infer.rs 20.1 KB
Newer Older
1
2
/// Batching and inference logic
use crate::validation::{Validation, ValidationError};
3
use crate::{Entry, Queue, Token};
4
use crate::{GenerateRequest, PrefillToken};
5
use flume::r#async::RecvStream;
6
use flume::SendError;
7
use futures::future::try_join_all;
8
use futures::stream::StreamExt;
9
10
11
12
13
14
use nohash_hasher::IntMap;
use std::sync::Arc;
use text_generation_client::{
    Batch, ClientError, GeneratedText, Generation, PrefillTokens, ShardedClient,
};
use thiserror::Error;
15
use tokio::sync::{Notify, OwnedSemaphorePermit, Semaphore, TryAcquireError};
16
use tokio::time::Instant;
17
use tracing::{info_span, instrument, Instrument, Span};
18
19
20
21
22
23

/// Inference struct
#[derive(Clone)]
pub struct Infer {
    /// Validation
    validation: Validation,
24
25
    /// Request queue
    queue: Queue,
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
    /// Shared state
    shared: Arc<Shared>,
    /// Inference limit
    limit_concurrent_requests: Arc<Semaphore>,
}

/// Infer shared state
struct Shared {
    /// Batching background Tokio task notifier
    batching_task: Notify,
}

impl Infer {
    pub(crate) fn new(
        client: ShardedClient,
        validation: Validation,
        max_batch_size: usize,
        max_waiting_tokens: usize,
        max_concurrent_requests: usize,
    ) -> Self {
        // Infer shared state
47
        let queue = Queue::new();
48
49
50
51
52
53
54
55
56
        let shared = Arc::new(Shared {
            batching_task: Notify::new(),
        });

        // Spawn batching background task that contains all the inference logic
        tokio::spawn(batching_task(
            client,
            max_batch_size,
            max_waiting_tokens,
57
            queue.clone(),
58
59
60
61
62
63
64
65
            shared.clone(),
        ));

        // Inference limit with a semaphore
        let semaphore = Arc::new(Semaphore::new(max_concurrent_requests));

        Self {
            validation,
66
            queue,
67
68
69
70
71
            shared,
            limit_concurrent_requests: semaphore,
        }
    }

72
    /// Add a new request to the queue and return a stream of InferStreamResponse
73
    #[instrument(skip(self))]
74
75
76
    pub(crate) async fn generate_stream(
        &self,
        request: GenerateRequest,
77
78
79
80
81
82
83
    ) -> Result<
        (
            OwnedSemaphorePermit,
            RecvStream<Result<InferStreamResponse, InferError>>,
        ),
        InferError,
    > {
84
        // Limit concurrent requests by acquiring a permit from the semaphore
85
86
87
88
89
        let permit = self
            .clone()
            .limit_concurrent_requests
            .try_acquire_owned()
            .map_err(|err| {
90
                metrics::increment_counter!("tgi_request_failure", "err" => "overloaded");
91
92
93
                tracing::error!("{err}");
                err
            })?;
94
95

        // Validate request
96
97
98
99
100
        let valid_request = self.validation.validate(request).await.map_err(|err| {
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            err
        })?;
101
102

        // MPSC channel to communicate with the background batching task
103
        let (response_tx, response_rx) = flume::unbounded();
104

105
106
        // Append the request to the queue
        self.queue.append(Entry {
107
108
            request: valid_request,
            response_tx,
109
110
111
            span: Span::current(),
            temp_span: None,
            queue_time: Instant::now(),
112
113
114
            batch_time: None,
        });

115
        // Notify the background task that we have a new entry in the queue that needs
116
117
118
119
        // to be batched
        self.shared.batching_task.notify_one();

        // Return stream
120
        Ok((permit, response_rx.into_stream()))
121
122
    }

123
    /// Add a new request to the queue and return a InferResponse
124
    #[instrument(skip(self))]
125
126
127
128
    pub(crate) async fn generate(
        &self,
        request: GenerateRequest,
    ) -> Result<InferResponse, InferError> {
129
130
        // Create stream and keep semaphore permit as long as generate lives
        let (_permit, mut stream) = self.generate_stream(request).await?;
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

        // Return values
        let mut result_prefill = Vec::new();
        let mut result_tokens = Vec::new();
        let mut result_generated_text = None;
        let mut result_start = None;
        let mut result_queued = None;

