__init__.py 49.5 KB
Newer Older
1
2
3
# ruff: noqa: F821
# the above line disables the `undefined-name` rule for the model type variables

4
import torch
5
import enum
Nicolas Patry's avatar
Nicolas Patry committed
6
import os
7

8
from loguru import logger
9
from transformers.configuration_utils import PretrainedConfig
10
from transformers.models.auto import modeling_auto
Nicolas Patry's avatar
Nicolas Patry committed
11
from huggingface_hub import hf_hub_download, HfApi
12
from typing import Optional, List, Dict
13
from pathlib import Path
14

Nicolas Patry's avatar
Nicolas Patry committed
15
from text_generation_server.utils.speculate import get_speculate, set_speculate
16
from text_generation_server.models.model import Model
17
18
19
20
21
from text_generation_server.models.causal_lm import CausalLM, CausalLMBatchKeysLast
from text_generation_server.models.custom_modeling.opt_modeling import OPTForCausalLM
from text_generation_server.models.custom_modeling.mpt_modeling import (
    MPTForCausalLM,
)
22
from text_generation_server.models.bloom import BloomCausalLMBatch
23
24
25
from text_generation_server.models.custom_modeling.bloom_modeling import (
    BloomForCausalLM,
)
26
from text_generation_server.models.seq2seq_lm import Seq2SeqLM
27
28
29
30
31
32
33
34
from text_generation_server.models.galactica import GalacticaCausalLMBatch
from text_generation_server.models.custom_modeling.neox_modeling import (
    GPTNeoxForCausalLM,
)
from text_generation_server.models.custom_modeling.phi_modeling import (
    PhiConfig,
    PhiForCausalLM,
)
drbh's avatar
drbh committed
35
36
37
from text_generation_server.models.custom_modeling.flash_phi_moe_modeling import (
    PhiMoEConfig,
)
38
39
40
from text_generation_server.models.custom_modeling.t5_modeling import (
    T5ForConditionalGeneration,
)
41

42
43
44
45
46
47
48
49
50
51

from text_generation_server.utils.adapter import (
    AdapterParameters,
    build_layer_weight_lookup,
    load_and_merge_adapters,
    AdapterInfo,
)
from text_generation_server.adapters.lora import LoraWeights


52
from text_generation_server.utils.import_utils import SYSTEM
53
from text_generation_server.utils.log import log_master
54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
# in PyTorch 1.12 and later.
torch.backends.cuda.matmul.allow_tf32 = True

# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
torch.backends.cudnn.allow_tf32 = True

# Disable gradients
torch.set_grad_enabled(False)

__all__ = [
    "Model",
    "CausalLM",
    "Seq2SeqLM",
69
    "get_model_with_lora_adapters",
70
71
]

72
FLASH_ATT_ERROR_MESSAGE = "{} requires Flash Attention enabled models."
73

74
FLASH_ATTENTION = True
75

76
try:
77
    from text_generation_server.models.flash_causal_lm import FlashCausalLM
78
    from text_generation_server.models.vlm_causal_lm import VlmCausalLM
Nicolas Patry's avatar
Nicolas Patry committed
79
    from text_generation_server.models.mllama_causal_lm import MllamaCausalLM
80
81
82
83
    from text_generation_server.models.custom_modeling.flash_deepseek_v2_modeling import (
        FlashDeepseekV2ForCausalLM,
        DeepseekV2Config,
    )
84
85
    from text_generation_server.models.custom_modeling.flash_llama_modeling import (
        FlashLlamaForCausalLM,
86
    )
87
88
    from text_generation_server.models.custom_modeling.flash_cohere_modeling import (
        FlashCohereForCausalLM,
OlivierDehaene's avatar
OlivierDehaene committed
89
    )
90
91
    from text_generation_server.models.custom_modeling.flash_gemma_modeling import (
        FlashGemmaForCausalLM,
OlivierDehaene's avatar
OlivierDehaene committed
92
    )
93
94
    from text_generation_server.models.custom_modeling.flash_gemma2_modeling import (
        FlashGemma2ForCausalLM,
95
    )
96
97
98
99
100
101
102
103
104
105
    from text_generation_server.models.custom_modeling.flash_dbrx_modeling import (
        FlashDbrxForCausalLM,
        DbrxConfig,
    )
    from text_generation_server.models.custom_modeling.flash_rw_modeling import (
        RWConfig,
        FlashRWForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_neox_modeling import (
        FlashGPTNeoXForCausalLM,
Nicolas Patry's avatar
Nicolas Patry committed
106
    )
drbh's avatar
drbh committed
107
    from text_generation_server.models.pali_gemma import (
108
        PaliGemmaBatch,
drbh's avatar
drbh committed
109
    )
110
111
112
113
114
    from text_generation_server.models.custom_modeling.flash_pali_gemma_modeling import (
        PaliGemmaForConditionalGeneration,
    )
    from text_generation_server.models.custom_modeling.flash_phi_modeling import (
        FlashPhiForCausalLM,
115
    )
Nicolas Patry's avatar
Nicolas Patry committed
116
117
118
119
120
    from text_generation_server.models.idefics_causal_lm import IdeficsCausalLM
    from text_generation_server.models.mllama_causal_lm import MllamaCausalLMBatch
    from text_generation_server.models.custom_modeling.mllama import (
        MllamaForConditionalGeneration,
    )
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    from text_generation_server.models.custom_modeling.llava_next import (
        LlavaNextForConditionalGeneration,
    )

    from text_generation_server.models.custom_modeling.flash_santacoder_modeling import (
        FlashSantacoderForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_starcoder2_modeling import (
        FlashStarcoder2ForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_qwen2_modeling import (
        Qwen2ForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_mistral_modeling import (
        FlashMistralForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_mixtral_modeling import (
        FlashMixtralForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_gpt2_modeling import (
        FlashGPT2ForCausalLM,
    )
143
144
145
    from text_generation_server.models.custom_modeling.flash_gptj_modeling import (
        FlashGPTJForCausalLM,
    )
146
147
148
    from text_generation_server.models.custom_modeling.idefics2 import (
        Idefics2ForConditionalGeneration,
    )
149
    from text_generation_server.layers.attention import SUPPORTS_WINDOWING
150
except ImportError as e:
151
    log_master(logger.warning, f"Could not import Flash Attention enabled models: {e}")
152
    SUPPORTS_WINDOWING = False
153
    FLASH_ATTENTION = False
154

