infer.rs 17.8 KB
Newer Older
1
2
/// Batching and inference logic
use crate::validation::{Validation, ValidationError};
3
use crate::{Entry, Queue, Token};
4
use crate::{GenerateRequest, PrefillToken};
5
use futures::future::try_join_all;
6
7
8
9
10
11
12
13
14
15
use nohash_hasher::IntMap;
use std::sync::Arc;
use text_generation_client::{
    Batch, ClientError, GeneratedText, Generation, PrefillTokens, ShardedClient,
};
use thiserror::Error;
use tokio::sync::{mpsc, Notify, Semaphore, TryAcquireError};
use tokio::time::Instant;
use tokio_stream::wrappers::UnboundedReceiverStream;
use tokio_stream::StreamExt;
16
use tracing::{info_span, instrument, Instrument, Span};
17
18
19
20
21
22

/// Inference struct
#[derive(Clone)]
pub struct Infer {
    /// Validation
    validation: Validation,
23
24
    /// Request queue
    queue: Queue,
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
    /// Shared state
    shared: Arc<Shared>,
    /// Inference limit
    limit_concurrent_requests: Arc<Semaphore>,
}

/// Infer shared state
struct Shared {
    /// Batching background Tokio task notifier
    batching_task: Notify,
}

impl Infer {
    pub(crate) fn new(
        client: ShardedClient,
        validation: Validation,
        max_batch_size: usize,
        max_waiting_tokens: usize,
        max_concurrent_requests: usize,
    ) -> Self {
        // Infer shared state
46
        let queue = Queue::new();
47
48
49
50
51
52
53
54
55
        let shared = Arc::new(Shared {
            batching_task: Notify::new(),
        });

        // Spawn batching background task that contains all the inference logic
        tokio::spawn(batching_task(
            client,
            max_batch_size,
            max_waiting_tokens,
56
            queue.clone(),
57
58
59
60
61
62
63
64
            shared.clone(),
        ));

        // Inference limit with a semaphore
        let semaphore = Arc::new(Semaphore::new(max_concurrent_requests));

        Self {
            validation,
65
            queue,
66
67
68
69
70
            shared,
            limit_concurrent_requests: semaphore,
        }
    }

71
    /// Add a new request to the queue and return a stream of InferStreamResponse
72
    #[instrument(skip(self))]
73
74
75
76
77
78
    pub(crate) async fn generate_stream(
        &self,
        request: GenerateRequest,
    ) -> Result<UnboundedReceiverStream<Result<InferStreamResponse, InferError>>, InferError> {
        // Limit concurrent requests by acquiring a permit from the semaphore
        // This permit will live as long as Entry
79
80
81
82
83
        let permit = self
            .clone()
            .limit_concurrent_requests
            .try_acquire_owned()
            .map_err(|err| {
84
                metrics::increment_counter!("tgi_request_failure", "err" => "overloaded");
85
86
87
                tracing::error!("{err}");
                err
            })?;
88
89
90
91
92
93
94

        // Validate request
        let valid_request = self.validation.validate(request).await?;

        // MPSC channel to communicate with the background batching task
        let (response_tx, response_rx) = mpsc::unbounded_channel();

95
96
        // Append the request to the queue
        self.queue.append(Entry {
97
98
            request: valid_request,
            response_tx,
99
100
101
            span: Span::current(),
            temp_span: None,
            queue_time: Instant::now(),
102
103
104
105
            batch_time: None,
            _permit: permit,
        });

106
        // Notify the background task that we have a new entry in the queue that needs
107
108
109
110
111
112
113
        // to be batched
        self.shared.batching_task.notify_one();

        // Return stream
        Ok(UnboundedReceiverStream::new(response_rx))
    }

114
    /// Add a new request to the queue and return a InferResponse
115
    #[instrument(skip(self))]
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    pub(crate) async fn generate(
        &self,
        request: GenerateRequest,
    ) -> Result<InferResponse, InferError> {
        // Create stream
        let mut stream = self.generate_stream(request).await?;

        // Return values
        let mut result_prefill = Vec::new();
        let mut result_tokens = Vec::new();
        let mut result_generated_text = None;
        let mut result_start = None;
        let mut result_queued = None;

