seq2seq_lm.py 21.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import torch

from dataclasses import dataclass
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from typing import Optional, Tuple, List, Type

from text_generation.models import Model
from text_generation.models.types import GeneratedText
from text_generation.pb import generate_pb2
from text_generation.utils import NextTokenChooser, StoppingCriteria


@dataclass
class Seq2SeqLMBatch:
    batch_id: int
    requests: List[generate_pb2.Request]

OlivierDehaene's avatar
OlivierDehaene committed
18
    # Encoder values
19
20
21
    input_ids: torch.Tensor
    attention_mask: torch.Tensor

OlivierDehaene's avatar
OlivierDehaene committed
22
    # Decoder values
23
24
25
26
    decoder_input_ids: torch.Tensor
    decoder_attention_mask: Optional[torch.Tensor]
    encoder_last_hidden_state: Optional[torch.Tensor]

OlivierDehaene's avatar
OlivierDehaene committed
27
    # Seq2SeqLM keeps track of both encoder and decoder attention keys and values
28
29
    past_key_values: Optional[List[Tuple]]

OlivierDehaene's avatar
OlivierDehaene committed
30
    # Lengths of all generations present in the batch
31
32
    input_lengths: List[int]
    decoder_input_lengths: List[int]
OlivierDehaene's avatar
OlivierDehaene committed
33
    decoder_logprobs: List[Optional[torch.Tensor]]
34

OlivierDehaene's avatar
OlivierDehaene committed
35
    # Generation helpers
36
37
38
    next_token_choosers: List[NextTokenChooser]
    stopping_criterias: List[StoppingCriteria]

OlivierDehaene's avatar
OlivierDehaene committed
39
    # Metadata used for padding
40
41
42
43
44
    size: int
    max_input_length: int
    max_decoder_input_length: int

    def to_pb(self):
OlivierDehaene's avatar
OlivierDehaene committed
45
        """Convert a Seq2SeqLMBatch to a text_generation.v1.Batch protobuf"""
46
47
48
49
50
51
52
53
54
55
        return generate_pb2.Batch(
            id=self.batch_id,
            requests=self.requests,
            size=self.size,
        )

    @classmethod
    def from_pb(
        cls, pb: generate_pb2.Batch, tokenizer: AutoTokenizer, device: torch.device
    ) -> "Seq2SeqLMBatch":
OlivierDehaene's avatar
OlivierDehaene committed
56
        """Convert a text_generation.v1.Batch protobuf to a Seq2SeqLMBatch"""
57
58
59
60
61
62
63
        inputs = []
        next_token_choosers = []
        stopping_criterias = []
        input_lengths = []

        decoder_input_ids = []
        decoder_input_lengths = []
OlivierDehaene's avatar
OlivierDehaene committed
64
        decoder_logprobs = []
65
66
67
68
69

        # Parse batch
        for r in pb.requests:
            inputs.append(r.inputs)
            input_lengths.append(r.input_length)
OlivierDehaene's avatar
OlivierDehaene committed
70
            # Decoder sequence only contains the bos_token
71
72
            decoder_input_ids.append(tokenizer.bos_token_id)
            decoder_input_lengths.append(1)
73
            next_token_choosers.append(NextTokenChooser.from_pb(r.parameters))
74
            stopping_criterias.append(
75
                StoppingCriteria.from_pb(r.stopping_parameters, tokenizer)
76
            )
OlivierDehaene's avatar
OlivierDehaene committed
77
            decoder_logprobs.append(None)
78