155
if FLASH_ATTENTION:
156
    __all__.append(FlashCausalLM)
Nicolas Patry's avatar
Nicolas Patry committed
157
    __all__.append(IdeficsCausalLM)
OlivierDehaene's avatar
OlivierDehaene committed
158

drbh's avatar
drbh committed
159
160
161
162
MAMBA_AVAILABLE = True
try:
    from text_generation_server.models.mamba import Mamba
except ImportError as e:
163
    log_master(logger.warning, f"Could not import Mamba: {e}")
drbh's avatar
drbh committed
164
165
166
167
    MAMBA_AVAILABLE = False

if MAMBA_AVAILABLE:
    __all__.append(Mamba)
OlivierDehaene's avatar
OlivierDehaene committed
168

169

170
class ModelType(enum.Enum):
171
172
173
174
175
    DEEPSEEK_V2 = {
        "type": "deepseek_v2",
        "name": "Deepseek V2",
        "url": "https://huggingface.co/deepseek-ai/DeepSeek-V2",
    }
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
    IDEFICS2 = {
        "type": "idefics2",
        "name": "Idefics 2",
        "url": "https://huggingface.co/HuggingFaceM4/idefics2-8b",
        "multimodal": True,
    }
    LLAVA_NEXT = {
        "type": "llava_next",
        "name": "Llava Next (1.6)",
        "url": "https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf",
        "multimodal": True,
    }
    LLAMA = {
        "type": "llama",
        "name": "Llama",
191
        "url": "https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f",
192
193
194
195
196
197
198
199
200
201
202
    }
    PHI3 = {
        "type": "phi3",
        "name": "Phi 3",
        "url": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct",
    }
    GEMMA = {
        "type": "gemma",
        "name": "Gemma",
        "url": "https://huggingface.co/google/gemma-7b",
    }
203
204
205
206
207
    PALIGEMMA = {
        "type": "paligemma",
        "name": "PaliGemma",
        "url": "https://huggingface.co/google/paligemma-3b-pt-224",
    }
Nicolas Patry's avatar
Nicolas Patry committed
208
209
210
    GEMMA2 = {
        "type": "gemma2",
        "name": "Gemma2",
211
        "url": "https://huggingface.co/collections/google/gemma-2-release-667d6600fd5220e7b967f315",
Nicolas Patry's avatar
Nicolas Patry committed
212
    }
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
    COHERE = {
        "type": "cohere",
        "name": "Cohere",
        "url": "https://huggingface.co/CohereForAI/c4ai-command-r-plus",
    }
    DBRX = {
        "type": "dbrx",
        "name": "Dbrx",
        "url": "https://huggingface.co/databricks/dbrx-instruct",
    }
    MAMBA = {
        "type": "ssm",
        "name": "Mamba",
        "url": "https://huggingface.co/state-spaces/mamba-2.8b-slimpj",
    }
    MISTRAL = {
        "type": "mistral",
        "name": "Mistral",
231
        "url": "https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407",
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    }
    MIXTRAL = {
        "type": "mixtral",
        "name": "Mixtral",
        "url": "https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1",
    }
    GPT_BIGCODE = {
        "type": "gpt_bigcode",
        "name": "Gpt Bigcode",
        "url": "https://huggingface.co/bigcode/gpt_bigcode-santacoder",
    }
    PHI = {
        "type": "phi",
        "name": "Phi",
        "url": "https://huggingface.co/microsoft/phi-1_5",
    }
drbh's avatar
drbh committed
248
249
250
251
252
    PHI_MOE = {
        "type": "phimoe",
        "name": "PhiMoe",
        "url": "https://huggingface.co/microsoft/Phi-3.5-MoE-instruct",
    }
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
    BAICHUAN = {
        "type": "baichuan",
        "name": "Baichuan",
        "url": "https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat",
    }
    FALCON = {
        "type": "falcon",
        "name": "Falcon",
        "url": "https://huggingface.co/tiiuae/falcon-7b-instruct",
    }
    STARCODER2 = {
        "type": "starcoder2",
        "name": "StarCoder 2",
        "url": "https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1",
    }
    QWEN2 = {
        "type": "qwen2",
        "name": "Qwen 2",
271
        "url": "https://huggingface.co/collections/Qwen/qwen2-6659360b33528ced941e557f",
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
    }
    OPT = {
        "type": "opt",
        "name": "Opt",
        "url": "https://huggingface.co/facebook/opt-6.7b",
    }
    T5 = {
        "type": "t5",
        "name": "T5",
        "url": "https://huggingface.co/google/flan-t5-xxl",
    }
    GALACTICA = {
        "type": "galactica",
        "name": "Galactica",
        "url": "https://huggingface.co/facebook/galactica-120b",
    }
    SANTACODER = {
        "type": "santacoder",
        "name": "SantaCoder",
        "url": "https://huggingface.co/bigcode/santacoder",
    }
    BLOOM = {
        "type": "bloom",
        "name": "Bloom",
        "url": "https://huggingface.co/bigscience/bloom-560m",
    }
    MPT = {
        "type": "mpt",
        "name": "Mpt",
        "url": "https://huggingface.co/mosaicml/mpt-7b-instruct",
    }
    GPT2 = {
        "type": "gpt2",
        "name": "Gpt2",
        "url": "https://huggingface.co/openai-community/gpt2",
    }
    GPT_NEOX = {
        "type": "gpt_neox",
        "name": "Gpt Neox",
        "url": "https://huggingface.co/EleutherAI/gpt-neox-20b",
    }
313
314
315
316
317
    GPTJ = {
        "type": "gptj",
        "name": "Gptj",
        "url": "https://huggingface.co/EleutherAI/gpt-j-6b",
    }
318
319
320
321
322
323
    IDEFICS = {
        "type": "idefics",
        "name": "Idefics",
        "url": "https://huggingface.co/HuggingFaceM4/idefics-9b",
        "multimodal": True,
    }
Nicolas Patry's avatar
Nicolas Patry committed
324
325
326
327
328
329
    MLLAMA = {
        "type": "mllama",
        "name": "Mllama",
        "url": "https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct",
        "multimodal": True,
    }
330
331
332
333
334
335
336


