infer.rs 21.8 KB
Newer Older
1
2
/// Batching and inference logic
use crate::validation::{Validation, ValidationError};
3
use crate::{Entry, Queue, Token};
4
use crate::{GenerateRequest, PrefillToken};
5
use flume::r#async::RecvStream;
6
use flume::SendTimeoutError;
7
use futures::future::try_join_all;
8
use futures::stream::StreamExt;
9
use nohash_hasher::IntMap;
10
11
12
13
use std::sync::{
    atomic::{AtomicBool, Ordering},
    Arc,
};
14
use std::time::Duration;
15
use text_generation_client::{
16
    Batch, CachedBatch, ClientError, GeneratedText, Generation, PrefillTokens, ShardedClient,
17
18
};
use thiserror::Error;
19
use tokio::sync::{Notify, OwnedSemaphorePermit, Semaphore, TryAcquireError};
20
use tokio::time::Instant;
21
use tracing::{info_span, instrument, Instrument, Span};
22
23
24
25
26
27

/// Inference struct
#[derive(Clone)]
pub struct Infer {
    /// Validation
    validation: Validation,
28
29
    /// Request queue
    queue: Queue,
30
31
32
33
34
35
36
37
38
39
40
41
42
    /// Shared state
    shared: Arc<Shared>,
    /// Inference limit
    limit_concurrent_requests: Arc<Semaphore>,
}

/// Infer shared state
struct Shared {
    /// Batching background Tokio task notifier
    batching_task: Notify,
}

impl Infer {
43
    #[allow(clippy::too_many_arguments)]
44
45
46
    pub(crate) fn new(
        client: ShardedClient,
        validation: Validation,
47
        waiting_served_ratio: f32,
48
        max_batch_prefill_tokens: u32,
49
        max_batch_total_tokens: u32,
50
51
        max_waiting_tokens: usize,
        max_concurrent_requests: usize,
52
        requires_padding: bool,
53
        generation_health: Arc<AtomicBool>,
54
55
    ) -> Self {
        // Infer shared state
56
        let queue = Queue::new(requires_padding);
57
58
59
60
61
62
63
        let shared = Arc::new(Shared {
            batching_task: Notify::new(),
        });

        // Spawn batching background task that contains all the inference logic
        tokio::spawn(batching_task(
            client,
64
            waiting_served_ratio,
65
            max_batch_prefill_tokens,
66
            max_batch_total_tokens,
67
            max_waiting_tokens,
68
            queue.clone(),
69
            shared.clone(),
70
            generation_health,
71
72
73
74
75
76
77
        ));

        // Inference limit with a semaphore
        let semaphore = Arc::new(Semaphore::new(max_concurrent_requests));

        Self {
            validation,
78
            queue,
79
80
81
82
83
            shared,
            limit_concurrent_requests: semaphore,
        }
    }

84
    /// Add a new request to the queue and return a stream of InferStreamResponse
85
    #[instrument(skip(self))]
86
87
88
    pub(crate) async fn generate_stream(
        &self,
        request: GenerateRequest,
89
90
91
92
93
94
95
    ) -> Result<
        (
            OwnedSemaphorePermit,
            RecvStream<Result<InferStreamResponse, InferError>>,
        ),
        InferError,
    > {
96
        // Limit concurrent requests by acquiring a permit from the semaphore
97
98
99
100
101
        let permit = self
            .clone()
            .limit_concurrent_requests
            .try_acquire_owned()
            .map_err(|err| {
102
                metrics::increment_counter!("tgi_request_failure", "err" => "overloaded");
103
104
105
                tracing::error!("{err}");
                err
            })?;
106
107

        // Validate request
108
109
110
111
112
        let valid_request = self.validation.validate(request).await.map_err(|err| {
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            err
        })?;
113
114

        // MPSC channel to communicate with the background batching task
115
        let (response_tx, response_rx) = flume::unbounded();
116

117
118
        // Append the request to the queue
        self.queue.append(Entry {
119
120
            request: valid_request,
            response_tx,
121
122
123
            span: Span::current(),
            temp_span: None,
            queue_time: Instant::now(),
124
125
126
            batch_time: None,
        });

127
        // Notify the background task that we have a new entry in the queue that needs
128
129
130
131
        // to be batched
        self.shared.batching_task.notify_one();