        // Iterate on stream
        while let Some(response) = stream.next().await {
            match response? {
                // Add prefill tokens
                InferStreamResponse::Prefill(tokens) => {
                    // Create Token objects
                    // We do that here instead of in the Python code as Rust for loops are faster
                    result_prefill = tokens
                        .ids
                        .into_iter()
                        .zip(tokens.logprobs.into_iter())
                        .zip(tokens.texts.into_iter())
142
                        .map(|((id, logprob), text)| PrefillToken { id, text, logprob })
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
                        .collect();
                }
                // Push last token
                InferStreamResponse::Token(token) => result_tokens.push(token),
                // Final message
                // Set return values
                InferStreamResponse::End {
                    token,
                    generated_text,
                    start,
                    queued,
                } => {
                    result_tokens.push(token);
                    result_generated_text = Some(generated_text);
                    result_start = Some(start);
                    result_queued = Some(queued)
                }
            }
        }

        // Check that we received a `InferStreamResponse::End` message
        if let (Some(generated_text), Some(queued), Some(start)) =
            (result_generated_text, result_queued, result_start)
        {
            Ok(InferResponse {
                prefill: result_prefill,
                tokens: result_tokens,
                generated_text,
                queued,
                start,
            })
        } else {
175
            let err = InferError::IncompleteGeneration;
176
            metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
177
178
            tracing::error!("{err}");
            Err(err)
179
180
        }
    }
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    /// Add best_of new requests to the queue and return a InferResponse of the sequence with
    /// the highest log probability per token
    #[instrument(skip(self))]
    pub(crate) async fn generate_best_of(
        &self,
        request: GenerateRequest,
        best_of: usize,
    ) -> Result<(InferResponse, Vec<InferResponse>), InferError> {
        // validate  best_of parameter separately
        let best_of = self.validation.validate_best_of(best_of)?;

        // create multiple generate requests
        let mut infer_responses: Vec<InferResponse> =
            try_join_all((0..best_of).map(|_| self.generate(request.clone()))).await?;

        // get the sequence with the highest log probability per token
        let mut max_index = 0;
        let mut max_logprob: f32 = f32::MIN;

        for (i, response) in infer_responses.iter().enumerate() {
            // mean logprobs of the generated tokens
            let sequence_logprob = response
                .tokens
                .iter()
                .map(|token| token.logprob)
                .sum::<f32>()
                / response.tokens.len() as f32;

            // set best sequence
            if sequence_logprob > max_logprob {
                max_index = i;
                max_logprob = sequence_logprob;
            }
        }
        let best_response = infer_responses.remove(max_index);
        Ok((best_response, infer_responses))
    }
218
219
220
221
222
223
224
225
226
227
}

/// Batching logic
/// Will be launched in a background Tokio task
///
/// Batches requests and sends them to the inference server
async fn batching_task(
    mut client: ShardedClient,
    max_batch_size: usize,
    max_waiting_tokens: usize,
228
    queue: Queue,
229
230
231
232
233
234
235
236
237
238
    shared: Arc<Shared>,
) {
    // Minimum batch size after which we try to add more requests
    let limit_min_batch_size = (max_batch_size / 2) as u32;

    // Infinite loop
    loop {
        // Wait for a notification from the Infer struct
        shared.batching_task.notified().await;

239
        // Get the next batch from the queue
240
        // This batch might be smaller than the maximum batch size if there are not enough requests
241
        // waiting in the queue
242
        while let Some((mut entries, batch, span)) = queue.next_batch(None, max_batch_size).await {
243
            let mut cached_batch = prefill(&mut client, batch, &mut entries)
244
245
                .instrument(span)
                .await;
246
247
248
249
250
251
252
253
            let mut waiting_tokens = 1;

            // We loop until we do not receive any cached batch from the inference server (== until
            // all requests have met their stopping criteria)
            while let Some(batch) = cached_batch {
                // Get current batch info
                let batch_size = batch.size;
                let mut batches = vec![batch];
254
                metrics::gauge!("tgi_batch_current_size", batch_size as f64);
255
256
257
258
259
260
261
262
263
264
265
266