__GLOBALS = locals()
for data in ModelType:
    __GLOBALS[data.name] = data.value["type"]


337
def get_model(
338
    model_id: str,
drbh's avatar
drbh committed
339
    lora_adapter_ids: Optional[List[str]],
340
341
342
    revision: Optional[str],
    sharded: bool,
    quantize: Optional[str],
Nicolas Patry's avatar
Nicolas Patry committed
343
    speculate: Optional[int],
344
    dtype: Optional[str],
345
    kv_cache_dtype: Optional[str],
346
    trust_remote_code: bool,
347
    max_input_tokens: int,
348
) -> Model:
349
    global FLASH_ATTENTION
350
351
352
353
354
355
356

    config_dict, _ = PretrainedConfig.get_config_dict(
        model_id, revision=revision, trust_remote_code=trust_remote_code
    )
    model_type = config_dict.get("model_type", None)

    quantization_config = config_dict.get("quantization_config", None)
357
    compression_config = config_dict.get("compression_config", None)
358
359
    if quantization_config is not None and quantize is None:
        method = quantization_config.get("quant_method", None)
360
        config_groups = quantization_config.get("config_groups", None)
361
362
363
        if method in {"gptq", "awq", "exl2"}:
            log_master(logger.info, f"Auto selecting quantization method {method}")
            quantize = method
364
        elif method == "fbgemm_fp8" or method == "fp8":
365
366
            log_master(logger.info, "Auto selecting quantization method fp8")
            quantize = "fp8"
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
        elif config_groups is not None:
            # TODO: at some point we should probably fully parse the compression
            # configuration to know which parameters are compressed.
            for _, group in config_groups.items():
                weights_config = group.get("weights")
                if weights_config is not None:
                    if (
                        weights_config["type"] == "float"
                        and weights_config["num_bits"] == 8
                    ):
                        log_master(
                            logger.info, "Auto selecting quantization method fp8"
                        )
                        quantize = "fp8"
                        break
382
383
        else:
            log_master(logger.warning, f"Unknown quantization method {method}")
384
    elif compression_config is not None:
385
        # `compression_config` renamed to `quantization_config`; support retained for backward compatibility.
386
387
388
389
390
391
392
393
394
395
396
397
398
399
        config_groups = compression_config.get("config_groups")
        if config_groups is not None:
            for _, group in config_groups.items():
                weights_config = group.get("weights")
                if weights_config is not None:
                    if (
                        weights_config["type"] == "float"
                        and weights_config["num_bits"] == 8
                    ):
                        log_master(
                            logger.info, "Auto selecting quantization method fp8"
                        )
                        quantize = "fp8"
                        break
400

401
    if dtype is None:
402
        if quantize in ["awq", "exl2", "gptq", "marlin"]:
403
404
            # These quantizers only work with float16 params.
            dtype = torch.float16
405
        elif quantize == "fp8":
406
            from text_generation_server.layers.fp8 import FBGEMM_DYN_AVAILABLE
407

408
            if FBGEMM_DYN_AVAILABLE:
409
410
                # fbgemm kernels are fp8xfp8->bf16
                dtype = torch.bfloat16
411
412
413
414
        else:
            # Keep it as default for now and let
            # every model resolve their own default dtype.
            dtype = None
415
416
417
418
419
420
421
    elif dtype == "float16":
        dtype = torch.float16
    elif dtype == "bfloat16":
        dtype = torch.bfloat16
    else:
        raise RuntimeError(f"Unknown dtype {dtype}")

422
423
424
425
426
427
428
    if kv_cache_dtype is None:
        kv_cache_dtype = dtype
    elif kv_cache_dtype == "fp8_e5m2":
        kv_cache_dtype = torch.float8_e5m2
    else:
        raise RuntimeError(f"Unknown kv_cache_dtype: {kv_cache_dtype}")

Nicolas Patry's avatar
Nicolas Patry committed
429
430
431
432
433
    if speculate is not None:
        set_speculate(speculate)
    else:
        set_speculate(0)

Nicolas Patry's avatar
Nicolas Patry committed
434
    speculator = None
Nicolas Patry's avatar
Nicolas Patry committed
435
    if "medusa_num_heads" in config_dict:
436
437
        medusa_model_id = model_id
        medusa_revision = revision
Nicolas Patry's avatar
Nicolas Patry committed
438
439
440
441
442
        model_id = config_dict["base_model_name_or_path"]
        revision = "main"
        speculate_medusa = config_dict["medusa_num_heads"]
        if speculate is not None:
            if speculate > speculate_medusa:
OlivierDehaene's avatar
OlivierDehaene committed
443
                raise RuntimeError(
OlivierDehaene's avatar
OlivierDehaene committed
444
                    f"Speculate is set to `{speculate}` but this medusa models only has `{speculate_medusa}` heads, please make them match"
OlivierDehaene's avatar
OlivierDehaene committed
445
                )
Nicolas Patry's avatar
Nicolas Patry committed
446
447
448
449
450
451
452
453
            else:
                set_speculate(speculate)
        else:
            set_speculate(speculate_medusa)

        config_dict, _ = PretrainedConfig.get_config_dict(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
Nicolas Patry's avatar
Nicolas Patry committed
454
455
        # Reload model type from parent.
        model_type = config_dict.get("model_type", None)
456
457
458
459
460
461
462
463
464
465
        is_local = Path(medusa_model_id).exists()
        if not is_local:
            medusa_config = hf_hub_download(
                medusa_model_id, revision=medusa_revision, filename="config.json"
            )
            hf_hub_download(
                medusa_model_id,
                revision=medusa_revision,
                filename="medusa_lm_head.safetensors",
            )
Nicolas Patry's avatar
Nicolas Patry committed
466
467
468
469
            speculator = {
                "path": Path(medusa_config).parent,
                "model_paths": ["medusa_lm_head.safetensors"],
            }
470
        else:
Nicolas Patry's avatar
Nicolas Patry committed
471
472
473
474
            speculator = {
                "path": Path(medusa_model_id),
                "model_paths": ["medusa_lm_head.safetensors"],
            }
475

