README.md 10.4 KB
Newer Older
1
<div align="center">
OlivierDehaene's avatar
OlivierDehaene committed
2

Nicolas Patry's avatar
Nicolas Patry committed
3
<a href="https://www.youtube.com/watch?v=jlMAX2Oaht0">
Nicolas Patry's avatar
Nicolas Patry committed
4
  <img width=560 width=315 alt="Making TGI deployment optimal" src="https://huggingface.co/datasets/Narsil/tgi_assets/resolve/main/thumbnail.png">
Nicolas Patry's avatar
Nicolas Patry committed
5
</a>
6

7
# Text Generation Inference
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
8

9
10
11
12
13
14
<a href="https://github.com/huggingface/text-generation-inference">
  <img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/huggingface/text-generation-inference?style=social">
</a>
<a href="https://huggingface.github.io/text-generation-inference">
  <img alt="Swagger API documentation" src="https://img.shields.io/badge/API-Swagger-informational">
</a>
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
15

16
A Rust, Python and gRPC server for text generation inference. Used in production at [HuggingFace](https://huggingface.co)
OlivierDehaene's avatar
OlivierDehaene committed
17
18
19
to power Hugging Chat, the Inference API and Inference Endpoint.

</div>
20
21
22
23

## Table of contents

- [Get Started](#get-started)
24
  - [API Documentation](#api-documentation)
OlivierDehaene's avatar
OlivierDehaene committed
25
  - [Using a private or gated model](#using-a-private-or-gated-model)
26
  - [A note on Shared Memory](#a-note-on-shared-memory-shm)
27
  - [Distributed Tracing](#distributed-tracing)
28
29
  - [Local Install](#local-install)
  - [CUDA Kernels](#cuda-kernels)
30
- [Optimized architectures](#optimized-architectures)
Nicolas Patry's avatar
Nicolas Patry committed
31
- [Run Mistral](#run-a-model)
32
33
34
35
  - [Run](#run)
  - [Quantization](#quantization)
- [Develop](#develop)
- [Testing](#testing)
36

37
Text Generation Inference (TGI) is a toolkit for deploying and serving Large Language Models (LLMs). TGI enables high-performance text generation for the most popular open-source LLMs, including Llama, Falcon, StarCoder, BLOOM, GPT-NeoX, and [more](https://huggingface.co/docs/text-generation-inference/supported_models). TGI implements many features, such as:
Olivier Dehaene's avatar
Olivier Dehaene committed
38

39
40
- Simple launcher to serve most popular LLMs
- Production ready (distributed tracing with Open Telemetry, Prometheus metrics)
OlivierDehaene's avatar
OlivierDehaene committed
41
- Tensor Parallelism for faster inference on multiple GPUs
Yannic Kilcher's avatar
Yannic Kilcher committed
42
- Token streaming using Server-Sent Events (SSE)
43
44
- Continuous batching of incoming requests for increased total throughput
- Optimized transformers code for inference using [Flash Attention](https://github.com/HazyResearch/flash-attention) and [Paged Attention](https://github.com/vllm-project/vllm) on the most popular architectures
Nicolas Patry's avatar
Nicolas Patry committed
45
46
47
48
49
- Quantization with :
  - [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)
  - [GPT-Q](https://arxiv.org/abs/2210.17323)
  - [EETQ](https://github.com/NetEase-FuXi/EETQ)
  - [AWQ](https://github.com/casper-hansen/AutoAWQ)
50
- [Safetensors](https://github.com/huggingface/safetensors) weight loading
OlivierDehaene's avatar
OlivierDehaene committed
51
- Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
52
- Logits warper (temperature scaling, top-p, top-k, repetition penalty, more details see [transformers.LogitsProcessor](https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor))
53
- Stop sequences
OlivierDehaene's avatar
OlivierDehaene committed
54
- Log probabilities
Nicolas Patry's avatar
Nicolas Patry committed
55
56
- [Speculation](https://huggingface.co/docs/text-generation-inference/conceptual/speculation) ~2x latency
- [Guidance/JSON](https://huggingface.co/docs/text-generation-inference/conceptual/guidance). Specify output format to speed up inference and make sure the output is valid according to some specs..
57
58
- Custom Prompt Generation: Easily generate text by providing custom prompts to guide the model's output
- Fine-tuning Support: Utilize fine-tuned models for specific tasks to achieve higher accuracy and performance
59

