seq2seq_lm.py 20.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import torch

from dataclasses import dataclass
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from typing import Optional, Tuple, List, Type

from text_generation.models import Model
from text_generation.models.types import GeneratedText
from text_generation.pb import generate_pb2
from text_generation.utils import NextTokenChooser, StoppingCriteria


@dataclass
class Seq2SeqLMBatch:
    batch_id: int
    requests: List[generate_pb2.Request]

OlivierDehaene's avatar
OlivierDehaene committed
18
    # Encoder values
19
20
21
    input_ids: torch.Tensor
    attention_mask: torch.Tensor

OlivierDehaene's avatar
OlivierDehaene committed
22
    # Decoder values
23
24
25
26
    decoder_input_ids: torch.Tensor
    decoder_attention_mask: Optional[torch.Tensor]
    encoder_last_hidden_state: Optional[torch.Tensor]

OlivierDehaene's avatar
OlivierDehaene committed
27
    # Seq2SeqLM keeps track of both encoder and decoder attention keys and values
28
29
    past_key_values: Optional[List[Tuple]]

OlivierDehaene's avatar
OlivierDehaene committed
30
    # Lengths of all generations present in the batch
31
32
33
    input_lengths: List[int]
    decoder_input_lengths: List[int]

OlivierDehaene's avatar
OlivierDehaene committed
34
    # Generation helpers
35
36
37
    next_token_choosers: List[NextTokenChooser]
    stopping_criterias: List[StoppingCriteria]

OlivierDehaene's avatar
OlivierDehaene committed
38
    # Metadata used for padding
39
40
41
42
43
    size: int
    max_input_length: int
    max_decoder_input_length: int

    def to_pb(self):
OlivierDehaene's avatar
OlivierDehaene committed
44
        """Convert a Seq2SeqLMBatch to a text_generation.v1.Batch protobuf"""
45
46
47
48
49
50
51
52
53
54
        return generate_pb2.Batch(
            id=self.batch_id,
            requests=self.requests,
            size=self.size,
        )

    @classmethod
    def from_pb(
        cls, pb: generate_pb2.Batch, tokenizer: AutoTokenizer, device: torch.device
    ) -> "Seq2SeqLMBatch":
OlivierDehaene's avatar
OlivierDehaene committed
55
        """Convert a text_generation.v1.Batch protobuf to a Seq2SeqLMBatch"""
56
57
58
59
60
61
62
63
64
65
66
67
        inputs = []
        next_token_choosers = []
        stopping_criterias = []
        input_lengths = []

        decoder_input_ids = []
        decoder_input_lengths = []

        # Parse batch
        for r in pb.requests:
            inputs.append(r.inputs)
            input_lengths.append(r.input_length)
OlivierDehaene's avatar
OlivierDehaene committed
68
            # Decoder sequence only contains the bos_token
69
70
            decoder_input_ids.append(tokenizer.bos_token_id)
            decoder_input_lengths.append(1)
71
            next_token_choosers.append(NextTokenChooser.from_pb(r.parameters))
72
            stopping_criterias.append(
73
                StoppingCriteria.from_pb(r.stopping_parameters, tokenizer)
74
75
            )

OlivierDehaene's avatar
OlivierDehaene committed
76
        # Tokenize batch
77
        pad_to_multiple_of = 8 if "gpu" in str(device) else None
78
        tokenized_inputs = tokenizer(
79
80
81
82
            inputs,
            return_tensors="pt",
            padding=True,
            pad_to_multiple_of=pad_to_multiple_of,
83
        ).to(device)
OlivierDehaene's avatar
OlivierDehaene committed
84
        # Convert decoder_input_ids to torch tensor of size [batch_size, 1]
85
        decoder_input_ids = torch.tensor(decoder_input_ids, device=device).unsqueeze(-1)
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

        return cls(
            batch_id=pb.id,
            requests=pb.requests,
            input_ids=tokenized_inputs["input_ids"],
            attention_mask=tokenized_inputs["attention_mask"],
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=None,
            encoder_last_hidden_state=None,
            past_key_values=None,
            input_lengths=input_lengths,
            decoder_input_lengths=decoder_input_lengths,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            size=len(pb.requests),
            max_input_length=max(input_lengths),
            max_decoder_input_length=1,
        )