OlivierDehaene's avatar
OlivierDehaene committed
79
        # Tokenize batch
80
        pad_to_multiple_of = 8 if "gpu" in str(device) else None
81
        tokenized_inputs = tokenizer(
82
83
84
85
            inputs,
            return_tensors="pt",
            padding=True,
            pad_to_multiple_of=pad_to_multiple_of,
86
        ).to(device)
OlivierDehaene's avatar
OlivierDehaene committed
87
        # Convert decoder_input_ids to torch tensor of size [batch_size, 1]
88
        decoder_input_ids = torch.tensor(decoder_input_ids, device=device).unsqueeze(-1)
89
90
91
92
93
94
95
96
97
98
99
100

        return cls(
            batch_id=pb.id,
            requests=pb.requests,
            input_ids=tokenized_inputs["input_ids"],
            attention_mask=tokenized_inputs["attention_mask"],
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=None,
            encoder_last_hidden_state=None,
            past_key_values=None,
            input_lengths=input_lengths,
            decoder_input_lengths=decoder_input_lengths,
OlivierDehaene's avatar
OlivierDehaene committed
101
            decoder_logprobs=decoder_logprobs,
102
103
104
105
106
107
108
109
110
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            size=len(pb.requests),
            max_input_length=max(input_lengths),
            max_decoder_input_length=1,
        )

    @classmethod
    def concatenate(cls, batches: List["Seq2SeqLMBatch"]) -> "Seq2SeqLMBatch":
OlivierDehaene's avatar
OlivierDehaene committed
111
112
        """Concatenate multiple batches together by padding internal torch tensors"""

113
114
115
116
117
118
119
120
121
122
123
        # Used for padding
        total_batch_size = sum(batch.size for batch in batches)
        max_input_length = max(batch.max_input_length for batch in batches)
        max_decoder_input_length = max(
            batch.max_decoder_input_length for batch in batches
        )

        # Batch attributes
        requests = []
        input_lengths = []
        decoder_input_lengths = []
OlivierDehaene's avatar
OlivierDehaene committed
124
        decoder_logprobs = []
125
126
127
        next_token_choosers = []
        stopping_criterias = []

OlivierDehaene's avatar
OlivierDehaene committed
128
        # Batch tensors
129
130
131
132
133
134
135
136
137
138
        input_ids = None
        attention_mask = None
        decoder_input_ids = None
        decoder_attention_mask = None
        encoder_last_hidden_state = None
        past_key_values = []

        # Used for slicing correctly inside the tensors
        # Equivalent to a cumsum on batch sizes
        start_index = 0
OlivierDehaene's avatar
OlivierDehaene committed
139

140
        for i, batch in enumerate(batches):
OlivierDehaene's avatar
OlivierDehaene committed
141
            # Extend all list attributes
142
143
144
            requests.extend(batch.requests)
            input_lengths.extend(batch.input_lengths)
            decoder_input_lengths.extend(batch.decoder_input_lengths)
OlivierDehaene's avatar
OlivierDehaene committed
145
            decoder_logprobs.extend(batch.decoder_logprobs)
146
147
148
149
150
151
152
153
154
155
            next_token_choosers.extend(batch.next_token_choosers)
            stopping_criterias.extend(batch.stopping_criterias)

            # Slicing end index for this batch
            end_index = start_index + batch.size

            # We only concatenate batches that did at least one step
            if batch.encoder_last_hidden_state is None:
                raise ValueError("Batch encoder_last_hidden_state cannot be None")

OlivierDehaene's avatar
OlivierDehaene committed
156
            # Create padded tensor
157
158
159
160
161
162
            if input_ids is None:
                input_ids = torch.zeros(
                    (total_batch_size, max_input_length),
                    dtype=batch.input_ids.dtype,
                    device=batch.input_ids.device,
                )
OlivierDehaene's avatar
OlivierDehaene committed
163
            # Copy to correct indices
164
165
166
167
            input_ids[
                start_index:end_index, -batch.max_input_length :
            ] = batch.input_ids[:, -batch.max_input_length :]

OlivierDehaene's avatar
OlivierDehaene committed
168
            # Create padded tensor
169
170
171
172
173
174
            if attention_mask is None:
                attention_mask = torch.zeros(
                    (total_batch_size, max_input_length),
                    dtype=batch.attention_mask.dtype,
                    device=batch.attention_mask.device,
                )
OlivierDehaene's avatar
OlivierDehaene committed
175
            # Copy to correct indices
176
177
178
179
            attention_mask[
                start_index:end_index, -batch.max_input_length :
            ] = batch.attention_mask[:, -batch.max_input_length :]

