seq2seq_lm.py 21.3 KB
Newer Older
1
2
3
import torch

from dataclasses import dataclass
4
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, PreTrainedTokenizerBase
5
6
7
from typing import Optional, Tuple, List, Type

from text_generation.models import Model
8
from text_generation.models.types import GeneratedText, Batch
9
10
11
12
13
from text_generation.pb import generate_pb2
from text_generation.utils import NextTokenChooser, StoppingCriteria


@dataclass
14
class Seq2SeqLMBatch(Batch):
15
16
17
    batch_id: int
    requests: List[generate_pb2.Request]

OlivierDehaene's avatar
OlivierDehaene committed
18
    # Encoder values
19
20
21
    input_ids: torch.Tensor
    attention_mask: torch.Tensor

OlivierDehaene's avatar
OlivierDehaene committed
22
    # Decoder values
23
24
25
26
    decoder_input_ids: torch.Tensor
    decoder_attention_mask: Optional[torch.Tensor]
    encoder_last_hidden_state: Optional[torch.Tensor]

OlivierDehaene's avatar
OlivierDehaene committed
27
    # Seq2SeqLM keeps track of both encoder and decoder attention keys and values
28
29
    past_key_values: Optional[List[Tuple]]

OlivierDehaene's avatar
OlivierDehaene committed
30
    # Lengths of all generations present in the batch
31
32
    input_lengths: List[int]
    decoder_input_lengths: List[int]
OlivierDehaene's avatar
OlivierDehaene committed
33
    decoder_logprobs: List[Optional[torch.Tensor]]
34

OlivierDehaene's avatar
OlivierDehaene committed
35
    # Generation helpers
36
37
38
    next_token_choosers: List[NextTokenChooser]
    stopping_criterias: List[StoppingCriteria]

OlivierDehaene's avatar
OlivierDehaene committed
39
    # Metadata used for padding
40
41
42
43
    size: int
    max_input_length: int
    max_decoder_input_length: int

44
    def to_pb(self) -> generate_pb2.Batch:
OlivierDehaene's avatar
OlivierDehaene committed
45
        """Convert a Seq2SeqLMBatch to a text_generation.v1.Batch protobuf"""
46
47
48
49
50
51
52
53
        return generate_pb2.Batch(
            id=self.batch_id,
            requests=self.requests,
            size=self.size,
        )

    @classmethod
    def from_pb(
54
55
56
57
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        device: torch.device,
58
    ) -> "Seq2SeqLMBatch":
OlivierDehaene's avatar
OlivierDehaene committed
59
        """Convert a text_generation.v1.Batch protobuf to a Seq2SeqLMBatch"""
60
61
62
63
64
65
66
        inputs = []
        next_token_choosers = []
        stopping_criterias = []
        input_lengths = []

        decoder_input_ids = []
        decoder_input_lengths = []
OlivierDehaene's avatar
OlivierDehaene committed
67
        decoder_logprobs = []
68
69
70
71
72

        # Parse batch
        for r in pb.requests:
            inputs.append(r.inputs)
            input_lengths.append(r.input_length)
OlivierDehaene's avatar
OlivierDehaene committed
73
            # Decoder sequence only contains the bos_token
74
75
            decoder_input_ids.append(tokenizer.bos_token_id)
            decoder_input_lengths.append(1)
76
            next_token_choosers.append(NextTokenChooser.from_pb(r.parameters))
77
            stopping_criterias.append(
78
                StoppingCriteria.from_pb(r.stopping_parameters, tokenizer)
79
            )
OlivierDehaene's avatar
OlivierDehaene committed
80
            decoder_logprobs.append(None)
81