                // If the current batch is too small, we try to add more requests to it
                if batch_size <= limit_min_batch_size {
                    let min_size = match waiting_tokens {
                        // If we didn't onboard any new requests since >= max_waiting_tokens, we try
                        // to add a new batch even though its size might be small
                        _ if waiting_tokens >= max_waiting_tokens => None,
                        // Minimum size criteria
                        _ => Some(limit_min_batch_size as usize),
                    };

                    // Try to get a new batch
267
                    if let Some((mut new_entries, new_batch, span)) = queue
268
269
                        .next_batch(min_size, max_batch_size - batch_size as usize)
                        .await
270
                    {
271
272
273
274
275
276
277
278
279
280
281
282
                        let new_batch_size = new_batch.size;
                        entries.iter_mut().for_each(|(_, entry)| {
                            // Create a new span to add the info that this entry is waiting
                            // because a new batch is being computed
                            let entry_waiting_span =
                                info_span!(parent: &entry.span, "waiting", batch_size = new_batch_size);
                            // Add relationship
                            entry_waiting_span.follows_from(&span);
                            // Update entry
                            entry.temp_span = Some(entry_waiting_span);
                        });

283
                        // Generate one token for this new batch to have the attention past in cache
284
285
286
                        let new_cached_batch = prefill(&mut client, new_batch, &mut new_entries)
                            .instrument(span)
                            .await;
287
288
289
290
291
292
293
294
295
                        // Reset waiting counter
                        waiting_tokens = 1;
                        // Extend current batch with the new batch
                        if let Some(new_cached_batch) = new_cached_batch {
                            entries.extend(new_entries);
                            batches.push(new_cached_batch);
                        }
                    }
                }
296
297
298
299
300
301
302
303
304
305
306
307
308
                // Create span for this batch to add context to inference calls
                let next_batch_size = entries.len();
                let next_batch_span =
                    info_span!(parent: None, "batch", batch_size = next_batch_size);
                entries.iter_mut().for_each(|(_, entry)| {
                    // Create a new span to link the batch back to this entry
                    let entry_batch_span =
                        info_span!(parent: &entry.span, "infer", batch_size = next_batch_size);
                    // Add relationship
                    entry_batch_span.follows_from(&next_batch_span);
                    // Update entry
                    entry.temp_span = Some(entry_batch_span);
                });
309

310
                cached_batch = decode(&mut client, batches, &mut entries)
311
312
                    .instrument(next_batch_span)
                    .await;
313
314
                waiting_tokens += 1;
            }
315
            metrics::gauge!("tgi_batch_current_size", 0.0);
316
317
318
319
        }
    }
}

320
#[instrument(skip_all)]
321
322
323
async fn prefill(
    client: &mut ShardedClient,
    batch: Batch,
324
325
    entries: &mut IntMap<u64, Entry>,
) -> Option<Batch> {
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
    let start_time = Instant::now();

    match client.prefill(batch).await {
        Ok((generations, next_batch)) => {
            send_generations(generations, entries);
            metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed(), "method" => "prefill");
            metrics::increment_counter!("tgi_batch_inference_success", "method" => "prefill");
            next_batch
        }
        // If we have an error, we discard the whole batch
        Err(err) => {
            send_errors(err, entries);
            metrics::increment_counter!("tgi_batch_inference_failure", "method" => "prefill");
            None
        }
    }
}

#[instrument(skip_all)]
async fn decode(
    client: &mut ShardedClient,
    batches: Vec<Batch>,
    entries: &mut IntMap<u64, Entry>,
) -> Option<Batch> {
    let start_time = Instant::now();

    match client.decode(batches).await {
353
354
        Ok((generations, next_batch)) => {
            send_generations(generations, entries);
355
356
            metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed(), "method" => "decode");
            metrics::increment_counter!("tgi_batch_inference_success", "method" => "decode");
357
358
359
360
            next_batch
        }
        // If we have an error, we discard the whole batch
        Err(err) => {
361
            send_errors(err, entries);
362
            metrics::increment_counter!("tgi_batch_inference_failure", "method" => "decode");
363
364
365
366
367
368
            None
        }
    }
}