        // Return stream
132
        Ok((permit, response_rx.into_stream()))
133
134
    }

135
    /// Add a new request to the queue and return a InferResponse
136
    #[instrument(skip(self))]
137
138
139
140
    pub(crate) async fn generate(
        &self,
        request: GenerateRequest,
    ) -> Result<InferResponse, InferError> {
141
142
        // Create stream and keep semaphore permit as long as generate lives
        let (_permit, mut stream) = self.generate_stream(request).await?;
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

        // Return values
        let mut result_prefill = Vec::new();
        let mut result_tokens = Vec::new();
        let mut result_generated_text = None;
        let mut result_start = None;
        let mut result_queued = None;

        // Iterate on stream
        while let Some(response) = stream.next().await {
            match response? {
                // Add prefill tokens
                InferStreamResponse::Prefill(tokens) => {
                    // Create Token objects
                    // We do that here instead of in the Python code as Rust for loops are faster
                    result_prefill = tokens
                        .ids
                        .into_iter()
                        .zip(tokens.logprobs.into_iter())
                        .zip(tokens.texts.into_iter())
163
                        .map(|((id, logprob), text)| PrefillToken { id, text, logprob })
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
                        .collect();
                }
                // Push last token
                InferStreamResponse::Token(token) => result_tokens.push(token),
                // Final message
                // Set return values
                InferStreamResponse::End {
                    token,
                    generated_text,
                    start,
                    queued,
                } => {
                    result_tokens.push(token);
                    result_generated_text = Some(generated_text);
                    result_start = Some(start);
                    result_queued = Some(queued)
                }
            }
        }

        // Check that we received a `InferStreamResponse::End` message
        if let (Some(generated_text), Some(queued), Some(start)) =
            (result_generated_text, result_queued, result_start)
        {
            Ok(InferResponse {
                prefill: result_prefill,
                tokens: result_tokens,
                generated_text,
                queued,
                start,
            })
        } else {
196
            let err = InferError::IncompleteGeneration;
197
            metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
198
199
            tracing::error!("{err}");
            Err(err)
200
201
        }
    }
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
    /// Add best_of new requests to the queue and return a InferResponse of the sequence with
    /// the highest log probability per token
    #[instrument(skip(self))]
    pub(crate) async fn generate_best_of(
        &self,
        request: GenerateRequest,
        best_of: usize,
    ) -> Result<(InferResponse, Vec<InferResponse>), InferError> {
        // validate  best_of parameter separately
        let best_of = self.validation.validate_best_of(best_of)?;

        // create multiple generate requests
        let mut infer_responses: Vec<InferResponse> =
            try_join_all((0..best_of).map(|_| self.generate(request.clone()))).await?;

        // get the sequence with the highest log probability per token
        let mut max_index = 0;
        let mut max_logprob: f32 = f32::MIN;

        for (i, response) in infer_responses.iter().enumerate() {
            // mean logprobs of the generated tokens
            let sequence_logprob = response
                .tokens
                .iter()
                .map(|token| token.logprob)
                .sum::<f32>()
                / response.tokens.len() as f32;

            // set best sequence
            if sequence_logprob > max_logprob {
                max_index = i;
                max_logprob = sequence_logprob;
            }
        }
        let best_response = infer_responses.remove(max_index);
        Ok((best_response, infer_responses))
    }
239
240
241
242
243
244
}

/// Batching logic
/// Will be launched in a background Tokio task
///
/// Batches requests and sends them to the inference server
245
#[allow(clippy::too_many_arguments)]
246
247
async fn batching_task(
    mut client: ShardedClient,
248
    waiting_served_ratio: f32,
249
    max_batch_prefill_tokens: u32,
250
    max_batch_total_tokens: u32,
251
    max_waiting_tokens: usize,
252
    queue: Queue,
253
    shared: Arc<Shared>,
254
    generation_health: Arc<AtomicBool>,
255
256
257
258
259
260
) {
    // Infinite loop
    loop {
        // Wait for a notification from the Infer struct
        shared.batching_task.notified().await;

261
        // Get the next batch from the queue
262
        // This batch might be smaller than the maximum batch size if there are not enough requests
263
        // waiting in the queue
264
265
266
        while let Some((mut entries, batch, span)) = queue
            .next_batch(None, max_batch_prefill_tokens, max_batch_total_tokens)
            .await
267
        {
268
            let mut cached_batch = prefill(&mut client, batch, &mut entries, &generation_health)
269
270
                .instrument(span)
                .await;
271
272
273
274
275
276
277
            let mut waiting_tokens = 1;