OlivierDehaene's avatar
OlivierDehaene committed
82
        # Tokenize batch
83
        pad_to_multiple_of = 8 if device.type == "cuda" else None
84
        tokenized_inputs = tokenizer(
85
86
87
88
            inputs,
            return_tensors="pt",
            padding=True,
            pad_to_multiple_of=pad_to_multiple_of,
89
            return_token_type_ids=False,
90
        ).to(device)
OlivierDehaene's avatar
OlivierDehaene committed
91
        # Convert decoder_input_ids to torch tensor of size [batch_size, 1]
92
        decoder_input_ids = torch.tensor(decoder_input_ids, device=device).unsqueeze(-1)
93
94
95
96
97
98
99
100
101
102
103
104

        return cls(
            batch_id=pb.id,
            requests=pb.requests,
            input_ids=tokenized_inputs["input_ids"],
            attention_mask=tokenized_inputs["attention_mask"],
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=None,
            encoder_last_hidden_state=None,
            past_key_values=None,
            input_lengths=input_lengths,
            decoder_input_lengths=decoder_input_lengths,
OlivierDehaene's avatar
OlivierDehaene committed
105
            decoder_logprobs=decoder_logprobs,
106
107
108
109
110
111
112
113
114
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            size=len(pb.requests),
            max_input_length=max(input_lengths),
            max_decoder_input_length=1,
        )

    @classmethod
    def concatenate(cls, batches: List["Seq2SeqLMBatch"]) -> "Seq2SeqLMBatch":
OlivierDehaene's avatar
OlivierDehaene committed
115
116
        """Concatenate multiple batches together by padding internal torch tensors"""

117
118
119
120
121
122
123
124
125
126
127
        # Used for padding
        total_batch_size = sum(batch.size for batch in batches)
        max_input_length = max(batch.max_input_length for batch in batches)
        max_decoder_input_length = max(
            batch.max_decoder_input_length for batch in batches
        )

        # Batch attributes
        requests = []
        input_lengths = []
        decoder_input_lengths = []
OlivierDehaene's avatar
OlivierDehaene committed
128
        decoder_logprobs = []
129
130
131
        next_token_choosers = []
        stopping_criterias = []

OlivierDehaene's avatar
OlivierDehaene committed
132
        # Batch tensors
133
134
135
136
137
138
139
140
141
142
        input_ids = None
        attention_mask = None
        decoder_input_ids = None
        decoder_attention_mask = None
        encoder_last_hidden_state = None
        past_key_values = []

        # Used for slicing correctly inside the tensors
        # Equivalent to a cumsum on batch sizes
        start_index = 0
OlivierDehaene's avatar
OlivierDehaene committed
143

144
        for i, batch in enumerate(batches):
OlivierDehaene's avatar
OlivierDehaene committed
145
            # Extend all list attributes
146
147
148
            requests.extend(batch.requests)
            input_lengths.extend(batch.input_lengths)
            decoder_input_lengths.extend(batch.decoder_input_lengths)
OlivierDehaene's avatar
OlivierDehaene committed
149
            decoder_logprobs.extend(batch.decoder_logprobs)
150
151
152
153
154
155
156
157
158
159
            next_token_choosers.extend(batch.next_token_choosers)
            stopping_criterias.extend(batch.stopping_criterias)

            # Slicing end index for this batch
            end_index = start_index + batch.size

            # We only concatenate batches that did at least one step
            if batch.encoder_last_hidden_state is None:
                raise ValueError("Batch encoder_last_hidden_state cannot be None")

OlivierDehaene's avatar
OlivierDehaene committed
160
            # Create padded tensor
161
            if input_ids is None:
162
                input_ids = batch.input_ids.new_zeros(
163
164
                    (total_batch_size, max_input_length),
                )
OlivierDehaene's avatar
OlivierDehaene committed
165
            # Copy to correct indices
166
167
168
169
            input_ids[
                start_index:end_index, -batch.max_input_length :
            ] = batch.input_ids[:, -batch.max_input_length :]