    @classmethod
    def concatenate(cls, batches: List["Seq2SeqLMBatch"]) -> "Seq2SeqLMBatch":
OlivierDehaene's avatar
OlivierDehaene committed
107
108
        """Concatenate multiple batches together by padding internal torch tensors"""

109
110
111
112
113
114
115
116
117
118
119
120
121
122
        # Used for padding
        total_batch_size = sum(batch.size for batch in batches)
        max_input_length = max(batch.max_input_length for batch in batches)
        max_decoder_input_length = max(
            batch.max_decoder_input_length for batch in batches
        )

        # Batch attributes
        requests = []
        input_lengths = []
        decoder_input_lengths = []
        next_token_choosers = []
        stopping_criterias = []

OlivierDehaene's avatar
OlivierDehaene committed
123
        # Batch tensors
124
125
126
127
128
129
130
131
132
133
        input_ids = None
        attention_mask = None
        decoder_input_ids = None
        decoder_attention_mask = None
        encoder_last_hidden_state = None
        past_key_values = []

        # Used for slicing correctly inside the tensors
        # Equivalent to a cumsum on batch sizes
        start_index = 0
OlivierDehaene's avatar
OlivierDehaene committed
134

135
        for i, batch in enumerate(batches):
OlivierDehaene's avatar
OlivierDehaene committed
136
            # Extend all list attributes
137
138
139
140
141
142
143
144
145
146
147
148
149
            requests.extend(batch.requests)
            input_lengths.extend(batch.input_lengths)
            decoder_input_lengths.extend(batch.decoder_input_lengths)
            next_token_choosers.extend(batch.next_token_choosers)
            stopping_criterias.extend(batch.stopping_criterias)

            # Slicing end index for this batch
            end_index = start_index + batch.size

            # We only concatenate batches that did at least one step
            if batch.encoder_last_hidden_state is None:
                raise ValueError("Batch encoder_last_hidden_state cannot be None")

OlivierDehaene's avatar
OlivierDehaene committed
150
            # Create padded tensor
151
152
153
154
155
156
            if input_ids is None:
                input_ids = torch.zeros(
                    (total_batch_size, max_input_length),
                    dtype=batch.input_ids.dtype,
                    device=batch.input_ids.device,
                )
OlivierDehaene's avatar
OlivierDehaene committed
157
            # Copy to correct indices
158
159
160
161
            input_ids[
                start_index:end_index, -batch.max_input_length :
            ] = batch.input_ids[:, -batch.max_input_length :]

OlivierDehaene's avatar
OlivierDehaene committed
162
            # Create padded tensor
163
164
165
166
167
168
            if attention_mask is None:
                attention_mask = torch.zeros(
                    (total_batch_size, max_input_length),
                    dtype=batch.attention_mask.dtype,
                    device=batch.attention_mask.device,
                )
OlivierDehaene's avatar
OlivierDehaene committed
169
            # Copy to correct indices
170
171
172
173
            attention_mask[
                start_index:end_index, -batch.max_input_length :
            ] = batch.attention_mask[:, -batch.max_input_length :]

OlivierDehaene's avatar
OlivierDehaene committed
174
            # Create padded tensor
175
176
177
178
179
180
            if decoder_input_ids is None:
                decoder_input_ids = torch.zeros(
                    (total_batch_size, max_decoder_input_length),
                    dtype=batch.decoder_input_ids.dtype,
                    device=batch.decoder_input_ids.device,
                )
OlivierDehaene's avatar
OlivierDehaene committed
181
            # Copy to correct indices
182
183
184
185
            decoder_input_ids[
                start_index:end_index, -batch.max_decoder_input_length :
            ] = batch.decoder_input_ids[:, -batch.max_decoder_input_length :]