OlivierDehaene's avatar
OlivierDehaene committed
180
            # Create padded tensor
181
182
183
184
185
186
            if decoder_input_ids is None:
                decoder_input_ids = torch.zeros(
                    (total_batch_size, max_decoder_input_length),
                    dtype=batch.decoder_input_ids.dtype,
                    device=batch.decoder_input_ids.device,
                )
OlivierDehaene's avatar
OlivierDehaene committed
187
            # Copy to correct indices
188
189
190
191
            decoder_input_ids[
                start_index:end_index, -batch.max_decoder_input_length :
            ] = batch.decoder_input_ids[:, -batch.max_decoder_input_length :]

OlivierDehaene's avatar
OlivierDehaene committed
192
            # Create padded tensor
193
194
195
            if decoder_attention_mask is None:
                decoder_attention_mask = torch.zeros(
                    (total_batch_size, max_decoder_input_length),
OlivierDehaene's avatar
OlivierDehaene committed
196
197
                    dtype=batch.attention_mask.dtype,  # As decoder_attention_mask might not exist,
                    device=batch.attention_mask.device,  # we use `batch.attention_maks` for device here
198
                )
OlivierDehaene's avatar
OlivierDehaene committed
199
200
            # If the decoder mask does not exist yet, all generations started at the same time and we never concatenated
            # this batch. All generations are of length `batch.max_decoder_input_length`.
201
202
203
204
            if batch.decoder_attention_mask is None:
                decoder_attention_mask[
                    start_index:end_index, -batch.max_decoder_input_length :
                ] = 1
OlivierDehaene's avatar
OlivierDehaene committed
205
            # If it exists, we need to index
206
207
208
209
210
            else:
                decoder_attention_mask[
                    start_index:end_index, -batch.max_decoder_input_length :
                ] = batch.decoder_attention_mask[:, -batch.max_decoder_input_length :]

OlivierDehaene's avatar
OlivierDehaene committed
211
            # Create padded tensor
212
213
214
215
216
217
218
219
220
221
222
            if encoder_last_hidden_state is None:
                encoder_last_hidden_state = torch.zeros(
                    (
                        total_batch_size,
                        max_input_length,
                        batch.encoder_last_hidden_state.shape[-1],
                    ),
                    dtype=batch.encoder_last_hidden_state.dtype,
                    device=batch.encoder_last_hidden_state.device,
                )

OlivierDehaene's avatar
OlivierDehaene committed
223
            # Copy to correct indices
224
            encoder_last_hidden_state[
225
226
                start_index:end_index, -batch.max_input_length :, :
            ] = batch.encoder_last_hidden_state[:, -batch.max_input_length :, :]
227

OlivierDehaene's avatar
OlivierDehaene committed
228
            # Iterate over attention layers
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
            for j, past in enumerate(batch.past_key_values):
                _, num_heads, _, head_dim = past[0].shape

                # This will run only once per layer
                if j == len(past_key_values):
                    past_key_values.append([])

                # Decoder past
                for k, t in enumerate(past[:2]):
                    padded_t_shape = (
                        total_batch_size,
                        num_heads,
                        (max_decoder_input_length - 1),
                        head_dim,
                    )

                    # Initialize tensors
                    # This will run only once per layer and per past tensor
                    if k == len(past_key_values[j]):
                        past_key_values[j].append(
                            torch.zeros(padded_t_shape, dtype=t.dtype, device=t.device)
                        )

                    # We slice the past keys and values to remove the padding from previous batches
                    past_key_values[j][k][
                        start_index:end_index,
                        :,
                        -(batch.max_decoder_input_length - 1) :,
                        :,
                    ] = t[:, :, -(batch.max_decoder_input_length - 1) :, :]