Nicolas Patry's avatar
Nicolas Patry committed
476
        method = "medusa"
Nicolas Patry's avatar
Nicolas Patry committed
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
    elif model_type == "mlp_speculator":
        mlp_model_id = model_id
        mlp_revision = revision
        model_id = config_dict["base_model_name_or_path"]
        revision = "main"
        speculate_mlp = config_dict["n_predict"]
        if speculate is not None:
            if speculate > speculate_mlp:
                raise RuntimeError(
                    f"Speculate is set to `{speculate}` but this mlp_speculator models only has `{speculate_mlp}` heads, please make them match"
                )
            else:
                set_speculate(speculate)
        else:
            set_speculate(speculate_mlp)

        config_dict, _ = PretrainedConfig.get_config_dict(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
        # Reload model type from parent.
        model_type = config_dict.get("model_type", None)
        is_local = Path(mlp_model_id).exists()
        extension = ".safetensors"
        if not is_local:
            mlp_speculator_config = hf_hub_download(
                mlp_model_id, revision=mlp_revision, filename="config.json"
            )
            api = HfApi()
            info = api.model_info(mlp_model_id, revision=mlp_revision)
            filenames = [
                s.rfilename
                for s in info.siblings
                if s.rfilename.endswith(extension)
                and len(s.rfilename.split("/")) == 1
                and "arguments" not in s.rfilename
                and "args" not in s.rfilename
                and "training" not in s.rfilename
            ]
            for filename in filenames:
                hf_hub_download(
                    mlp_model_id,
                    revision=mlp_revision,
                    filename=filename,
                )
521
522
523
524
525
            speculator_dir_path = Path(mlp_speculator_config).parent
            # if these are downloaded, they get converted to safetensors
            filenames.extend(
                [p for p in os.listdir(speculator_dir_path) if p.endswith(extension)]
            )
Nicolas Patry's avatar
Nicolas Patry committed
526
527
528
529
530
531
532
533
534
            speculator = {
                "path": Path(mlp_speculator_config).parent,
                "model_paths": filenames,
            }
        else:
            speculator = Path(mlp_model_id)
            filenames = [p for p in os.listdir(speculator) if p.endswith(extension)]
            speculator = {"path": speculator, "model_paths": filenames}
        method = "mlp_speculator"
Nicolas Patry's avatar
Nicolas Patry committed
535
536
537
538
539
    else:
        method = "n-gram"

    speculate = get_speculate()
    if speculate > 0:
540
541
542
        log_master(
            logger.info, f"Using speculation {method} with {speculate} input ids."
        )
Nicolas Patry's avatar
Nicolas Patry committed
543

drbh's avatar
drbh committed
544
545
546
547
548
549
550
551
552
553
    if model_type is None:
        # TODO: fix how we determine model type for Mamba
        if "ssm_cfg" in config_dict:
            # *only happens in Mamba case
            model_type = "ssm"
        else:
            raise RuntimeError(
                f"Could not determine model type for {model_id} revision {revision}"
            )

554
555
556
557
    if quantize == "exl2" and sharded:
        raise RuntimeError(
            "Sharding is currently not supported with `exl2` quantization"
        )
drbh's avatar
drbh committed
558
559
560
561
562
563

    sliding_window = (
        config_dict.get("sliding_window")
        if config_dict.get("sliding_window") is not None
        else -1
    )
564

565
566
567
    use_sliding_window = sliding_window is not None and sliding_window != -1
    needs_sliding_window = (
        max_input_tokens is not None and max_input_tokens > sliding_window
568
    )
569
570
571
572
    if use_sliding_window and needs_sliding_window and not SUPPORTS_WINDOWING:
        raise ValueError(
            f"The backend {SYSTEM} does not support sliding window attention that is used by the model type {model_type}. To use this model nonetheless with the {SYSTEM} backend, please launch TGI with the argument `--max-input-tokens` smaller than sliding_window={sliding_window} (got here max_input_tokens={max_input_tokens})."
        )
573

574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
    if model_type == DEEPSEEK_V2:
        if FLASH_ATTENTION:
            head_size = max(
                config_dict.get("qk_nope_dim", 128)
                + config_dict.get("qk_rope_dim", 64),
                config_dict.get("v_head_dim", 128),
            )
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashDeepseekV2ForCausalLM,
                revision=revision,
                quantize=quantize,
                speculator=speculator,
                default_dtype=torch.bfloat16,
                dtype=dtype,
589
                kv_cache_dtype=kv_cache_dtype,
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
                trust_remote_code=trust_remote_code,
                lora_adapter_ids=lora_adapter_ids,
                config_class=DeepseekV2Config,
                head_size=head_size,
            )
        elif sharded:
            raise NotImplementedError(
                FLASH_ATT_ERROR_MESSAGE.format("Sharded Deepseek V2")
            )
        else:
            return CausalLM.fallback(
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
    elif model_type == MAMBA:
drbh's avatar
drbh committed
609
610
611
612
        return Mamba(
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
613
            speculator=speculator,
drbh's avatar
drbh committed
614
615
616
            dtype=dtype,
            trust_remote_code=trust_remote_code,
        )
617

OlivierDehaene's avatar
OlivierDehaene committed
618
    if model_id.startswith("facebook/galactica"):
619
620
621
622
623
        return CausalLM(
            model_id=model_id,
            # Yes galactica is just an OPT model.
            model_class=OPTForCausalLM,
            revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
624
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
625
            speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
626
627
            dtype=dtype,
            trust_remote_code=trust_remote_code,
628
            batch_class=GalacticaCausalLMBatch,
OlivierDehaene's avatar
OlivierDehaene committed
629
630
        )