OlivierDehaene's avatar
OlivierDehaene committed
186
            # Create padded tensor
187
188
189
            if decoder_attention_mask is None:
                decoder_attention_mask = torch.zeros(
                    (total_batch_size, max_decoder_input_length),
OlivierDehaene's avatar
OlivierDehaene committed
190
191
                    dtype=batch.attention_mask.dtype,  # As decoder_attention_mask might not exist,
                    device=batch.attention_mask.device,  # we use `batch.attention_maks` for device here
192
                )
OlivierDehaene's avatar
OlivierDehaene committed
193
194
            # If the decoder mask does not exist yet, all generations started at the same time and we never concatenated
            # this batch. All generations are of length `batch.max_decoder_input_length`.
195
196
197
198
            if batch.decoder_attention_mask is None:
                decoder_attention_mask[
                    start_index:end_index, -batch.max_decoder_input_length :
                ] = 1
OlivierDehaene's avatar
OlivierDehaene committed
199
            # If it exists, we need to index
200
201
202
203
204
            else:
                decoder_attention_mask[
                    start_index:end_index, -batch.max_decoder_input_length :
                ] = batch.decoder_attention_mask[:, -batch.max_decoder_input_length :]

OlivierDehaene's avatar
OlivierDehaene committed
205
            # Create padded tensor
206
207
208
209
210
211
212
213
214
215
216
            if encoder_last_hidden_state is None:
                encoder_last_hidden_state = torch.zeros(
                    (
                        total_batch_size,
                        max_input_length,
                        batch.encoder_last_hidden_state.shape[-1],
                    ),
                    dtype=batch.encoder_last_hidden_state.dtype,
                    device=batch.encoder_last_hidden_state.device,
                )

OlivierDehaene's avatar
OlivierDehaene committed
217
            # Copy to correct indices
218
            encoder_last_hidden_state[
219
220
                start_index:end_index, -batch.max_input_length :, :
            ] = batch.encoder_last_hidden_state[:, -batch.max_input_length :, :]
221

OlivierDehaene's avatar
OlivierDehaene committed
222
            # Iterate over attention layers
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
            for j, past in enumerate(batch.past_key_values):
                _, num_heads, _, head_dim = past[0].shape

                # This will run only once per layer
                if j == len(past_key_values):
                    past_key_values.append([])

                # Decoder past
                for k, t in enumerate(past[:2]):
                    padded_t_shape = (
                        total_batch_size,
                        num_heads,
                        (max_decoder_input_length - 1),
                        head_dim,
                    )

                    # Initialize tensors
                    # This will run only once per layer and per past tensor
                    if k == len(past_key_values[j]):
                        past_key_values[j].append(
                            torch.zeros(padded_t_shape, dtype=t.dtype, device=t.device)
                        )

                    # We slice the past keys and values to remove the padding from previous batches
                    past_key_values[j][k][
                        start_index:end_index,
                        :,
                        -(batch.max_decoder_input_length - 1) :,
                        :,
                    ] = t[:, :, -(batch.max_decoder_input_length - 1) :, :]

                # encoder past
                for k, t in enumerate(past[2:]):
                    padded_t_shape = (
                        total_batch_size,
                        num_heads,
                        max_input_length,
                        head_dim,
                    )

                    idx = k + 2

                    # Initialize tensors
                    # This will run only once per layer and per past tensor
                    if idx == len(past_key_values[j]):
                        past_key_values[j].append(
                            torch.zeros(padded_t_shape, dtype=t.dtype, device=t.device)
                        )

                    past_key_values[j][idx][
                        start_index:end_index, :, -batch.max_input_length :, :
                    ] = t[:, :, -batch.max_input_length :, :]

            start_index += batch.size

        return cls(
            batch_id=batches[0].batch_id,
            requests=requests,
            input_ids=input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            encoder_last_hidden_state=encoder_last_hidden_state,
            past_key_values=past_key_values,
            input_lengths=input_lengths,
            decoder_input_lengths=decoder_input_lengths,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            size=total_batch_size,
            max_input_length=max_input_length,
            max_decoder_input_length=max_decoder_input_length,
        )


class Seq2SeqLM(Model):
OlivierDehaene's avatar
OlivierDehaene committed
298
    def __init__(self, model_name: str, quantize=False):
299
300
301
302
        if torch.cuda.is_available():
            device = torch.device("cuda")
            dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
        else:
303
304
305
            if quantize:
                raise ValueError("quantization is not available on CPU")