                # encoder past
                for k, t in enumerate(past[2:]):
                    padded_t_shape = (
                        total_batch_size,
                        num_heads,
                        max_input_length,
                        head_dim,
                    )

                    idx = k + 2

                    # Initialize tensors
                    # This will run only once per layer and per past tensor
                    if idx == len(past_key_values[j]):
                        past_key_values[j].append(
                            torch.zeros(padded_t_shape, dtype=t.dtype, device=t.device)
                        )

                    past_key_values[j][idx][
                        start_index:end_index, :, -batch.max_input_length :, :
                    ] = t[:, :, -batch.max_input_length :, :]

            start_index += batch.size

        return cls(
            batch_id=batches[0].batch_id,
            requests=requests,
            input_ids=input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            encoder_last_hidden_state=encoder_last_hidden_state,
            past_key_values=past_key_values,
            input_lengths=input_lengths,
            decoder_input_lengths=decoder_input_lengths,
OlivierDehaene's avatar
OlivierDehaene committed
295
            decoder_logprobs=decoder_logprobs,
296
297
298
299
300
301
302
303
304
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            size=total_batch_size,
            max_input_length=max_input_length,
            max_decoder_input_length=max_decoder_input_length,
        )


class Seq2SeqLM(Model):
OlivierDehaene's avatar
OlivierDehaene committed
305
    def __init__(self, model_name: str, quantize=False):
306
307
308
309
        if torch.cuda.is_available():
            device = torch.device("cuda")
            dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
        else:
310
311
312
            if quantize:
                raise ValueError("quantization is not available on CPU")

313
314
315
316
317
318
319
            device = torch.device("cpu")
            dtype = torch.float32

        self.model = AutoModelForSeq2SeqLM.from_pretrained(
            model_name,
            torch_dtype=dtype,
            device_map="auto" if torch.cuda.is_available() else None,
OlivierDehaene's avatar
OlivierDehaene committed
320
            load_in_8bit=quantize,
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
        ).eval()
        tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
        tokenizer.bos_token_id = self.model.config.decoder_start_token_id

        super(Seq2SeqLM, self).__init__(
            tokenizer=tokenizer,
            device=device,
        )

    @property
    def batch_type(self) -> Type[Seq2SeqLMBatch]:
        return Seq2SeqLMBatch

    def forward(
        self,
        input_ids,
        attention_mask,
        decoder_input_ids,
        decoder_attention_mask: Optional,
        encoder_last_hidden_state: Optional,
        past_key_values: Optional = None,
    ) -> Tuple[
        torch.Tensor,
        torch.Tensor,
        List[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]],
    ]:
        # Model Forward
        if past_key_values is not None:
            decoder_input_ids = decoder_input_ids[:, -1].unsqueeze(-1)

OlivierDehaene's avatar
OlivierDehaene committed
351
352
353
354
355
        # Wrap `encoder_last_hidden_state` because for some reason, Transformers does a `encoder_last_hidden_state[0]`
        # internally...
        if encoder_last_hidden_state is not None:
            encoder_last_hidden_state = [encoder_last_hidden_state]

356
357
358
359
360
        outputs = self.model.forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
OlivierDehaene's avatar
OlivierDehaene committed
361
            encoder_outputs=encoder_last_hidden_state,
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
            past_key_values=past_key_values,
            use_cache=True,
        )
        return (
            outputs.logits,
            outputs.encoder_last_hidden_state,
            outputs.past_key_values,
        )

    def generate_token(
        self, batch: Seq2SeqLMBatch
    ) -> Tuple[List[GeneratedText], Optional[Seq2SeqLMBatch]]:
        # For some reason, inference_mode does not work well with GLOO which we use on CPU
        context_manager = (
            torch.no_grad if self.device.type == "cpu" else torch.inference_mode
        )
        with context_manager():
            logits, encoder_last_hidden_state, past = self.forward(
                batch.input_ids,
                batch.attention_mask,
                batch.decoder_input_ids,
                batch.decoder_attention_mask,
                batch.encoder_last_hidden_state,
                batch.past_key_values,
            )