Nicolas Patry's avatar
Nicolas Patry committed
60
61
62
63
64
65
66
67
### Hardware support

- [Nvidia](https://github.com/huggingface/text-generation-inference/pkgs/container/text-generation-inference)
- [AMD](https://github.com/huggingface/text-generation-inference/pkgs/container/text-generation-inference) (-rocm)
- [Inferentia](https://github.com/huggingface/optimum-neuron/tree/main/text-generation-inference)
- [Intel GPU](https://github.com/huggingface/text-generation-inference/pull/1475)
- [Gaudi](https://github.com/huggingface/tgi-gaudi)

68

69
## Get Started
70
71

### Docker
Olivier Dehaene's avatar
Olivier Dehaene committed
72

73
For a detailed starting guide, please see the [Quick Tour](https://huggingface.co/docs/text-generation-inference/quicktour). The easiest way of getting started is using the official Docker container:
74
75

```shell
Nicolas Patry's avatar
Nicolas Patry committed
76
model=HuggingFaceH4/zephyr-7b-beta
77
78
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run

OlivierDehaene's avatar
OlivierDehaene committed
79
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.4 --model-id $model
80
```
81

82
And then you can make requests like
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
83

84
```bash
85
curl 127.0.0.1:8080/generate_stream \
86
    -X POST \
OlivierDehaene's avatar
OlivierDehaene committed
87
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
88
89
    -H 'Content-Type: application/json'
```
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
90

91
**Note:** To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 12.2 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar.
fxmarty's avatar
fxmarty committed
92

OlivierDehaene's avatar
OlivierDehaene committed
93
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/supported_models#supported-hardware). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.4-rocm --model-id $model` instead of the command above.
OlivierDehaene's avatar
OlivierDehaene committed
94

95
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli):
OlivierDehaene's avatar
OlivierDehaene committed
96
```
97
text-generation-launcher --help
98
```
OlivierDehaene's avatar
OlivierDehaene committed
99

100
### API documentation
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
101

102
103
104
You can consult the OpenAPI documentation of the `text-generation-inference` REST API using the `/docs` route.
The Swagger UI is also available at: [https://huggingface.github.io/text-generation-inference](https://huggingface.github.io/text-generation-inference).

OlivierDehaene's avatar
OlivierDehaene committed
105
### Using a private or gated model
Nicolas Patry's avatar
Nicolas Patry committed
106

107
You have the option to utilize the `HUGGING_FACE_HUB_TOKEN` environment variable for configuring the token employed by
OlivierDehaene's avatar
OlivierDehaene committed
108
`text-generation-inference`. This allows you to gain access to protected resources.
Nicolas Patry's avatar
Nicolas Patry committed
109

OlivierDehaene's avatar
OlivierDehaene committed
110
For example, if you want to serve the gated Llama V2 model variants:
111

OlivierDehaene's avatar
OlivierDehaene committed
112
113
114
115
116
117
1. Go to https://huggingface.co/settings/tokens
2. Copy your cli READ token
3. Export `HUGGING_FACE_HUB_TOKEN=<your cli READ token>`

or with Docker:

118
```shell
OlivierDehaene's avatar
OlivierDehaene committed
119
120
121
122
model=meta-llama/Llama-2-7b-chat-hf
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
token=<your cli READ token>

OlivierDehaene's avatar
OlivierDehaene committed
123
docker run --gpus all --shm-size 1g -e HUGGING_FACE_HUB_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.4 --model-id $model
OlivierDehaene's avatar
OlivierDehaene committed
124
```
125

126
127
### A note on Shared Memory (shm)

128
[`NCCL`](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html) is a communication framework used by
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
`PyTorch` to do distributed training/inference. `text-generation-inference` make
use of `NCCL` to enable Tensor Parallelism to dramatically speed up inference for large language models.