        // Iterate on stream
        while let Some(response) = stream.next().await {
            match response? {
                // Add prefill tokens
                InferStreamResponse::Prefill(tokens) => {
                    // Create Token objects
                    // We do that here instead of in the Python code as Rust for loops are faster
                    result_prefill = tokens
                        .ids
                        .into_iter()
                        .zip(tokens.logprobs.into_iter())
                        .zip(tokens.texts.into_iter())
151
                        .map(|((id, logprob), text)| PrefillToken { id, text, logprob })
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
                        .collect();
                }
                // Push last token
                InferStreamResponse::Token(token) => result_tokens.push(token),
                // Final message
                // Set return values
                InferStreamResponse::End {
                    token,
                    generated_text,
                    start,
                    queued,
                } => {
                    result_tokens.push(token);
                    result_generated_text = Some(generated_text);
                    result_start = Some(start);
                    result_queued = Some(queued)
                }
            }
        }

        // Check that we received a `InferStreamResponse::End` message
        if let (Some(generated_text), Some(queued), Some(start)) =
            (result_generated_text, result_queued, result_start)
        {
            Ok(InferResponse {
                prefill: result_prefill,
                tokens: result_tokens,
                generated_text,
                queued,
                start,
            })
        } else {
184
            let err = InferError::IncompleteGeneration;
185
            metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
186
187
            tracing::error!("{err}");
            Err(err)
188
189
        }
    }
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    /// Add best_of new requests to the queue and return a InferResponse of the sequence with
    /// the highest log probability per token
    #[instrument(skip(self))]
    pub(crate) async fn generate_best_of(
        &self,
        request: GenerateRequest,
        best_of: usize,
    ) -> Result<(InferResponse, Vec<InferResponse>), InferError> {
        // validate  best_of parameter separately
        let best_of = self.validation.validate_best_of(best_of)?;

        // create multiple generate requests
        let mut infer_responses: Vec<InferResponse> =
            try_join_all((0..best_of).map(|_| self.generate(request.clone()))).await?;

        // get the sequence with the highest log probability per token
        let mut max_index = 0;
        let mut max_logprob: f32 = f32::MIN;

        for (i, response) in infer_responses.iter().enumerate() {
            // mean logprobs of the generated tokens
            let sequence_logprob = response
                .tokens
                .iter()
                .map(|token| token.logprob)
                .sum::<f32>()
                / response.tokens.len() as f32;

            // set best sequence
            if sequence_logprob > max_logprob {
                max_index = i;
                max_logprob = sequence_logprob;
            }
        }
        let best_response = infer_responses.remove(max_index);
        Ok((best_response, infer_responses))
    }
227
228
229
230
231
232
233
234
235
236
}

/// Batching logic
/// Will be launched in a background Tokio task
///
/// Batches requests and sends them to the inference server
async fn batching_task(
    mut client: ShardedClient,
    max_batch_size: usize,
    max_waiting_tokens: usize,
237
    queue: Queue,
238
239
240
    shared: Arc<Shared>,
) {
    // Minimum batch size after which we try to add more requests
241
242
243
244
245
    let limit_min_batch_size = if max_batch_size > 1 {
        (max_batch_size / 2) as u32
    } else {
        0
    };
246
247
248
249
250
251

    // Infinite loop
    loop {
        // Wait for a notification from the Infer struct
        shared.batching_task.notified().await;

252
        // Get the next batch from the queue
253
        // This batch might be smaller than the maximum batch size if there are not enough requests
254
        // waiting in the queue
255
        while let Some((mut entries, batch, span)) = queue.next_batch(None, max_batch_size).await {
256
            let mut cached_batch = prefill(&mut client, batch, &mut entries)
257
258
                .instrument(span)
                .await;
259
260
261
262
263
264
265
266
            let mut waiting_tokens = 1;

            // We loop until we do not receive any cached batch from the inference server (== until
            // all requests have met their stopping criteria)
            while let Some(batch) = cached_batch {
                // Get current batch info
                let batch_size = batch.size;
                let mut batches = vec![batch];
267
                metrics::gauge!("tgi_batch_current_size", batch_size as f64);
268
269
270
271
272
273
274
275
276
277
278
279

                // If the current batch is too small, we try to add more requests to it
                if batch_size <= limit_min_batch_size {
                    let min_size = match waiting_tokens {
                        // If we didn't onboard any new requests since >= max_waiting_tokens, we try
                        // to add a new batch even though its size might be small
                        _ if waiting_tokens >= max_waiting_tokens => None,
                        // Minimum size criteria
                        _ => Some(limit_min_batch_size as usize),
                    };

                    // Try to get a new batch
280
                    if let Some((mut new_entries, new_batch, span)) = queue
281
282
                        .next_batch(min_size, max_batch_size - batch_size as usize)
                        .await
283
                    {
284
285
286
                        entries.iter_mut().for_each(|(_, entry)| {
                            // Create a new span to add the info that this entry is waiting
                            // because a new batch is being computed
287
                            let entry_waiting_span = info_span!(parent: &entry.span, "waiting");
288
289
                            // Add relationships
                            span.follows_from(&entry_waiting_span);
290
291
292
293
294
                            entry_waiting_span.follows_from(&span);
                            // Update entry
                            entry.temp_span = Some(entry_waiting_span);
                        });