            // We loop until we do not receive any cached batch from the inference server (== until
            // all requests have met their stopping criteria)
            while let Some(batch) = cached_batch {
                // Get current batch info
                let batch_size = batch.size;
278
                let batch_max_tokens = batch.max_tokens;
279
                let mut batches = vec![batch];
280
                metrics::gauge!("tgi_batch_current_size", batch_size as f64);
281
282
283
284
285
286
287
288
289
290
291
                metrics::gauge!("tgi_batch_current_max_tokens", batch_max_tokens as f64);

                let min_size = if waiting_tokens >= max_waiting_tokens {
                    // If we didn't onboard any new requests since >= max_waiting_tokens, we try
                    // to add a new batch even though its size might be small
                    None
                } else {
                    // Minimum batch size
                    Some((batch_size as f32 * waiting_served_ratio).floor() as usize)
                };

292
                let token_budget = max_batch_total_tokens.saturating_sub(batch_max_tokens);
293
294

                // Try to get a new batch
295
296
297
                if let Some((mut new_entries, new_batch, span)) = queue
                    .next_batch(min_size, max_batch_prefill_tokens, token_budget)
                    .await
298
299
300
301
302
303
304
                {
                    // Tracking metrics
                    if min_size.is_some() {
                        metrics::increment_counter!("tgi_batch_concat", "reason" => "backpressure");
                    } else {
                        metrics::increment_counter!("tgi_batch_concat", "reason" => "wait_exceeded");
                    }
305

306
307
308
309
310
311
312
313
314
315
316
317
                    entries.iter_mut().for_each(|(_, entry)| {
                        // Create a new span to add the info that this entry is waiting
                        // because a new batch is being computed
                        let entry_waiting_span = info_span!(parent: &entry.span, "waiting");
                        // Add relationships
                        span.follows_from(&entry_waiting_span);
                        entry_waiting_span.follows_from(&span);
                        // Update entry
                        entry.temp_span = Some(entry_waiting_span);
                    });

                    // Generate one token for this new batch to have the attention past in cache
318
319
320
321
                    let new_cached_batch =
                        prefill(&mut client, new_batch, &mut new_entries, &generation_health)
                            .instrument(span)
                            .await;
322
323
324
325
326
327
                    // Reset waiting counter
                    waiting_tokens = 1;
                    // Extend current batch with the new batch
                    if let Some(new_cached_batch) = new_cached_batch {
                        entries.extend(new_entries);
                        batches.push(new_cached_batch);
328
329
                    }
                }
330

331
332
333
334
335
336
                // Create span for this batch to add context to inference calls
                let next_batch_size = entries.len();
                let next_batch_span =
                    info_span!(parent: None, "batch", batch_size = next_batch_size);
                entries.iter_mut().for_each(|(_, entry)| {
                    // Create a new span to link the batch back to this entry
337
                    let entry_batch_span = info_span!(parent: &entry.span, "infer");
338
339
                    // Add relationships
                    next_batch_span.follows_from(&entry_batch_span);
340
341
342
343
                    entry_batch_span.follows_from(&next_batch_span);
                    // Update entry
                    entry.temp_span = Some(entry_batch_span);
                });
344

345
                cached_batch = decode(&mut client, batches, &mut entries, &generation_health)
346
347
                    .instrument(next_batch_span)
                    .await;
348
349
                waiting_tokens += 1;
            }
350
            metrics::gauge!("tgi_batch_current_size", 0.0);
351
            metrics::gauge!("tgi_batch_current_max_tokens", 0.0);
352
353
354
355
        }
    }
}

356
#[instrument(skip_all)]
357
358
359
async fn prefill(
    client: &mut ShardedClient,
    batch: Batch,
360
    entries: &mut IntMap<u64, Entry>,
361
    generation_health: &Arc<AtomicBool>,
362
) -> Option<CachedBatch> {
363
    let start_time = Instant::now();
364
    let batch_id = batch.id;
365
    metrics::increment_counter!("tgi_batch_inference_count", "method" => "prefill");
366
367
368

    match client.prefill(batch).await {
        Ok((generations, next_batch)) => {
369
370
            // Update health
            generation_health.store(true, Ordering::SeqCst);
371
            // Send generated tokens and filter stopped entries
372
373
374
            filter_send_generations(generations, entries);

