seq2seq_lm.py 20.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import torch

from dataclasses import dataclass
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from typing import Optional, Tuple, List, Type

from text_generation.models import Model
from text_generation.models.types import GeneratedText
from text_generation.pb import generate_pb2
from text_generation.utils import NextTokenChooser, StoppingCriteria


@dataclass
class Seq2SeqLMBatch:
    batch_id: int
    requests: List[generate_pb2.Request]

OlivierDehaene's avatar
OlivierDehaene committed
18
    # Encoder values
19
20
21
    input_ids: torch.Tensor
    attention_mask: torch.Tensor

OlivierDehaene's avatar
OlivierDehaene committed
22
    # Decoder values
23
24
25
26
    decoder_input_ids: torch.Tensor
    decoder_attention_mask: Optional[torch.Tensor]
    encoder_last_hidden_state: Optional[torch.Tensor]

OlivierDehaene's avatar
OlivierDehaene committed
27
    # Seq2SeqLM keeps track of both encoder and decoder attention keys and values
28
29
    past_key_values: Optional[List[Tuple]]

OlivierDehaene's avatar
OlivierDehaene committed
30
    # Lengths of all generations present in the batch
31
32
33
    input_lengths: List[int]
    decoder_input_lengths: List[int]

OlivierDehaene's avatar
OlivierDehaene committed
34
    # Generation helpers
35
36
37
    next_token_choosers: List[NextTokenChooser]
    stopping_criterias: List[StoppingCriteria]

OlivierDehaene's avatar
OlivierDehaene committed
38
    # Metadata used for padding
39
40
41
42
43
    size: int
    max_input_length: int
    max_decoder_input_length: int

    def to_pb(self):
OlivierDehaene's avatar
OlivierDehaene committed
44
        """Convert a Seq2SeqLMBatch to a text_generation.v1.Batch protobuf"""
45
46
47
48
49
50
51
52
53
54
        return generate_pb2.Batch(
            id=self.batch_id,
            requests=self.requests,
            size=self.size,
        )

    @classmethod
    def from_pb(
        cls, pb: generate_pb2.Batch, tokenizer: AutoTokenizer, device: torch.device
    ) -> "Seq2SeqLMBatch":
OlivierDehaene's avatar
OlivierDehaene committed
55
        """Convert a text_generation.v1.Batch protobuf to a Seq2SeqLMBatch"""
56
57
58
59
60
61
62
63
64
65
66
67
        inputs = []
        next_token_choosers = []
        stopping_criterias = []
        input_lengths = []

        decoder_input_ids = []
        decoder_input_lengths = []

        # Parse batch
        for r in pb.requests:
            inputs.append(r.inputs)
            input_lengths.append(r.input_length)
OlivierDehaene's avatar
OlivierDehaene committed
68
            # Decoder sequence only contains the bos_token
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
            decoder_input_ids.append(tokenizer.bos_token_id)
            decoder_input_lengths.append(1)
            next_token_choosers.append(
                NextTokenChooser(
                    temperature=r.parameters.temperature,
                    top_k=r.parameters.top_k,
                    top_p=r.parameters.top_p,
                    do_sample=r.parameters.do_sample,
                )
            )
            stopping_criterias.append(
                StoppingCriteria(
                    eos_token_id=tokenizer.eos_token_id, max_new_tokens=r.max_new_tokens
                )
            )

OlivierDehaene's avatar
OlivierDehaene committed
85
        # Tokenize batch
86
87
88
        tokenized_inputs = tokenizer(
            inputs, return_tensors="pt", padding=True, pad_to_multiple_of=8
        ).to(device)
OlivierDehaene's avatar
OlivierDehaene committed
89
        # Convert decoder_input_ids to torch tensor of size [batch_size, 1]
90
        decoder_input_ids = torch.tensor(decoder_input_ids, device=device).unsqueeze(-1)
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

        return cls(
            batch_id=pb.id,
            requests=pb.requests,
            input_ids=tokenized_inputs["input_ids"],
            attention_mask=tokenized_inputs["attention_mask"],
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=None,
            encoder_last_hidden_state=None,
            past_key_values=None,
            input_lengths=input_lengths,
            decoder_input_lengths=decoder_input_lengths,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            size=len(pb.requests),
            max_input_length=max(input_lengths),
            max_decoder_input_length=1,
        )

    @classmethod
    def concatenate(cls, batches: List["Seq2SeqLMBatch"]) -> "Seq2SeqLMBatch":
OlivierDehaene's avatar
OlivierDehaene committed
112
113
        """Concatenate multiple batches together by padding internal torch tensors"""