OlivierDehaene's avatar
OlivierDehaene committed
170
            # Create padded tensor
171
            if attention_mask is None:
172
                attention_mask = batch.attention_mask.new_zeros(
173
174
                    (total_batch_size, max_input_length),
                )
OlivierDehaene's avatar
OlivierDehaene committed
175
            # Copy to correct indices
176
177
178
179
            attention_mask[
                start_index:end_index, -batch.max_input_length :
            ] = batch.attention_mask[:, -batch.max_input_length :]

OlivierDehaene's avatar
OlivierDehaene committed
180
            # Create padded tensor
181
            if decoder_input_ids is None:
182
                decoder_input_ids = batch.decoder_input_ids.new_zeros(
183
184
                    (total_batch_size, max_decoder_input_length),
                )
OlivierDehaene's avatar
OlivierDehaene committed
185
            # Copy to correct indices
186
187
188
189
            decoder_input_ids[
                start_index:end_index, -batch.max_decoder_input_length :
            ] = batch.decoder_input_ids[:, -batch.max_decoder_input_length :]

OlivierDehaene's avatar
OlivierDehaene committed
190
            # Create padded tensor
191
            if decoder_attention_mask is None:
192
193
                # As decoder_attention_mask might not exist, we use `batch.attention_mask` for device here
                decoder_attention_mask = batch.attention_mask.new_zeros(
194
195
                    (total_batch_size, max_decoder_input_length),
                )
OlivierDehaene's avatar
OlivierDehaene committed
196
197
            # If the decoder mask does not exist yet, all generations started at the same time and we never concatenated
            # this batch. All generations are of length `batch.max_decoder_input_length`.
198
199
200
201
            if batch.decoder_attention_mask is None:
                decoder_attention_mask[
                    start_index:end_index, -batch.max_decoder_input_length :
                ] = 1
OlivierDehaene's avatar
OlivierDehaene committed
202
            # If it exists, we need to index
203
204
205
206
207
            else:
                decoder_attention_mask[
                    start_index:end_index, -batch.max_decoder_input_length :
                ] = batch.decoder_attention_mask[:, -batch.max_decoder_input_length :]

OlivierDehaene's avatar
OlivierDehaene committed
208
            # Create padded tensor
209
            if encoder_last_hidden_state is None:
210
                encoder_last_hidden_state = batch.encoder_last_hidden_state.new_zeros(
211
212
213
214
215
216
217
                    (
                        total_batch_size,
                        max_input_length,
                        batch.encoder_last_hidden_state.shape[-1],
                    ),
                )

OlivierDehaene's avatar
OlivierDehaene committed
218
            # Copy to correct indices
219
            encoder_last_hidden_state[
220
221
                start_index:end_index, -batch.max_input_length :, :
            ] = batch.encoder_last_hidden_state[:, -batch.max_input_length :, :]
222

OlivierDehaene's avatar
OlivierDehaene committed
223
            # Iterate over attention layers
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
            for j, past in enumerate(batch.past_key_values):
                _, num_heads, _, head_dim = past[0].shape

                # This will run only once per layer
                if j == len(past_key_values):
                    past_key_values.append([])

                # Decoder past
                for k, t in enumerate(past[:2]):
                    padded_t_shape = (
                        total_batch_size,
                        num_heads,
                        (max_decoder_input_length - 1),
                        head_dim,
                    )

                    # Initialize tensors
                    # This will run only once per layer and per past tensor
                    if k == len(past_key_values[j]):
243
                        past_key_values[j].append(t.new_zeros(padded_t_shape))
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

                    # We slice the past keys and values to remove the padding from previous batches
                    past_key_values[j][k][
                        start_index:end_index,
                        :,
                        -(batch.max_decoder_input_length - 1) :,
                        :,
                    ] = t[:, :, -(batch.max_decoder_input_length - 1) :, :]