        # List of indices to cache
        next_batch_keep_indices = []

OlivierDehaene's avatar
OlivierDehaene committed
391
        # New values for next forward
392
393
394
        next_batch_input_lengths = []
        next_batch_decoder_input_ids = []
        next_batch_decoder_input_lengths = []
OlivierDehaene's avatar
OlivierDehaene committed
395
        next_batch_decoder_logprobs = []
396

OlivierDehaene's avatar
OlivierDehaene committed
397
        # Metadata
398
399
400
401
402
403
404
405
406
407
408
409
        next_batch_size = 0
        next_batch_max_input_length = 0
        next_batch_max_decoder_input_length = 0

        # Finished requests
        generated_texts: List[GeneratedText] = []

        # Zipped iterator
        iterator = zip(
            batch.requests,
            batch.input_lengths,
            batch.decoder_input_lengths,
OlivierDehaene's avatar
OlivierDehaene committed
410
            batch.decoder_logprobs,
411
412
413
414
415
416
417
418
419
420
421
422
            logits,
            batch.next_token_choosers,
            batch.stopping_criterias,
            batch.input_ids,
            batch.decoder_input_ids,
        )

        # For each member of the batch
        for i, (
            request,
            input_length,
            decoder_input_length,
OlivierDehaene's avatar
OlivierDehaene committed
423
            decoder_logprobs,
424
425
426
427
            logits,
            next_token_chooser,
            stopping_criteria,
            input_tokens,
OlivierDehaene's avatar
OlivierDehaene committed
428
            decoder_input_ids,
429
430
        ) in enumerate(iterator):
            # Select next token
OlivierDehaene's avatar
OlivierDehaene committed
431
            next_token, logprobs = next_token_chooser(decoder_input_ids, logits)
432
433

            # Append next token to decoder tokens
OlivierDehaene's avatar
OlivierDehaene committed
434
435
436
437
438
439
440
441
            decoder_input_ids = torch.cat([decoder_input_ids, next_token])
            new_decoder_input_length = decoder_input_length + 1

            next_token_logprob = logprobs[-1, next_token]
            if decoder_logprobs is None:
                decoder_logprobs = next_token_logprob
            else:
                decoder_logprobs = torch.cat([decoder_logprobs, next_token_logprob])
442
443

            # Evaluate stopping criteria
OlivierDehaene's avatar
OlivierDehaene committed
444
            stop, reason = stopping_criteria(decoder_input_ids)
445
            if stop:
OlivierDehaene's avatar
OlivierDehaene committed
446
447
448
449
450
451
452
453
454
                # Slice with decoder_input_length to remove padding
                # Decode all tokens
                token_ids = decoder_input_ids[-new_decoder_input_length:]
                output_text = self.tokenizer.decode(token_ids, skip_special_tokens=True)
                tokens = self.tokenizer.batch_decode(token_ids)
                # Add NaN for the bos token
                logprobs = [float("nan")] + decoder_logprobs[
                    -new_decoder_input_length:
                ].tolist()
455
456
                # Add to the list of finished generations with the original request
                generated_texts.append(
457
                    GeneratedText(
OlivierDehaene's avatar
OlivierDehaene committed
458
459
460
461
462
463
464
                        request=request,
                        output_text=output_text,
                        generated_tokens=stopping_criteria.current_tokens,
                        tokens=tokens,
                        token_ids=token_ids.tolist(),
                        logprobs=logprobs,
                        reason=reason,
465
                    )
466
467
468
469
                )
            # add to the next batch
            else:
                next_batch_keep_indices.append(i)
OlivierDehaene's avatar
OlivierDehaene committed
470
                next_batch_decoder_input_ids.append(decoder_input_ids.unsqueeze(0))
471
472
473
                next_batch_size += 1
                next_batch_input_lengths.append(input_length)
                next_batch_decoder_input_lengths.append(new_decoder_input_length)
OlivierDehaene's avatar
OlivierDehaene committed
474
                next_batch_decoder_logprobs.append(decoder_logprobs)
475
476
477
478
479
480
481
482
483
484
485
486
                next_batch_max_input_length = max(
                    next_batch_max_input_length, input_length
                )
                next_batch_max_decoder_input_length = max(
                    next_batch_max_decoder_input_length, new_decoder_input_length
                )