306
307
308
309
310
311
312
            device = torch.device("cpu")
            dtype = torch.float32

        self.model = AutoModelForSeq2SeqLM.from_pretrained(
            model_name,
            torch_dtype=dtype,
            device_map="auto" if torch.cuda.is_available() else None,
OlivierDehaene's avatar
OlivierDehaene committed
313
            load_in_8bit=quantize,
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
        ).eval()
        tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
        tokenizer.bos_token_id = self.model.config.decoder_start_token_id

        super(Seq2SeqLM, self).__init__(
            tokenizer=tokenizer,
            device=device,
        )

    @property
    def batch_type(self) -> Type[Seq2SeqLMBatch]:
        return Seq2SeqLMBatch

    def forward(
        self,
        input_ids,
        attention_mask,
        decoder_input_ids,
        decoder_attention_mask: Optional,
        encoder_last_hidden_state: Optional,
        past_key_values: Optional = None,
    ) -> Tuple[
        torch.Tensor,
        torch.Tensor,
        List[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]],
    ]:
        # Model Forward
        if past_key_values is not None:
            decoder_input_ids = decoder_input_ids[:, -1].unsqueeze(-1)

OlivierDehaene's avatar
OlivierDehaene committed
344
345
346
347
348
        # Wrap `encoder_last_hidden_state` because for some reason, Transformers does a `encoder_last_hidden_state[0]`
        # internally...
        if encoder_last_hidden_state is not None:
            encoder_last_hidden_state = [encoder_last_hidden_state]

349
350
351
352
353
        outputs = self.model.forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
OlivierDehaene's avatar
OlivierDehaene committed
354
            encoder_outputs=encoder_last_hidden_state,
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
            past_key_values=past_key_values,
            use_cache=True,
        )
        return (
            outputs.logits,
            outputs.encoder_last_hidden_state,
            outputs.past_key_values,
        )

    def generate_token(
        self, batch: Seq2SeqLMBatch
    ) -> Tuple[List[GeneratedText], Optional[Seq2SeqLMBatch]]:
        # For some reason, inference_mode does not work well with GLOO which we use on CPU
        context_manager = (
            torch.no_grad if self.device.type == "cpu" else torch.inference_mode
        )
        with context_manager():
            logits, encoder_last_hidden_state, past = self.forward(
                batch.input_ids,
                batch.attention_mask,
                batch.decoder_input_ids,
                batch.decoder_attention_mask,
                batch.encoder_last_hidden_state,
                batch.past_key_values,
            )

        # List of indices to cache
        next_batch_keep_indices = []

OlivierDehaene's avatar
OlivierDehaene committed
384
        # New values for next forward
385
386
387
388
        next_batch_input_lengths = []
        next_batch_decoder_input_ids = []
        next_batch_decoder_input_lengths = []

OlivierDehaene's avatar
OlivierDehaene committed
389
        # Metadata
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
        next_batch_size = 0
        next_batch_max_input_length = 0
        next_batch_max_decoder_input_length = 0

        # Finished requests
        generated_texts: List[GeneratedText] = []

        # Zipped iterator
        iterator = zip(
            batch.requests,
            batch.input_lengths,
            batch.decoder_input_lengths,
            logits,
            batch.next_token_choosers,
            batch.stopping_criterias,
            batch.input_ids,
            batch.decoder_input_ids,
        )

        # For each member of the batch
        for i, (
            request,
            input_length,
            decoder_input_length,
            logits,
            next_token_chooser,
            stopping_criteria,
            input_tokens,
            decoder_tokens,
        ) in enumerate(iterator):
            all_tokens = torch.cat([input_tokens, decoder_tokens])
            # Select next token
            next_token = next_token_chooser(all_tokens, logits.unsqueeze(0)[:, -1])