631
    if (
632
633
        model_type == GPT_BIGCODE
        or model_type == GPT2
634
635
        and model_id.startswith("bigcode/")
    ):
636
        if FLASH_ATTENTION:
637
638
639
640
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashSantacoderForCausalLM,
                revision=revision,
641
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
642
                speculator=speculator,
643
                dtype=dtype,
644
                kv_cache_dtype=kv_cache_dtype,
645
                trust_remote_code=trust_remote_code,
646
647
648
                lora_adapter_ids=lora_adapter_ids,
                aliases={"transformer.wte.weight": ["lm_head.weight"]},
                num_kv_heads=1,
649
            )
650
651
652
653
        elif sharded:
            raise NotImplementedError(
                FLASH_ATT_ERROR_MESSAGE.format("Sharded Santacoder")
            )
654
        else:
655
656
657
            return CausalLM.fallback(
                model_id=model_id,
                revision=revision,
658
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
659
                speculator=speculator,
660
                dtype=dtype,
661
662
                trust_remote_code=trust_remote_code,
            )
663

664
    if model_type == BLOOM:
665
666
667
668
        return CausalLM(
            model_id=model_id,
            model_class=BloomForCausalLM,
            revision=revision,
669
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
670
            speculator=speculator,
671
672
            dtype=dtype,
            trust_remote_code=trust_remote_code,
673
            batch_class=BloomCausalLMBatch,
674
        )
675
    elif model_type == MPT:
676
677
678
679
        return CausalLM(
            model_id=model_id,
            model_class=MPTForCausalLM,
            revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
680
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
681
            speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
682
683
            dtype=dtype,
            trust_remote_code=trust_remote_code,
684
            batch_class=CausalLMBatchKeysLast,
685
        )
686
    elif model_type == GPT2:
687
        if FLASH_ATTENTION:
688
            try:
689
690
691
692
                return FlashCausalLM(
                    model_id=model_id,
                    model_class=FlashGPT2ForCausalLM,
                    revision=revision,
693
694
695
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
696
                    kv_cache_dtype=kv_cache_dtype,
697
                    trust_remote_code=trust_remote_code,
698
                    lora_adapter_ids=lora_adapter_ids,
699
700
701
                )
            except RuntimeError as e:
                # Lots of legacy models with various weight names.
702
                log_master(logger.warning, f"Couldn't load flash gpt2 variant: {e}")
703
                return CausalLM.fallback(
704
705
706
707
708
709
710
                    model_id,
                    revision,
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
                    trust_remote_code=trust_remote_code,
                )
711
712
713
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded GPT-2"))
        else:
714
            return CausalLM.fallback(
715
716
717
718
719
720
721
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
722
723
724
725
726
727
728
729
730
731
    elif model_type == GPTJ:
        if FLASH_ATTENTION:
            try:
                return FlashCausalLM(
                    model_id=model_id,
                    model_class=FlashGPTJForCausalLM,
                    revision=revision,
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
732
                    kv_cache_dtype=kv_cache_dtype,
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
                    trust_remote_code=trust_remote_code,
                    lora_adapter_ids=lora_adapter_ids,
                )
            except RuntimeError as e:
                # Lots of legacy models with various weight names.
                log_master(logger.warning, f"Couldn't load flash gptj variant: {e}")
                return CausalLM.fallback(
                    model_id,
                    revision,
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
                    trust_remote_code=trust_remote_code,
                )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded GPT-J"))
        else:
            return CausalLM.fallback(
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
758
    elif model_type == GPT_NEOX:
759
        if FLASH_ATTENTION:
760
761
762
763
            from text_generation_server.models.custom_modeling.flash_neox_modeling import (
                GPTNeoXConfig,
            )

764
765
766
767
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashGPTNeoXForCausalLM,
                revision=revision,
768
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
769
                speculator=speculator,
770
                dtype=dtype,
771
                kv_cache_dtype=kv_cache_dtype,
772
                trust_remote_code=trust_remote_code,
773
                lora_adapter_ids=lora_adapter_ids,
774
                config_class=GPTNeoXConfig,
775
776
            )
        elif sharded:
777
778
779
780
            return CausalLM(
                model_id=model_id,
                model_class=GPTNeoxForCausalLM,
                revision=revision,
781
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
782
                speculator=speculator,
783
                dtype=dtype,
784
785
                trust_remote_code=trust_remote_code,
            )
786
        else:
787
            return CausalLM.fallback(
788
789
790
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
791
                speculator=speculator,
792
                dtype=dtype,
793
794
                trust_remote_code=trust_remote_code,
            )
OlivierDehaene's avatar
OlivierDehaene committed
795

796
    elif model_type == PHI:
drbh's avatar
drbh committed
797
        if FLASH_ATTENTION:
798
799
800
801
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashPhiForCausalLM,
                revision=revision,
drbh's avatar
drbh committed
802
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
803
                speculator=speculator,
drbh's avatar
drbh committed
804
                dtype=dtype,
805
                kv_cache_dtype=kv_cache_dtype,
drbh's avatar
drbh committed
806
                trust_remote_code=trust_remote_code,
807
                lora_adapter_ids=lora_adapter_ids,
drbh's avatar
drbh committed
808
809
            )
        else:
810
            return CausalLM.fallback(
drbh's avatar
drbh committed
811
812
813
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
814
                speculator=speculator,
drbh's avatar
drbh committed
815
816
817
818
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

drbh's avatar
drbh committed
819
820
821
822
823
824
825
826
827
828
    elif model_type == PHI_MOE:
        if FLASH_ATTENTION:
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashLlamaForCausalLM,
                config_class=PhiMoEConfig,
                revision=revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
829
                kv_cache_dtype=kv_cache_dtype,
drbh's avatar
drbh committed
830
831
832
833
834
835
836
837
838
839
840
841
842
                trust_remote_code=trust_remote_code,
                lora_adapter_ids=lora_adapter_ids,
            )
        else:
            return CausalLM.fallback(
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

drbh's avatar
drbh committed
843
844
    elif model_type == "phi-msft":
        if FLASH_ATTENTION:
OlivierDehaene's avatar
OlivierDehaene committed
845
846
847
            raise NotImplementedError(
                "Legacy phi-msft is not supported with Flash Attention"
            )
drbh's avatar
drbh committed
848
        else:
849
850
851
852
853
            return CausalLM(
                model_id=model_id,
                model_class=PhiForCausalLM,
                config_class=PhiConfig,
                revision=revision,
drbh's avatar
drbh committed
854
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
855
                speculator=speculator,
drbh's avatar
drbh committed
856
857
858
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
859