114
115
116
117
118
119
120
121
122
123
124
125
126
127
        # Used for padding
        total_batch_size = sum(batch.size for batch in batches)
        max_input_length = max(batch.max_input_length for batch in batches)
        max_decoder_input_length = max(
            batch.max_decoder_input_length for batch in batches
        )

        # Batch attributes
        requests = []
        input_lengths = []
        decoder_input_lengths = []
        next_token_choosers = []
        stopping_criterias = []

OlivierDehaene's avatar
OlivierDehaene committed
128
        # Batch tensors
129
130
131
132
133
134
135
136
137
138
        input_ids = None
        attention_mask = None
        decoder_input_ids = None
        decoder_attention_mask = None
        encoder_last_hidden_state = None
        past_key_values = []

        # Used for slicing correctly inside the tensors
        # Equivalent to a cumsum on batch sizes
        start_index = 0
OlivierDehaene's avatar
OlivierDehaene committed
139

140
        for i, batch in enumerate(batches):
OlivierDehaene's avatar
OlivierDehaene committed
141
            # Extend all list attributes
142
143
144
145
146
147
148
149
150
151
152
153
154
            requests.extend(batch.requests)
            input_lengths.extend(batch.input_lengths)
            decoder_input_lengths.extend(batch.decoder_input_lengths)
            next_token_choosers.extend(batch.next_token_choosers)
            stopping_criterias.extend(batch.stopping_criterias)

            # Slicing end index for this batch
            end_index = start_index + batch.size

            # We only concatenate batches that did at least one step
            if batch.encoder_last_hidden_state is None:
                raise ValueError("Batch encoder_last_hidden_state cannot be None")

OlivierDehaene's avatar
OlivierDehaene committed
155
            # Create padded tensor
156
157
158
159
160
161
            if input_ids is None:
                input_ids = torch.zeros(
                    (total_batch_size, max_input_length),
                    dtype=batch.input_ids.dtype,
                    device=batch.input_ids.device,
                )
OlivierDehaene's avatar
OlivierDehaene committed
162
            # Copy to correct indices
163
164
165
166
            input_ids[
                start_index:end_index, -batch.max_input_length :
            ] = batch.input_ids[:, -batch.max_input_length :]

OlivierDehaene's avatar
OlivierDehaene committed
167
            # Create padded tensor
168
169
170
171
172
173
            if attention_mask is None:
                attention_mask = torch.zeros(
                    (total_batch_size, max_input_length),
                    dtype=batch.attention_mask.dtype,
                    device=batch.attention_mask.device,
                )
OlivierDehaene's avatar
OlivierDehaene committed
174
            # Copy to correct indices
175
176
177
178
            attention_mask[
                start_index:end_index, -batch.max_input_length :
            ] = batch.attention_mask[:, -batch.max_input_length :]

OlivierDehaene's avatar
OlivierDehaene committed
179
            # Create padded tensor
180
181
182
183
184
185
            if decoder_input_ids is None:
                decoder_input_ids = torch.zeros(
                    (total_batch_size, max_decoder_input_length),
                    dtype=batch.decoder_input_ids.dtype,
                    device=batch.decoder_input_ids.device,
                )
OlivierDehaene's avatar
OlivierDehaene committed
186
            # Copy to correct indices
187
188
189
190
            decoder_input_ids[
                start_index:end_index, -batch.max_decoder_input_length :
            ] = batch.decoder_input_ids[:, -batch.max_decoder_input_length :]

OlivierDehaene's avatar
OlivierDehaene committed
191
            # Create padded tensor
192
193
194
            if decoder_attention_mask is None:
                decoder_attention_mask = torch.zeros(
                    (total_batch_size, max_decoder_input_length),
OlivierDehaene's avatar
OlivierDehaene committed
195
196
                    dtype=batch.attention_mask.dtype,  # As decoder_attention_mask might not exist,
                    device=batch.attention_mask.device,  # we use `batch.attention_maks` for device here
197
                )
OlivierDehaene's avatar
OlivierDehaene committed
198
199
            # If the decoder mask does not exist yet, all generations started at the same time and we never concatenated
            # this batch. All generations are of length `batch.max_decoder_input_length`.
200
201
202
203
            if batch.decoder_attention_mask is None:
                decoder_attention_mask[
                    start_index:end_index, -batch.max_decoder_input_length :
                ] = 1
OlivierDehaene's avatar
OlivierDehaene committed
204
            # If it exists, we need to index
205
206
207
208
209
            else:
                decoder_attention_mask[
                    start_index:end_index, -batch.max_decoder_input_length :
                ] = batch.decoder_attention_mask[:, -batch.max_decoder_input_length :]