                # encoder past
                for k, t in enumerate(past[2:]):
                    padded_t_shape = (
                        total_batch_size,
                        num_heads,
                        max_input_length,
                        head_dim,
                    )

                    idx = k + 2

                    # Initialize tensors
                    # This will run only once per layer and per past tensor
                    if idx == len(past_key_values[j]):
267
                        past_key_values[j].append(t.new_zeros(padded_t_shape))
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

                    past_key_values[j][idx][
                        start_index:end_index, :, -batch.max_input_length :, :
                    ] = t[:, :, -batch.max_input_length :, :]

            start_index += batch.size

        return cls(
            batch_id=batches[0].batch_id,
            requests=requests,
            input_ids=input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            encoder_last_hidden_state=encoder_last_hidden_state,
            past_key_values=past_key_values,
            input_lengths=input_lengths,
            decoder_input_lengths=decoder_input_lengths,
OlivierDehaene's avatar
OlivierDehaene committed
286
            decoder_logprobs=decoder_logprobs,
287
288
289
290
291
292
293
294
295
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            size=total_batch_size,
            max_input_length=max_input_length,
            max_decoder_input_length=max_decoder_input_length,
        )


class Seq2SeqLM(Model):
OlivierDehaene's avatar
OlivierDehaene committed
296
    def __init__(self, model_name: str, quantize=False):
297
298
299
300
        if torch.cuda.is_available():
            device = torch.device("cuda")
            dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
        else:
301
302
303
            if quantize:
                raise ValueError("quantization is not available on CPU")

304
305
306
307
308
309
310
            device = torch.device("cpu")
            dtype = torch.float32

        self.model = AutoModelForSeq2SeqLM.from_pretrained(
            model_name,
            torch_dtype=dtype,
            device_map="auto" if torch.cuda.is_available() else None,
OlivierDehaene's avatar
OlivierDehaene committed
311
            load_in_8bit=quantize,
312
313
314
315
316
317
318
319
320
321
322
323
324
        ).eval()
        tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
        tokenizer.bos_token_id = self.model.config.decoder_start_token_id

        super(Seq2SeqLM, self).__init__(
            tokenizer=tokenizer,
            device=device,
        )

    @property
    def batch_type(self) -> Type[Seq2SeqLMBatch]:
        return Seq2SeqLMBatch

325
326
327
    def decode(self, decoder_ids: List[int]) -> str:
        return self.tokenizer.decode(decoder_ids, skip_special_tokens=True)

328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
    def forward(
        self,
        input_ids,
        attention_mask,
        decoder_input_ids,
        decoder_attention_mask: Optional,
        encoder_last_hidden_state: Optional,
        past_key_values: Optional = None,
    ) -> Tuple[
        torch.Tensor,
        torch.Tensor,
        List[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]],
    ]:
        # Model Forward
        if past_key_values is not None:
            decoder_input_ids = decoder_input_ids[:, -1].unsqueeze(-1)

OlivierDehaene's avatar
OlivierDehaene committed
345
346
347
348
349
        # Wrap `encoder_last_hidden_state` because for some reason, Transformers does a `encoder_last_hidden_state[0]`
        # internally...
        if encoder_last_hidden_state is not None:
            encoder_last_hidden_state = [encoder_last_hidden_state]

350
351
352
353
354
        outputs = self.model.forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
OlivierDehaene's avatar
OlivierDehaene committed
355
            encoder_outputs=encoder_last_hidden_state,
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
            past_key_values=past_key_values,
            use_cache=True,
        )
        return (
            outputs.logits,
            outputs.encoder_last_hidden_state,
            outputs.past_key_values,
        )

    def generate_token(
        self, batch: Seq2SeqLMBatch
    ) -> Tuple[List[GeneratedText], Optional[Seq2SeqLMBatch]]:
        # For some reason, inference_mode does not work well with GLOO which we use on CPU
        context_manager = (
            torch.no_grad if self.device.type == "cpu" else torch.inference_mode
        )
        with context_manager():
            logits, encoder_last_hidden_state, past = self.forward(
                batch.input_ids,
                batch.attention_mask,
                batch.decoder_input_ids,
                batch.decoder_attention_mask,
                batch.encoder_last_hidden_state,
                batch.past_key_values,
            )

