene's avatar
OlivierDehaene committed
125
```
126

127
128
### A note on Shared Memory (shm)

129
[`NCCL`](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html) is a communication framework used by
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
`PyTorch` to do distributed training/inference. `text-generation-inference` make
use of `NCCL` to enable Tensor Parallelism to dramatically speed up inference for large language models.

In order to share data between the different devices of a `NCCL` group, `NCCL` might fall back to using the host memory if
peer-to-peer using NVLink or PCI is not possible.

To allow the container to use 1G of Shared Memory and support SHM sharing, we add `--shm-size 1g` on the above command.

If you are running `text-generation-inference` inside `Kubernetes`. You can also add Shared Memory to the container by
creating a volume with:

```yaml
- name: shm
  emptyDir:
   medium: Memory
   sizeLimit: 1Gi
```

and mounting it to `/dev/shm`.

150
Finally, you can also disable SHM sharing by using the `NCCL_SHM_DISABLE=1` environment variable. However, note that
151
152
this will impact performance.

OlivierDehaene's avatar
OlivierDehaene committed
153
154
155
156
157
### Distributed Tracing

`text-generation-inference` is instrumented with distributed tracing using OpenTelemetry. You can use this feature
by setting the address to an OTLP collector with the `--otlp-endpoint` argument.

158
159
### Architecture

fxmarty's avatar
fxmarty committed
160
![TGI architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/TGI.png)
161

162
163
### Local install

164
You can also opt to install `text-generation-inference` locally.
165

166
First [install Rust](https://rustup.rs/) and create a Python virtual environment with at least
167
168
169
170
171
Python 3.9, e.g. using `conda`:

```shell
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

Nicolas Patry's avatar
Nicolas Patry committed
172
conda create -n text-generation-inference python=3.11
173
174
175
conda activate text-generation-inference
```

176
177
178
179
180
181
182
183
184
185
186
187
You may also need to install Protoc.

On Linux:

```shell
PROTOC_ZIP=protoc-21.12-linux-x86_64.zip
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP
sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc
sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*'
rm -f $PROTOC_ZIP
```

188
On MacOS, using Homebrew:
189
190
191
192
193

```shell
brew install protobuf
```

194
Then run:
195

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
196
```shell
197
BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels
Nicolas Patry's avatar
Nicolas Patry committed
198
text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
199
200
```

201
**Note:** on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run:
202
203

```shell
204
sudo apt-get install libssl-dev gcc -y
205
206
```

207
208
## Optimized architectures

Nicolas Patry's avatar
Nicolas Patry committed
209
TGI works out of the box to serve optimized models for all modern models. They can be found in [this list](https://huggingface.co/docs/text-generation-inference/supported_models).
210
211
212
213
214
215
216
217
218
219
220

Other architectures are supported on a best-effort basis using:

`AutoModelForCausalLM.from_pretrained(<model>, device_map="auto")`

or

`AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")`



Nicolas Patry's avatar
Nicolas Patry committed
221
## Run locally
222

223
224
### Run

225
```shell
Nicolas Patry's avatar
Nicolas Patry committed
226
text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2
227
228
```

229
230
### Quantization

231
232
233
You can also quantize the weights with bitsandbytes to reduce the VRAM requirement:

```shell
OlivierDehaene's avatar
OlivierDehaene committed
234
text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2 --quantize
235
236
```

Nicolas Patry's avatar
Nicolas Patry committed
237
238
4bit quantization is available using the [NF4 and FP4 data types from bitsandbytes](https://arxiv.org/pdf/2305.14314.pdf). It can be enabled by providing `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` as a command line argument to `text-generation-launcher`.

239
## Develop
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
240

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
241
```shell
242
243
make server-dev
make router-dev
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
244
245
```

246
## Testing
Nicolas Patry's avatar
Nicolas Patry committed
247
248

```shell
249
250
251
252
# python
make python-server-tests
make python-client-tests
# or both server and client tests
253
make python-tests
254
# rust cargo tests
255
256
make rust-tests
# integration tests
257
make integration-tests
258
```