295
                        // Generate one token for this new batch to have the attention past in cache
296
297
298
                        let new_cached_batch = prefill(&mut client, new_batch, &mut new_entries)
                            .instrument(span)
                            .await;
299
300
301
302
303
304
305
306
307
                        // Reset waiting counter
                        waiting_tokens = 1;
                        // Extend current batch with the new batch
                        if let Some(new_cached_batch) = new_cached_batch {
                            entries.extend(new_entries);
                            batches.push(new_cached_batch);
                        }
                    }
                }
308
309
310
311
312
313
                // Create span for this batch to add context to inference calls
                let next_batch_size = entries.len();
                let next_batch_span =
                    info_span!(parent: None, "batch", batch_size = next_batch_size);
                entries.iter_mut().for_each(|(_, entry)| {
                    // Create a new span to link the batch back to this entry
314
                    let entry_batch_span = info_span!(parent: &entry.span, "infer");
315
316
                    // Add relationships
                    next_batch_span.follows_from(&entry_batch_span);
317
318
319
320
                    entry_batch_span.follows_from(&next_batch_span);
                    // Update entry
                    entry.temp_span = Some(entry_batch_span);
                });
321

322
                cached_batch = decode(&mut client, batches, &mut entries)
323
324
                    .instrument(next_batch_span)
                    .await;
325
326
                waiting_tokens += 1;
            }
327
            metrics::gauge!("tgi_batch_current_size", 0.0);
328
329
330
331
        }
    }
}

332
#[instrument(skip_all)]
333
334
335
async fn prefill(
    client: &mut ShardedClient,
    batch: Batch,
336
337
    entries: &mut IntMap<u64, Entry>,
) -> Option<Batch> {
338
    let start_time = Instant::now();
339
    let batch_id = batch.id;
340
    metrics::increment_counter!("tgi_batch_inference_count", "method" => "prefill");
341
342
343

    match client.prefill(batch).await {
        Ok((generations, next_batch)) => {
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
            filter_send_generations(generations, entries);

            // Filter next batch and remove requests that were stopped
            let next_batch = match next_batch {
                None => None,
                Some(batch) => {
                    let id = batch.id;
                    let next_batch = filter_batch(batch, entries);
                    // Next batch is now empty
                    // Clear it from the Python shards cache
                    if next_batch.is_none() {
                        let _ = client.clear_cache(Some(id)).await;
                    }
                    next_batch
                }
            };

361
            metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed().as_secs_f64(), "method" => "prefill");
362
363
364
365
366
            metrics::increment_counter!("tgi_batch_inference_success", "method" => "prefill");
            next_batch
        }
        // If we have an error, we discard the whole batch
        Err(err) => {
367
            let _ = client.clear_cache(Some(batch_id)).await;
368
369
370
371
372
373
374
375
376
377
378
379
380
381
            send_errors(err, entries);
            metrics::increment_counter!("tgi_batch_inference_failure", "method" => "prefill");
            None
        }
    }
}

#[instrument(skip_all)]
async fn decode(
    client: &mut ShardedClient,
    batches: Vec<Batch>,
    entries: &mut IntMap<u64, Entry>,
) -> Option<Batch> {
    let start_time = Instant::now();
382
    let batch_ids: Vec<u64> = batches.iter().map(|b| b.id).collect();
383
    metrics::increment_counter!("tgi_batch_inference_count", "method" => "decode");
384
385

    match client.decode(batches).await {
386
        Ok((generations, next_batch)) => {
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
            filter_send_generations(generations, entries);

            // Filter next batch and remove requests that were stopped
            let next_batch = match next_batch {
                None => None,
                Some(batch) => {
                    let id = batch.id;
                    let next_batch = filter_batch(batch, entries);
                    // Next batch is now empty
                    // Clear it from the Python shards cache
                    if next_batch.is_none() {
                        let _ = client.clear_cache(Some(id)).await;
                    }
                    next_batch
                }
            };

404
            metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed().as_secs_f64(), "method" => "decode");
405
            metrics::increment_counter!("tgi_batch_inference_success", "method" => "decode");
406
407
408
409
            next_batch
        }
        // If we have an error, we discard the whole batch
        Err(err) => {
410
411
412
            for id in batch_ids {
                let _ = client.clear_cache(Some(id)).await;
            }
413
            send_errors(err, entries);
414
            metrics::increment_counter!("tgi_batch_inference_failure", "method" => "decode");
415
416
417
418
419
            None
        }
    }
}