In order to share data between the different devices of a `NCCL` group, `NCCL` might fall back to using the host memory if
peer-to-peer using NVLink or PCI is not possible.

To allow the container to use 1G of Shared Memory and support SHM sharing, we add `--shm-size 1g` on the above command.

If you are running `text-generation-inference` inside `Kubernetes`. You can also add Shared Memory to the container by
creating a volume with:

```yaml
- name: shm
  emptyDir:
   medium: Memory
   sizeLimit: 1Gi
```

and mounting it to `/dev/shm`.

149
Finally, you can also disable SHM sharing by using the `NCCL_SHM_DISABLE=1` environment variable. However, note that
150
151
this will impact performance.

OlivierDehaene's avatar
OlivierDehaene committed
152
153
154
155
156
### Distributed Tracing

`text-generation-inference` is instrumented with distributed tracing using OpenTelemetry. You can use this feature
by setting the address to an OTLP collector with the `--otlp-endpoint` argument.

157
158
### Architecture

fxmarty's avatar
fxmarty committed
159
![TGI architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/TGI.png)
160

161
162
### Local install

163
You can also opt to install `text-generation-inference` locally.
164

165
First [install Rust](https://rustup.rs/) and create a Python virtual environment with at least
166
167
168
169
170
Python 3.9, e.g. using `conda`:

```shell
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

Nicolas Patry's avatar
Nicolas Patry committed
171
conda create -n text-generation-inference python=3.11
172
173
174
conda activate text-generation-inference
```

175
176
177
178
179
180
181
182
183
184
185
186
You may also need to install Protoc.

On Linux:

```shell
PROTOC_ZIP=protoc-21.12-linux-x86_64.zip
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP
sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc
sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*'
rm -f $PROTOC_ZIP
```

187
On MacOS, using Homebrew:
188
189
190
191
192

```shell
brew install protobuf
```

193
Then run:
194

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
195
```shell
196
BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels
Nicolas Patry's avatar
Nicolas Patry committed
197
text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
198
199
```

200
**Note:** on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run:
201
202

```shell
203
sudo apt-get install libssl-dev gcc -y
204
205
```

206
207
## Optimized architectures

Nicolas Patry's avatar
Nicolas Patry committed
208
TGI works out of the box to serve optimized models for all modern models. They can be found in [this list](https://huggingface.co/docs/text-generation-inference/supported_models).
209
210
211
212
213
214
215
216
217
218
219

Other architectures are supported on a best-effort basis using:

`AutoModelForCausalLM.from_pretrained(<model>, device_map="auto")`

or

`AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")`



Nicolas Patry's avatar
Nicolas Patry committed
220
## Run locally
221

222
223
### Run

224
```shell
Nicolas Patry's avatar
Nicolas Patry committed
225
text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2
226
227
```

228
229
### Quantization

230
231
232
You can also quantize the weights with bitsandbytes to reduce the VRAM requirement:

```shell
OlivierDehaene's avatar
OlivierDehaene committed
233
text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2 --quantize
234
235
```

Nicolas Patry's avatar
Nicolas Patry committed
236
237
4bit quantization is available using the [NF4 and FP4 data types from bitsandbytes](https://arxiv.org/pdf/2305.14314.pdf). It can be enabled by providing `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` as a command line argument to `text-generation-launcher`.

238
## Develop
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
239

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
240
```shell
241
242
make server-dev
make router-dev
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
243
244
```

245
## Testing
Nicolas Patry's avatar
Nicolas Patry committed
246
247

```shell
248
249
250
251
# python
make python-server-tests
make python-client-tests
# or both server and client tests
252
make python-tests
253
# rust cargo tests
254
255
make rust-tests
# integration tests
256
make integration-tests
257
```