        # List of indices to cache
        next_batch_keep_indices = []

OlivierDehaene's avatar
OlivierDehaene committed
385
        # New values for next forward
386
387
388
        next_batch_input_lengths = []
        next_batch_decoder_input_ids = []
        next_batch_decoder_input_lengths = []
OlivierDehaene's avatar
OlivierDehaene committed
389
        next_batch_decoder_logprobs = []
390

OlivierDehaene's avatar
OlivierDehaene committed
391
        # Metadata
392
393
394
395
396
397
398
399
400
401
402
403
        next_batch_size = 0
        next_batch_max_input_length = 0
        next_batch_max_decoder_input_length = 0

        # Finished requests
        generated_texts: List[GeneratedText] = []

        # Zipped iterator
        iterator = zip(
            batch.requests,
            batch.input_lengths,
            batch.decoder_input_lengths,
OlivierDehaene's avatar
OlivierDehaene committed
404
            batch.decoder_logprobs,
405
406
407
408
409
410
411
412
413
414
415
416
            logits,
            batch.next_token_choosers,
            batch.stopping_criterias,
            batch.input_ids,
            batch.decoder_input_ids,
        )

        # For each member of the batch
        for i, (
            request,
            input_length,
            decoder_input_length,
OlivierDehaene's avatar
OlivierDehaene committed
417
            decoder_logprobs,
418
419
420
421
            logits,
            next_token_chooser,
            stopping_criteria,
            input_tokens,
OlivierDehaene's avatar
OlivierDehaene committed
422
            decoder_input_ids,
423
424
        ) in enumerate(iterator):
            # Select next token
OlivierDehaene's avatar
OlivierDehaene committed
425
            next_token, logprobs = next_token_chooser(decoder_input_ids, logits)
426
427

            # Append next token to decoder tokens
OlivierDehaene's avatar
OlivierDehaene committed
428
429
430
431
432
433
434
435
            decoder_input_ids = torch.cat([decoder_input_ids, next_token])
            new_decoder_input_length = decoder_input_length + 1

            next_token_logprob = logprobs[-1, next_token]
            if decoder_logprobs is None:
                decoder_logprobs = next_token_logprob
            else:
                decoder_logprobs = torch.cat([decoder_logprobs, next_token_logprob])
436
437

            # Evaluate stopping criteria
438
439
440
441
442
443
            stop, reason = stopping_criteria(
                next_token.squeeze(),
                self.tokenizer.decode(
                    next_token.squeeze(), clean_up_tokenization_spaces=False
                ),
            )
444
            if stop:
OlivierDehaene's avatar
OlivierDehaene committed
445
446
447
                # Slice with decoder_input_length to remove padding
                # Decode all tokens
                token_ids = decoder_input_ids[-new_decoder_input_length:]
448
                output_text = self.decode(token_ids)
OlivierDehaene's avatar
OlivierDehaene committed
449
450
451
452
453
                tokens = self.tokenizer.batch_decode(token_ids)
                # Add NaN for the bos token
                logprobs = [float("nan")] + decoder_logprobs[
                    -new_decoder_input_length:
                ].tolist()
454
455
                # Add to the list of finished generations with the original request
                generated_texts.append(
456
                    GeneratedText(
OlivierDehaene's avatar
OlivierDehaene committed
457
458
459
460
461
462
463
                        request=request,
                        output_text=output_text,
                        generated_tokens=stopping_criteria.current_tokens,
                        tokens=tokens,
                        token_ids=token_ids.tolist(),
                        logprobs=logprobs,
                        reason=reason,
464
                    )
465
466
467
468
                )
            # add to the next batch
            else:
                next_batch_keep_indices.append(i)
OlivierDehaene's avatar
OlivierDehaene committed
469
                next_batch_decoder_input_ids.append(decoder_input_ids.unsqueeze(0))
470
471
472
                next_batch_size += 1
                next_batch_input_lengths.append(input_length)
                next_batch_decoder_input_lengths.append(new_decoder_input_length)
OlivierDehaene's avatar
OlivierDehaene committed
473
                next_batch_decoder_logprobs.append(decoder_logprobs)
474
475
476
477
478
479
480
481
482
483
484
485
                next_batch_max_input_length = max(
                    next_batch_max_input_length, input_length
                )
                next_batch_max_decoder_input_length = max(
                    next_batch_max_decoder_input_length, new_decoder_input_length
                )