        # We finished all generations in the batch; there is no next batch
        if not next_batch_keep_indices:
            return generated_texts, None

        next_batch_decoder_input_ids = torch.cat(next_batch_decoder_input_ids)
OlivierDehaene's avatar
OlivierDehaene committed
487
488
        # If we finished at least one generation, we need to evict the indices of the generations that finished
        # from the values of the next batch
489
        if generated_texts:
OlivierDehaene's avatar
OlivierDehaene committed
490
            # Apply indices to attention mask, past key values and other items that need to be cached
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
            next_batch_input_ids = batch.input_ids[next_batch_keep_indices]
            next_batch_attention_mask = batch.attention_mask[next_batch_keep_indices]

            if batch.decoder_attention_mask is not None:
                next_batch_decoder_attention_mask = batch.decoder_attention_mask[
                    next_batch_keep_indices
                ]
            else:
                next_batch_decoder_attention_mask = None

            next_batch_encoder_last_hidden_state = encoder_last_hidden_state[
                next_batch_keep_indices
            ]

            next_batch_past_key_values = [
                [t[next_batch_keep_indices] for t in layer] for layer in past
            ]
            next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
            next_batch_next_token_choosers = [
                batch.next_token_choosers[i] for i in next_batch_keep_indices
            ]
            next_batch_stopping_criterias = [
                batch.stopping_criterias[i] for i in next_batch_keep_indices
            ]
        else:
            next_batch_input_ids = batch.input_ids
            next_batch_attention_mask = batch.attention_mask
            next_batch_decoder_attention_mask = batch.decoder_attention_mask
            next_batch_encoder_last_hidden_state = encoder_last_hidden_state
            next_batch_past_key_values = past

            next_batch_requests = batch.requests
            next_batch_next_token_choosers = batch.next_token_choosers
            next_batch_stopping_criterias = batch.stopping_criterias

OlivierDehaene's avatar
OlivierDehaene committed
526
        # Update decoder_attention_mask with padding as we added a new token to input_ids
527
528
529
530
        if next_batch_decoder_attention_mask is not None:
            next_batch_decoder_attention_mask = torch.cat(
                [
                    next_batch_decoder_attention_mask,
531
                    next_batch_decoder_attention_mask.new_ones(next_batch_size, 1),
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
                ],
                dim=1,
            )

        next_batch = Seq2SeqLMBatch(
            batch_id=batch.batch_id,
            requests=next_batch_requests,
            input_ids=next_batch_input_ids,
            attention_mask=next_batch_attention_mask,
            decoder_input_ids=next_batch_decoder_input_ids,
            decoder_attention_mask=next_batch_decoder_attention_mask,
            encoder_last_hidden_state=next_batch_encoder_last_hidden_state,
            past_key_values=next_batch_past_key_values,
            input_lengths=next_batch_input_lengths,
            decoder_input_lengths=next_batch_decoder_input_lengths,
OlivierDehaene's avatar
OlivierDehaene committed
547
            decoder_logprobs=next_batch_decoder_logprobs,
548
549
550
551
552
553
554
            next_token_choosers=next_batch_next_token_choosers,
            stopping_criterias=next_batch_stopping_criterias,
            size=next_batch_size,
            max_input_length=next_batch_max_input_length,
            max_decoder_input_length=next_batch_max_decoder_input_length,
        )
        return generated_texts, next_batch