860
    elif model_type == LLAMA or model_type == BAICHUAN or model_type == PHI3:
861
        if FLASH_ATTENTION:
862
863
864
865
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashLlamaForCausalLM,
                revision=revision,
866
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
867
                speculator=speculator,
868
                dtype=dtype,
869
                kv_cache_dtype=kv_cache_dtype,
870
                trust_remote_code=trust_remote_code,
drbh's avatar
drbh committed
871
                lora_adapter_ids=lora_adapter_ids,
872
            )
873
874
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Llama"))
875
        else:
876
            return CausalLM.fallback(
877
878
879
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
880
                speculator=speculator,
881
                dtype=dtype,
882
883
                trust_remote_code=trust_remote_code,
            )
884
    if model_type == GEMMA:
885
        if FLASH_ATTENTION:
886
887
888
889
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashGemmaForCausalLM,
                revision=revision,
890
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
891
                speculator=speculator,
892
                dtype=dtype,
893
                kv_cache_dtype=kv_cache_dtype,
894
895
                # Works better for these models
                default_dtype=torch.bfloat16,
896
                trust_remote_code=trust_remote_code,
897
                lora_adapter_ids=lora_adapter_ids,
898
899
            )
        elif sharded:
OlivierDehaene's avatar
OlivierDehaene committed
900
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Gemma"))
901
        else:
902
            return CausalLM.fallback(
903
904
905
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
906
                speculator=speculator,
907
908
909
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
Nicolas Patry's avatar
Nicolas Patry committed
910
911
    elif model_type == GEMMA2:
        if FLASH_ATTENTION:
912
913
914
915
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashGemma2ForCausalLM,
                revision=revision,
Nicolas Patry's avatar
Nicolas Patry committed
916
917
918
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
919
                kv_cache_dtype=kv_cache_dtype,
920
921
                # Works better for these models
                default_dtype=torch.bfloat16,
Nicolas Patry's avatar
Nicolas Patry committed
922
                trust_remote_code=trust_remote_code,
923
                lora_adapter_ids=lora_adapter_ids,
Nicolas Patry's avatar
Nicolas Patry committed
924
925
926
927
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Gemma2"))
        else:
928
            return CausalLM.fallback(
Nicolas Patry's avatar
Nicolas Patry committed
929
930
931
932
933
934
935
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
936

937
    if model_type == COHERE:
OlivierDehaene's avatar
OlivierDehaene committed
938
        if FLASH_ATTENTION:
939
940
941
942
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashCohereForCausalLM,
                revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
943
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
944
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
945
                dtype=dtype,
946
                kv_cache_dtype=kv_cache_dtype,
OlivierDehaene's avatar
OlivierDehaene committed
947
                trust_remote_code=trust_remote_code,
948
                lora_adapter_ids=lora_adapter_ids,
OlivierDehaene's avatar
OlivierDehaene committed
949
950
951
952
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Cohere"))
        else:
953
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
954
955
956
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
957
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
958
959
960
961
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

962
    if model_type == DBRX:
963
        if FLASH_ATTENTION:
964
965
966
967
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashDbrxForCausalLM,
                revision=revision,
968
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
969
                speculator=speculator,
970
                dtype=dtype,
971
                kv_cache_dtype=kv_cache_dtype,
972
973
                # Dbrx works better in bfloat16.
                default_dtype=torch.bfloat16,
974
                trust_remote_code=trust_remote_code,
975
976
                lora_adapter_ids=lora_adapter_ids,
                config_class=DbrxConfig,
977
978
979
980
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded DBRX"))
        else:
981
            return CausalLM.fallback(
982
983
984
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
985
                speculator=speculator,
986
987
988
989
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

990
    if model_type in ["RefinedWeb", "RefinedWebModel", FALCON]:
991
992
        if sharded:
            if FLASH_ATTENTION:
993
                if config_dict.get("alibi", False):
994
                    raise NotImplementedError("sharded is not supported for this model")
995
996
997
998
                return FlashCausalLM(
                    model_id=model_id,
                    model_class=FlashRWForCausalLM,
                    revision=revision,
999
                    quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1000
                    speculator=speculator,
1001
                    dtype=dtype,
1002
                    kv_cache_dtype=kv_cache_dtype,
1003
1004
1005
1006
                    aliases={
                        "lm_head.weight": ["transformer.word_embeddings.weight"],
                        "transformer.word_embeddings.weight": ["lm_head.weight"],
                    },
1007
                    trust_remote_code=trust_remote_code,
1008
1009
                    lora_adapter_ids=lora_adapter_ids,
                    config_class=RWConfig,
1010
                )
1011
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Falcon"))
1012
        else:
1013
            if FLASH_ATTENTION and not config_dict.get("alibi", False):
1014
1015
1016
1017
                return FlashCausalLM(
                    model_id=model_id,
                    model_class=FlashRWForCausalLM,
                    revision=revision,
1018
                    quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1019
                    speculator=speculator,
1020
                    dtype=dtype,
1021
                    kv_cache_dtype=kv_cache_dtype,
1022
1023
1024
1025
                    aliases={
                        "lm_head.weight": ["transformer.word_embeddings.weight"],
                        "transformer.word_embeddings.weight": ["lm_head.weight"],
                    },
1026
                    trust_remote_code=trust_remote_code,
1027
1028
                    lora_adapter_ids=lora_adapter_ids,
                    config_class=RWConfig,
1029
1030
                )
            else:
1031
                return CausalLM.fallback(
1032
1033
1034
                    model_id,
                    revision,
                    quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1035
                    speculator=speculator,
1036
                    dtype=dtype,
1037
1038
1039
                    trust_remote_code=trust_remote_code,
                )

1040
    if model_type == MISTRAL:
1041
        if FLASH_ATTENTION:
1042
1043
1044
1045
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashMistralForCausalLM,
                revision=revision,
1046
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1047
                speculator=speculator,
1048
                dtype=dtype,
1049
                kv_cache_dtype=kv_cache_dtype,
1050
                trust_remote_code=trust_remote_code,
1051
                lora_adapter_ids=lora_adapter_ids,
1052
            )
OlivierDehaene's avatar
OlivierDehaene committed
1053
1054
1055
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Mistral"))
        else:
1056
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
1057
1058
1059
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1060
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1061
1062
1063
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
OlivierDehaene's avatar
OlivierDehaene committed
1064