/// Send errors to Infer for all `entries`
369
370
#[instrument(skip_all)]
fn send_errors(error: ClientError, entries: &mut IntMap<u64, Entry>) {
371
    entries.drain().for_each(|(_, entry)| {
372
373
374
        // Create and enter a span to link this function back to the entry
        let _send_error_span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_error").entered();
        let err = InferError::GenerationError(error.to_string());
375
        metrics::increment_counter!("tgi_request_failure", "err" => "generation");
376
377
        tracing::error!("{err}");

378
379
380
        // unwrap_or is valid here as we don't care if the receiver is gone.
        entry
            .response_tx
381
            .send(Err(err))
382
383
384
385
386
            .unwrap_or(());
    });
}

/// Send one or multiple `InferStreamResponse` to Infer for all `entries`
387
#[instrument(skip_all)]
388
389
390
391
392
393
394
395
fn send_generations(generations: Vec<Generation>, entries: &mut IntMap<u64, Entry>) {
    generations.into_iter().for_each(|generation| {
        // Get entry
        // We can `expect` here as the request id should always be in the entries
        let entry = entries
            .get(&generation.request_id)
            .expect("ID not found in entries. This is a bug.");

396
397
398
        // Create and enter a span to link this function back to the entry
        let _generation_span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_generation", generation = ?generation).entered();

399
400
401
402
403
404
405
406
407
408
        if let Some(prefill_tokens) = generation.prefill_tokens {
            // Send message
            // unwrap_or is valid here as we don't care if the receiver is gone.
            entry
                .response_tx
                .send(Ok(InferStreamResponse::Prefill(prefill_tokens)))
                .unwrap_or(());
        }

        // Create last Token
409
410
411
412
        let token = Token {
            id: generation.token_id,
            text: generation.token_text,
            logprob: generation.token_logprob,
413
            special: generation.token_is_special,
414
        };
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

        if let Some(generated_text) = generation.generated_text {
            // Remove entry as this is the last message
            // We can `expect` here as the request id should always be in the entries
            let entry = entries
                .remove(&generation.request_id)
                .expect("ID not found in entries. This is a bug.");

            // Send message
            // unwrap_or is valid here as we don't care if the receiver is gone.
            entry
                .response_tx
                .send(Ok(InferStreamResponse::End {
                    token,
                    generated_text,
430
                    queued: entry.queue_time,
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
                    start: entry.batch_time.unwrap(),
                }))
                .unwrap_or(());
        } else {
            // Send message
            // unwrap_or is valid here as we don't care if the receiver is gone.
            entry
                .response_tx
                .send(Ok(InferStreamResponse::Token(token)))
                .unwrap_or(());
        }
    });
}

#[derive(Debug)]
pub(crate) enum InferStreamResponse {
    // Optional first message
    Prefill(PrefillTokens),
    // Intermediate messages
    Token(Token),
    // Last message
    End {
        token: Token,
        generated_text: GeneratedText,
        start: Instant,
        queued: Instant,
    },
}

#[derive(Debug)]
pub(crate) struct InferResponse {
462
    pub(crate) prefill: Vec<PrefillToken>,
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
    pub(crate) tokens: Vec<Token>,
    pub(crate) generated_text: GeneratedText,
    pub(crate) queued: Instant,
    pub(crate) start: Instant,
}

#[derive(Debug, Error)]
pub enum InferError {
    #[error("Request failed during generation: {0}")]
    GenerationError(String),
    #[error("Model is overloaded")]
    Overloaded(#[from] TryAcquireError),
    #[error("Input validation error: {0}")]
    ValidationError(#[from] ValidationError),
    #[error("Incomplete generation")]
    IncompleteGeneration,
}
480
481
482
483
484
485
486
487
488
489
490

impl InferError {
    pub(crate) fn error_type(&self) -> &str {
        match self {
            InferError::GenerationError(_) => "generation",
            InferError::Overloaded(_) => "overloaded",
            InferError::ValidationError(_) => "validation",
            InferError::IncompleteGeneration => "incomplete_generation",
        }
    }
}