            // Filter next batch and remove requests that were stopped
375
            let next_batch = filter_batch(client, next_batch, entries).await;
376

377
            metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed().as_secs_f64(), "method" => "prefill");
378
379
380
381
382
            metrics::increment_counter!("tgi_batch_inference_success", "method" => "prefill");
            next_batch
        }
        // If we have an error, we discard the whole batch
        Err(err) => {
383
384
            // Update health
            generation_health.store(false, Ordering::SeqCst);
385
            let _ = client.clear_cache(Some(batch_id)).await;
386
387
388
389
390
391
392
393
394
395
            send_errors(err, entries);
            metrics::increment_counter!("tgi_batch_inference_failure", "method" => "prefill");
            None
        }
    }
}

#[instrument(skip_all)]
async fn decode(
    client: &mut ShardedClient,
396
    batches: Vec<CachedBatch>,
397
    entries: &mut IntMap<u64, Entry>,
398
    generation_health: &Arc<AtomicBool>,
399
) -> Option<CachedBatch> {
400
    let start_time = Instant::now();
401
    let batch_ids: Vec<u64> = batches.iter().map(|b| b.id).collect();
402
    metrics::increment_counter!("tgi_batch_inference_count", "method" => "decode");
403
404

    match client.decode(batches).await {
405
        Ok((generations, next_batch)) => {
406
407
            // Update health
            generation_health.store(true, Ordering::SeqCst);
408
            // Send generated tokens and filter stopped entries
409
410
411
            filter_send_generations(generations, entries);

            // Filter next batch and remove requests that were stopped
412
            let next_batch = filter_batch(client, next_batch, entries).await;
413

414
            metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed().as_secs_f64(), "method" => "decode");
415
            metrics::increment_counter!("tgi_batch_inference_success", "method" => "decode");
416
417
418
419
            next_batch
        }
        // If we have an error, we discard the whole batch
        Err(err) => {
420
            generation_health.store(false, Ordering::SeqCst);
421
422
423
            for id in batch_ids {
                let _ = client.clear_cache(Some(id)).await;
            }
424
            send_errors(err, entries);
425
            metrics::increment_counter!("tgi_batch_inference_failure", "method" => "decode");
426
427
428
429
430
            None
        }
    }
}

431
432
/// Filter a `batch` and remove all requests not present in `entries`
#[instrument(skip_all)]
433
434
async fn filter_batch(
    client: &mut ShardedClient,
435
    next_batch: Option<CachedBatch>,
436
    entries: &IntMap<u64, Entry>,
437
) -> Option<CachedBatch> {
438
439
440
441
442
443
444
445
446
447
    let mut batch = next_batch?;

    // No need to filter
    if batch.size as usize == entries.len() {
        return Some(batch);
    }

    let id = batch.id;

    // Retain only requests that are still in entries
448
    batch.request_ids.retain(|id| entries.contains_key(id));
449

450
    if batch.request_ids.is_empty() {
451
452
453
454
455
456
457
458
459
        // All requests have been filtered out
        // Next batch is now empty
        // Clear it from the Python shards cache
        // We unwrap here as we need to panic since we cannot recover if this method fails
        client.clear_cache(Some(id)).await.unwrap();
        None
    } else {
        // Filter Python shard cache
        // We unwrap here as we need to panic since we cannot recover if this method fails
460
        client.filter_batch(id, batch.request_ids).await.unwrap()
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
    }
}

/// Send one or multiple `InferStreamResponse` to Infer for all `entries`
/// and filter entries
#[instrument(skip_all)]
fn filter_send_generations(generations: Vec<Generation>, entries: &mut IntMap<u64, Entry>) {
    generations.into_iter().for_each(|generation| {
        let id = generation.request_id;
        // Get entry
        // We can `expect` here as the request id should always be in the entries
        let entry = entries
            .get(&id)
            .expect("ID not found in entries. This is a bug.");