1065
    if model_type == MIXTRAL:
1066
        if FLASH_ATTENTION:
1067
1068
1069
1070
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashMixtralForCausalLM,
                revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
1071
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1072
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1073
                dtype=dtype,
1074
                kv_cache_dtype=kv_cache_dtype,
OlivierDehaene's avatar
OlivierDehaene committed
1075
                trust_remote_code=trust_remote_code,
1076
                lora_adapter_ids=lora_adapter_ids,
OlivierDehaene's avatar
OlivierDehaene committed
1077
            )
OlivierDehaene's avatar
OlivierDehaene committed
1078
1079
1080
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Mixtral"))
        else:
1081
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
1082
1083
1084
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1085
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1086
1087
1088
1089
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

1090
    if model_type == STARCODER2:
1091
        if FLASH_ATTENTION:
1092
1093
1094
1095
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashStarcoder2ForCausalLM,
                revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
1096
                quantize=quantize,
1097
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1098
                dtype=dtype,
1099
                kv_cache_dtype=kv_cache_dtype,
OlivierDehaene's avatar
OlivierDehaene committed
1100
                trust_remote_code=trust_remote_code,
1101
                lora_adapter_ids=lora_adapter_ids,
OlivierDehaene's avatar
OlivierDehaene committed
1102
1103
1104
1105
1106
1107
            )
        elif sharded:
            raise NotImplementedError(
                FLASH_ATT_ERROR_MESSAGE.format("Sharded Starcoder2")
            )
        else:
1108
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
1109
1110
1111
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1112
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1113
1114
1115
1116
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

1117
    if model_type == QWEN2:
1118
        if FLASH_ATTENTION:
1119
1120
1121
1122
            return FlashCausalLM(
                model_id=model_id,
                model_class=Qwen2ForCausalLM,
                revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
1123
                quantize=quantize,
1124
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1125
                dtype=dtype,
1126
                kv_cache_dtype=kv_cache_dtype,
OlivierDehaene's avatar
OlivierDehaene committed
1127
                trust_remote_code=trust_remote_code,
1128
                lora_adapter_ids=lora_adapter_ids,
OlivierDehaene's avatar
OlivierDehaene committed
1129
1130
1131
1132
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Qwen2"))
        else:
1133
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
1134
1135
1136
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1137
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1138
                dtype=dtype,
OlivierDehaene's avatar
OlivierDehaene committed
1139
1140
                trust_remote_code=trust_remote_code,
            )
1141

1142
    if model_type == OPT:
1143
1144
1145
1146
        return CausalLM(
            model_id=model_id,
            model_class=OPTForCausalLM,
            revision=revision,
1147
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1148
            speculator=speculator,
1149
1150
            dtype=dtype,
            trust_remote_code=trust_remote_code,
1151
        )
1152

1153
    if model_type == T5:
1154
1155
1156
1157
        return Seq2SeqLM(
            model_id=model_id,
            model_class=T5ForConditionalGeneration,
            revision=revision,
1158
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1159
            speculator=speculator,
1160
            dtype=dtype,
1161
            trust_remote_code=trust_remote_code,
1162
1163
1164
1165
1166
1167
            aliases={
                "shared.weight": [
                    "encoder.embed_tokens.weight",
                    "decoder.embed_tokens.weight",
                ]
            },
1168
        )
1169
    if model_type == IDEFICS:
1170
        if FLASH_ATTENTION:
Nicolas Patry's avatar
Nicolas Patry committed
1171
            return IdeficsCausalLM(
OlivierDehaene's avatar
OlivierDehaene committed
1172
1173
1174
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1175
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1176
1177
1178
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
1179
1180
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
Nicolas Patry's avatar
Nicolas Patry committed
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
    if model_type == MLLAMA:
        if FLASH_ATTENTION:
            return MllamaCausalLM(
                model_id=model_id,
                model_class=MllamaForConditionalGeneration,
                batch_class=MllamaCausalLMBatch,
                revision=revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                default_dtype=torch.bfloat16,
                trust_remote_code=trust_remote_code,
                lora_adapter_ids=lora_adapter_ids,
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Mllama"))
1197
    if model_type == IDEFICS2:
Nicolas Patry's avatar
Nicolas Patry committed
1198
        if FLASH_ATTENTION:
1199
1200
1201
1202
            return VlmCausalLM(
                model_id=model_id,
                model_class=Idefics2ForConditionalGeneration,
                revision=revision,
Nicolas Patry's avatar
Nicolas Patry committed
1203
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1204
                speculator=speculator,
Nicolas Patry's avatar
Nicolas Patry committed
1205
                dtype=dtype,
1206
                kv_cache_dtype=kv_cache_dtype,
Nicolas Patry's avatar
Nicolas Patry committed
1207
                trust_remote_code=trust_remote_code,
1208
1209
1210
1211
                lora_adapter_ids=lora_adapter_ids,
                # XXX: Extremely important to cap resolution in order to limit
                # VRAM usage.
                processor_kwargs={"size": {"longest_edge": 448, "shortest_edge": 378}},
Nicolas Patry's avatar
Nicolas Patry committed
1212
1213
1214
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
1215
    if model_type == PALIGEMMA:
drbh's avatar
drbh committed
1216
        if FLASH_ATTENTION:
1217
1218
1219
1220
            return VlmCausalLM(
                model_id=model_id,
                model_class=PaliGemmaForConditionalGeneration,
                revision=revision,
drbh's avatar
drbh committed
1221
1222
1223
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
1224
                kv_cache_dtype=kv_cache_dtype,
1225
1226
                # Works better for these models
                default_dtype=torch.bfloat16,
drbh's avatar
drbh committed
1227
                trust_remote_code=trust_remote_code,
1228
1229
                lora_adapter_ids=lora_adapter_ids,
                batch_class=PaliGemmaBatch,
drbh's avatar
drbh committed
1230
1231
1232
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
1233