        # We finished all generations in the batch; there is no next batch
        if not next_batch_keep_indices:
            return generated_texts, None

        next_batch_decoder_input_ids = torch.cat(next_batch_decoder_input_ids)
OlivierDehaene's avatar
OlivierDehaene committed
486
487
        # If we finished at least one generation, we need to evict the indices of the generations that finished
        # from the values of the next batch
488
        if generated_texts:
OlivierDehaene's avatar
OlivierDehaene committed
489
            # Apply indices to attention mask, past key values and other items that need to be cached
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
            next_batch_input_ids = batch.input_ids[next_batch_keep_indices]
            next_batch_attention_mask = batch.attention_mask[next_batch_keep_indices]

            if batch.decoder_attention_mask is not None:
                next_batch_decoder_attention_mask = batch.decoder_attention_mask[
                    next_batch_keep_indices
                ]
            else:
                next_batch_decoder_attention_mask = None

            next_batch_encoder_last_hidden_state = encoder_last_hidden_state[
                next_batch_keep_indices
            ]

            next_batch_past_key_values = [
                [t[next_batch_keep_indices] for t in layer] for layer in past
            ]
            next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
            next_batch_next_token_choosers = [
                batch.next_token_choosers[i] for i in next_batch_keep_indices
            ]
            next_batch_stopping_criterias = [
                batch.stopping_criterias[i] for i in next_batch_keep_indices
            ]
        else:
            next_batch_input_ids = batch.input_ids
            next_batch_attention_mask = batch.attention_mask
            next_batch_decoder_attention_mask = batch.decoder_attention_mask
            next_batch_encoder_last_hidden_state = encoder_last_hidden_state
            next_batch_past_key_values = past

            next_batch_requests = batch.requests
            next_batch_next_token_choosers = batch.next_token_choosers
            next_batch_stopping_criterias = batch.stopping_criterias

OlivierDehaene's avatar
OlivierDehaene committed
525
        # Update decoder_attention_mask with padding as we added a new token to input_ids
526
527
528
529
        if next_batch_decoder_attention_mask is not None:
            next_batch_decoder_attention_mask = torch.cat(
                [
                    next_batch_decoder_attention_mask,
530
                    next_batch_decoder_attention_mask.new_ones(next_batch_size, 1),
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
                ],
                dim=1,
            )

        next_batch = Seq2SeqLMBatch(
            batch_id=batch.batch_id,
            requests=next_batch_requests,
            input_ids=next_batch_input_ids,
            attention_mask=next_batch_attention_mask,
            decoder_input_ids=next_batch_decoder_input_ids,
            decoder_attention_mask=next_batch_decoder_attention_mask,
            encoder_last_hidden_state=next_batch_encoder_last_hidden_state,
            past_key_values=next_batch_past_key_values,
            input_lengths=next_batch_input_lengths,
            decoder_input_lengths=next_batch_decoder_input_lengths,
OlivierDehaene's avatar
OlivierDehaene committed
546
            decoder_logprobs=next_batch_decoder_logprobs,
547
548
549
550
551
552
553
            next_token_choosers=next_batch_next_token_choosers,
            stopping_criterias=next_batch_stopping_criterias,
            size=next_batch_size,
            max_input_length=next_batch_max_input_length,
            max_decoder_input_length=next_batch_max_decoder_input_length,
        )
        return generated_texts, next_batch