        // Create and enter a span to link this function back to the entry
        let _span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_generation", generation = ?generation).entered();
        // Send generation responses back to the infer task
        // If the receive an error from the Flume channel, it means that the client dropped the
        // request and we need to stop generating hence why we unwrap_or(true)
        let stopped = send_responses(generation, entry).map_err(|err| {
482
483
484
485
            if let SendTimeoutError::Timeout(_) = *err {
                tracing::error!("Entry response channel timed out.")
            }

486
487
488
489
490
491
492
493
494
495
496
497
498
            metrics::increment_counter!("tgi_request_failure", "err" => "dropped");
            err
        }).unwrap_or(true);
        if stopped {
            entries.remove(&id).expect("ID not found in entries. This is a bug.");
        }
    });
}

/// Send responses through the `entry` response channel
fn send_responses(
    generation: Generation,
    entry: &Entry,
499
500
501
502
503
504
) -> Result<bool, Box<SendTimeoutError<Result<InferStreamResponse, InferError>>>> {
    // Return directly if the channel is disconnected
    if entry.response_tx.is_disconnected() {
        return Ok(true);
    }

505
506
507
508
    let mut stopped = false;

    if let Some(prefill_tokens) = generation.prefill_tokens {
        // Send message
509
510
511
512
        entry.response_tx.send_timeout(
            Ok(InferStreamResponse::Prefill(prefill_tokens)),
            Duration::from_millis(10),
        )?;
513
514
515
516
517
518
519
520
521
522
523
524
525
526
    }

    // Create last Token
    let token = Token {
        id: generation.token_id,
        text: generation.token_text,
        logprob: generation.token_logprob,
        special: generation.token_is_special,
    };

    if let Some(generated_text) = generation.generated_text {
        // Generation has ended
        stopped = true;
        // Send message
527
528
529
530
531
532
533
534
535
        entry.response_tx.send_timeout(
            Ok(InferStreamResponse::End {
                token,
                generated_text,
                queued: entry.queue_time,
                start: entry.batch_time.unwrap(),
            }),
            Duration::from_millis(10),
        )?;
536
537
    } else {
        // Send message
538
539
540
541
        entry.response_tx.send_timeout(
            Ok(InferStreamResponse::Token(token)),
            Duration::from_millis(10),
        )?;
542
543
544
545
    }
    Ok(stopped)
}

546
/// Send errors to Infer for all `entries`
547
548
#[instrument(skip_all)]
fn send_errors(error: ClientError, entries: &mut IntMap<u64, Entry>) {
549
    entries.drain().for_each(|(_, entry)| {
550
551
552
        // Create and enter a span to link this function back to the entry
        let _send_error_span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_error").entered();
        let err = InferError::GenerationError(error.to_string());
553
        metrics::increment_counter!("tgi_request_failure", "err" => "generation");
554
555
        tracing::error!("{err}");

556
557
558
        // unwrap_or is valid here as we don't care if the receiver is gone.
        entry
            .response_tx
559
            .send_timeout(Err(err), Duration::from_millis(10))
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
            .unwrap_or(());
    });
}

#[derive(Debug)]
pub(crate) enum InferStreamResponse {
    // Optional first message
    Prefill(PrefillTokens),
    // Intermediate messages
    Token(Token),
    // Last message
    End {
        token: Token,
        generated_text: GeneratedText,
        start: Instant,
        queued: Instant,
    },
}

#[derive(Debug)]
pub(crate) struct InferResponse {
581
    pub(crate) prefill: Vec<PrefillToken>,
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
    pub(crate) tokens: Vec<Token>,
    pub(crate) generated_text: GeneratedText,
    pub(crate) queued: Instant,
    pub(crate) start: Instant,
}

#[derive(Debug, Error)]
pub enum InferError {
    #[error("Request failed during generation: {0}")]
    GenerationError(String),
    #[error("Model is overloaded")]
    Overloaded(#[from] TryAcquireError),
    #[error("Input validation error: {0}")]
    ValidationError(#[from] ValidationError),
    #[error("Incomplete generation")]
    IncompleteGeneration,
}
599
600
601
602
603
604
605
606
607
608
609

impl InferError {
    pub(crate) fn error_type(&self) -> &str {
        match self {
            InferError::GenerationError(_) => "generation",
            InferError::Overloaded(_) => "overloaded",
            InferError::ValidationError(_) => "validation",
            InferError::IncompleteGeneration => "incomplete_generation",
        }
    }
}