1234
    if model_type == LLAVA_NEXT:
1235
        if FLASH_ATTENTION:
1236
1237
1238
1239
            return VlmCausalLM(
                model_class=LlavaNextForConditionalGeneration,
                model_id=model_id,
                revision=revision,
1240
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1241
                speculator=speculator,
1242
                dtype=dtype,
1243
                kv_cache_dtype=kv_cache_dtype,
1244
1245
1246
1247
1248
                trust_remote_code=trust_remote_code,
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("LlavaNext"))

1249
    if sharded:
1250
        raise NotImplementedError("sharded is not supported for AutoModel")
1251
    if quantize == "gptq":
1252
        raise NotImplementedError(
1253
1254
            "gptq quantization is not supported for AutoModel, you can try to quantize it with `text-generation-server quantize ORIGINAL_MODEL_ID NEW_MODEL_ID`"
        )
1255
    if quantize == "awq":
1256
        raise NotImplementedError("awq quantization is not supported for AutoModel")
Nicolas Patry's avatar
Nicolas Patry committed
1257
    elif (quantize == "bitsandbytes-fp4") or (quantize == "bitsandbytes-nf4"):
1258
        raise NotImplementedError("4bit quantization is not supported for AutoModel")
OlivierDehaene's avatar
OlivierDehaene committed
1259
    elif quantize == "eetq":
1260
        raise NotImplementedError("Eetq quantization is not supported for AutoModel")
1261
1262
    elif quantize == "exl2":
        raise NotImplementedError("exl2 quantization is not supported for AutoModel")
1263
    if model_type in modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
1264
        return CausalLM.fallback(
1265
1266
1267
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1268
            speculator=speculator,
1269
1270
            dtype=dtype,
            trust_remote_code=trust_remote_code,
1271
        )
1272
    if model_type in modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES:
1273
        return Seq2SeqLM.fallback(
1274
1275
1276
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1277
            speculator=speculator,
1278
1279
            dtype=dtype,
            trust_remote_code=trust_remote_code,
1280
1281
        )

1282
    auto_map = config_dict.get("auto_map", None)
1283
1284
    if trust_remote_code and auto_map is not None:
        if "AutoModelForCausalLM" in auto_map.keys():
1285
            return CausalLM.fallback(
1286
1287
1288
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1289
                speculator=speculator,
1290
                dtype=dtype,
1291
1292
                trust_remote_code=trust_remote_code,
            )
1293
        if "AutoModelForSeq2SeqLM" in auto_map.keys():
1294
            return Seq2SeqLM.fallback(
1295
1296
1297
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1298
                speculator=speculator,
1299
                dtype=dtype,
1300
1301
                trust_remote_code=trust_remote_code,
            )
1302
1303

    raise ValueError(f"Unsupported model type {model_type}")
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315


# get_model_with_lora_adapters wraps the internal get_model function and adds support for loading adapters
# this provides a post model loading hook to load adapters into the model after the model has been loaded
def get_model_with_lora_adapters(
    model_id: str,
    lora_adapters: Optional[List[AdapterInfo]],
    revision: Optional[str],
    sharded: bool,
    quantize: Optional[str],
    speculate: Optional[int],
    dtype: Optional[str],
1316
    kv_cache_dtype: Optional[str],
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
    trust_remote_code: bool,
    max_input_tokens: int,
    adapter_to_index: Dict[str, int],
):
    lora_adapter_ids = [adapter.id for adapter in lora_adapters]
    model = get_model(
        model_id,
        lora_adapter_ids,
        revision,
        sharded,
        quantize,
        speculate,
        dtype,
1330
        kv_cache_dtype,
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
        trust_remote_code,
        max_input_tokens,
    )

    if len(lora_adapters) > 0:
        target_to_layer = build_layer_weight_lookup(model.model)

        for index, adapter in enumerate(lora_adapters):
            # The AdapterParameters object allows for merging multiple adapters into a single adapter.
            # At the moment, we only support loading a single adapter into the model, but we keep the
            # AdapterParameters object for easier extension in the future.
            adapter_parameters = AdapterParameters(
                adapter_info=[adapter],
                # when merging multiple adapters we can weight them differently
                # if this is not set, all adapters will be weighted equally
                # see: text_generation_server.utils.merges.strategies for impl
                weights=None,
                merge_strategy=0,
                density=1.0,
                majority_sign_method=0,
            )

            adapter_index = index + 1
            adapter_to_index[adapter.id] = adapter_index

            logger.info(
                f"Loading adapter weights into model: {','.join([adapter.id for adapter in adapter_parameters.adapter_info])}"
            )
            weight_names = tuple([v[0] for v in target_to_layer.values()])
            (
                module_map,
                adapter_config,
                adapter_weight_names,
                adapter_tokenizer,
            ) = load_and_merge_adapters(
                model.model_id,
                adapter_parameters,
                adapter_index,
                weight_names,
                False,
            )

            unused_weight_names = adapter_weight_names.copy()

            adapter_layers = [
                "q_proj",
                "k_proj",
                "v_proj",
                "o_proj",
                "gate_proj",
                "up_proj",
                "down_proj",
1383
                "qkv_proj",
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
            ]

            for layer_name in adapter_layers:
                nlayers = (
                    1 if layer_name == "lm_head" else len(model.model.model.layers)
                )
                adapter_weights = LoraWeights.prepare_weights(
                    config=adapter_config,
                    module_map=module_map,
                    layer_type=layer_name,
                    unused_weight_names=unused_weight_names,
                    nlayers=nlayers,
                    dtype=model.dtype,
                    world_size=model.world_size,
                    process_group=model.process_group,
                    target_to_layer=target_to_layer,
                )

                if adapter_weights is None:
                    continue

                model.layer_to_adapter_weights[layer_name].add_adapter(
                    adapter_index, adapter_weights
                )

            if len(unused_weight_names) > 0:
                logger.warning(
1411
                    f"{','.join([a.id for a in lora_adapters])} unused adapter weights: {unused_weight_names}"
1412
1413
1414
1415
1416
1417
1418
1419
                )

            if adapter_tokenizer is not None:
                model.tokenizers.add_tokenizer(adapter_index, adapter_tokenizer)

            model.loaded_adapters.add(adapter_index)

    return model