            # Append next token to decoder tokens
            decoder_tokens = torch.cat([decoder_tokens, next_token.squeeze(1)])

            # Evaluate stopping criteria
428
429
            stop, reason = stopping_criteria(decoder_tokens)
            if stop:
OlivierDehaene's avatar
OlivierDehaene committed
430
                # Decode tokens
431
432
433
                output = self.tokenizer.decode(decoder_tokens, skip_special_tokens=True)
                # Add to the list of finished generations with the original request
                generated_texts.append(
434
435
436
                    GeneratedText(
                        request, output, stopping_criteria.current_tokens, reason
                    )
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
                )
            # add to the next batch
            else:
                next_batch_keep_indices.append(i)
                next_batch_decoder_input_ids.append(decoder_tokens.unsqueeze(0))
                next_batch_size += 1
                new_decoder_input_length = decoder_input_length + 1
                next_batch_input_lengths.append(input_length)
                next_batch_decoder_input_lengths.append(new_decoder_input_length)
                next_batch_max_input_length = max(
                    next_batch_max_input_length, input_length
                )
                next_batch_max_decoder_input_length = max(
                    next_batch_max_decoder_input_length, new_decoder_input_length
                )

        # We finished all generations in the batch; there is no next batch
        if not next_batch_keep_indices:
            return generated_texts, None

        next_batch_decoder_input_ids = torch.cat(next_batch_decoder_input_ids)
OlivierDehaene's avatar
OlivierDehaene committed
458
459
        # If we finished at least one generation, we need to evict the indices of the generations that finished
        # from the values of the next batch
460
        if generated_texts:
OlivierDehaene's avatar
OlivierDehaene committed
461
            # Apply indices to attention mask, past key values and other items that need to be cached
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
            next_batch_input_ids = batch.input_ids[next_batch_keep_indices]
            next_batch_attention_mask = batch.attention_mask[next_batch_keep_indices]

            if batch.decoder_attention_mask is not None:
                next_batch_decoder_attention_mask = batch.decoder_attention_mask[
                    next_batch_keep_indices
                ]
            else:
                next_batch_decoder_attention_mask = None

            next_batch_encoder_last_hidden_state = encoder_last_hidden_state[
                next_batch_keep_indices
            ]

            next_batch_past_key_values = [
                [t[next_batch_keep_indices] for t in layer] for layer in past
            ]
            next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
            next_batch_next_token_choosers = [
                batch.next_token_choosers[i] for i in next_batch_keep_indices
            ]
            next_batch_stopping_criterias = [
                batch.stopping_criterias[i] for i in next_batch_keep_indices
            ]
        else:
            next_batch_input_ids = batch.input_ids
            next_batch_attention_mask = batch.attention_mask
            next_batch_decoder_attention_mask = batch.decoder_attention_mask
            next_batch_encoder_last_hidden_state = encoder_last_hidden_state
            next_batch_past_key_values = past

            next_batch_requests = batch.requests
            next_batch_next_token_choosers = batch.next_token_choosers
            next_batch_stopping_criterias = batch.stopping_criterias

OlivierDehaene's avatar
OlivierDehaene committed
497
        # Update decoder_attention_mask with padding as we added a new token to input_ids
498
499
500
501
        if next_batch_decoder_attention_mask is not None:
            next_batch_decoder_attention_mask = torch.cat(
                [
                    next_batch_decoder_attention_mask,
502
                    next_batch_decoder_attention_mask.new_ones(next_batch_size, 1),
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
                ],
                dim=1,
            )

        next_batch = Seq2SeqLMBatch(
            batch_id=batch.batch_id,
            requests=next_batch_requests,
            input_ids=next_batch_input_ids,
            attention_mask=next_batch_attention_mask,
            decoder_input_ids=next_batch_decoder_input_ids,
            decoder_attention_mask=next_batch_decoder_attention_mask,
            encoder_last_hidden_state=next_batch_encoder_last_hidden_state,
            past_key_values=next_batch_past_key_values,
            input_lengths=next_batch_input_lengths,
            decoder_input_lengths=next_batch_decoder_input_lengths,
            next_token_choosers=next_batch_next_token_choosers,
            stopping_criterias=next_batch_stopping_criterias,
            size=next_batch_size,
            max_input_length=next_batch_max_input_length,
            max_decoder_input_length=next_batch_max_decoder_input_length,
        )
        return generated_texts, next_batch