420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
/// Filter a `batch` and remove all requests not present in `entries`
#[instrument(skip_all)]
fn filter_batch(mut batch: Batch, entries: &IntMap<u64, Entry>) -> Option<Batch> {
    batch.requests.retain(|r| entries.contains_key(&r.id));
    let size = batch.requests.len();
    if size == 0 {
        return None;
    }
    batch.size = size as u32;
    Some(batch)
}

/// Send one or multiple `InferStreamResponse` to Infer for all `entries`
/// and filter entries
#[instrument(skip_all)]
fn filter_send_generations(generations: Vec<Generation>, entries: &mut IntMap<u64, Entry>) {
    generations.into_iter().for_each(|generation| {
        let id = generation.request_id;
        // Get entry
        // We can `expect` here as the request id should always be in the entries
        let entry = entries
            .get(&id)
            .expect("ID not found in entries. This is a bug.");

        // Create and enter a span to link this function back to the entry
        let _span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_generation", generation = ?generation).entered();
        // Send generation responses back to the infer task
        // If the receive an error from the Flume channel, it means that the client dropped the
        // request and we need to stop generating hence why we unwrap_or(true)
        let stopped = send_responses(generation, entry).map_err(|err| {
            metrics::increment_counter!("tgi_request_failure", "err" => "dropped");
            err
        }).unwrap_or(true);
        if stopped {
            entries.remove(&id).expect("ID not found in entries. This is a bug.");
        }
    });
}

/// Send responses through the `entry` response channel
fn send_responses(
    generation: Generation,
    entry: &Entry,
) -> Result<bool, SendError<Result<InferStreamResponse, InferError>>> {
    let mut stopped = false;

    if let Some(prefill_tokens) = generation.prefill_tokens {
        // Send message
        entry
            .response_tx
            .send(Ok(InferStreamResponse::Prefill(prefill_tokens)))?;
    }

    // Create last Token
    let token = Token {
        id: generation.token_id,
        text: generation.token_text,
        logprob: generation.token_logprob,
        special: generation.token_is_special,
    };

    if let Some(generated_text) = generation.generated_text {
        // Generation has ended
        stopped = true;
        // Send message
        entry.response_tx.send(Ok(InferStreamResponse::End {
            token,
            generated_text,
            queued: entry.queue_time,
            start: entry.batch_time.unwrap(),
        }))?;
    } else {
        // Send message
        entry
            .response_tx
            .send(Ok(InferStreamResponse::Token(token)))?;
    }
    Ok(stopped)
}

500
/// Send errors to Infer for all `entries`
501
502
#[instrument(skip_all)]
fn send_errors(error: ClientError, entries: &mut IntMap<u64, Entry>) {
503
    entries.drain().for_each(|(_, entry)| {
504
505
506
        // Create and enter a span to link this function back to the entry
        let _send_error_span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_error").entered();
        let err = InferError::GenerationError(error.to_string());
507
        metrics::increment_counter!("tgi_request_failure", "err" => "generation");
508
509
        tracing::error!("{err}");

510
511
512
        // unwrap_or is valid here as we don't care if the receiver is gone.
        entry
            .response_tx
513
            .send(Err(err))
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
            .unwrap_or(());
    });
}

#[derive(Debug)]
pub(crate) enum InferStreamResponse {
    // Optional first message
    Prefill(PrefillTokens),
    // Intermediate messages
    Token(Token),
    // Last message
    End {
        token: Token,
        generated_text: GeneratedText,
        start: Instant,
        queued: Instant,
    },
}

#[derive(Debug)]
pub(crate) struct InferResponse {
535
    pub(crate) prefill: Vec<PrefillToken>,
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
    pub(crate) tokens: Vec<Token>,
    pub(crate) generated_text: GeneratedText,
    pub(crate) queued: Instant,
    pub(crate) start: Instant,
}

#[derive(Debug, Error)]
pub enum InferError {
    #[error("Request failed during generation: {0}")]
    GenerationError(String),
    #[error("Model is overloaded")]
    Overloaded(#[from] TryAcquireError),
    #[error("Input validation error: {0}")]
    ValidationError(#[from] ValidationError),
    #[error("Incomplete generation")]
    IncompleteGeneration,
}
553
554
555
556
557
558
559
560
561
562
563

impl InferError {
    pub(crate) fn error_type(&self) -> &str {
        match self {
            InferError::GenerationError(_) => "generation",
            InferError::Overloaded(_) => "overloaded",
            InferError::ValidationError(_) => "validation",
            InferError::IncompleteGeneration => "incomplete_generation",
        }
    }
}