OlivierDehaene's avatar
OlivierDehaene committed
210
            # Create padded tensor
211
212
213
214
215
216
217
218
219
220
221
            if encoder_last_hidden_state is None:
                encoder_last_hidden_state = torch.zeros(
                    (
                        total_batch_size,
                        max_input_length,
                        batch.encoder_last_hidden_state.shape[-1],
                    ),
                    dtype=batch.encoder_last_hidden_state.dtype,
                    device=batch.encoder_last_hidden_state.device,
                )

OlivierDehaene's avatar
OlivierDehaene committed
222
            # Copy to correct indices
223
224
225
226
            encoder_last_hidden_state[
                start_index:end_index, -batch.max_decoder_input_length :, :
            ] = batch.encoder_last_hidden_state[:, -batch.max_decoder_input_length :, :]

OlivierDehaene's avatar
OlivierDehaene committed
227
            # Iterate over attention layers
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
            for j, past in enumerate(batch.past_key_values):
                _, num_heads, _, head_dim = past[0].shape

                # This will run only once per layer
                if j == len(past_key_values):
                    past_key_values.append([])

                # Decoder past
                for k, t in enumerate(past[:2]):
                    padded_t_shape = (
                        total_batch_size,
                        num_heads,
                        (max_decoder_input_length - 1),
                        head_dim,
                    )

                    # Initialize tensors
                    # This will run only once per layer and per past tensor
                    if k == len(past_key_values[j]):
                        past_key_values[j].append(
                            torch.zeros(padded_t_shape, dtype=t.dtype, device=t.device)
                        )

                    # We slice the past keys and values to remove the padding from previous batches
                    past_key_values[j][k][
                        start_index:end_index,
                        :,
                        -(batch.max_decoder_input_length - 1) :,
                        :,
                    ] = t[:, :, -(batch.max_decoder_input_length - 1) :, :]

                # encoder past
                for k, t in enumerate(past[2:]):
                    padded_t_shape = (
                        total_batch_size,
                        num_heads,
                        max_input_length,
                        head_dim,
                    )

                    idx = k + 2

                    # Initialize tensors
                    # This will run only once per layer and per past tensor
                    if idx == len(past_key_values[j]):
                        past_key_values[j].append(
                            torch.zeros(padded_t_shape, dtype=t.dtype, device=t.device)
                        )

                    past_key_values[j][idx][
                        start_index:end_index, :, -batch.max_input_length :, :
                    ] = t[:, :, -batch.max_input_length :, :]

            start_index += batch.size

        return cls(
            batch_id=batches[0].batch_id,
            requests=requests,
            input_ids=input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            encoder_last_hidden_state=encoder_last_hidden_state,
            past_key_values=past_key_values,
            input_lengths=input_lengths,
            decoder_input_lengths=decoder_input_lengths,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            size=total_batch_size,
            max_input_length=max_input_length,
            max_decoder_input_length=max_decoder_input_length,
        )


class Seq2SeqLM(Model):
OlivierDehaene's avatar
OlivierDehaene committed
303
    def __init__(self, model_name: str, quantize=False):
304
305
306
307
308
309
310
311
312
313
314
        if torch.cuda.is_available():
            device = torch.device("cuda")
            dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
        else:
            device = torch.device("cpu")
            dtype = torch.float32

        self.model = AutoModelForSeq2SeqLM.from_pretrained(
            model_name,
            torch_dtype=dtype,
            device_map="auto" if torch.cuda.is_available() else None,
OlivierDehaene's avatar
OlivierDehaene committed
315
            load_in_8bit=quantize,
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
        ).eval()
        tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
        tokenizer.bos_token_id = self.model.config.decoder_start_token_id

        super(Seq2SeqLM, self).__init__(
            tokenizer=tokenizer,
            device=device,
        )

    @property
    def batch_type(self) -> Type[Seq2SeqLMBatch]:
        return Seq2SeqLMBatch

    def forward(
        self,
        input_ids,
        attention_mask,
        decoder_input_ids,
        decoder_attention_mask: Optional,
        encoder_last_hidden_state: Optional,
        past_key_values: Optional = None,
    ) -> Tuple[
        torch.Tensor,
        torch.Tensor,
        List[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]],
    ]:
        # Model Forward
        if past_key_values is not None:
            decoder_input_ids = decoder_input_ids[:, -1].unsqueeze(-1)

OlivierDehaene's avatar
OlivierDehaene committed
346
347
348
349
350
        # Wrap `encoder_last_hidden_state` because for some reason, Transformers does a `encoder_last_hidden_state[0]`
        # internally...
        if encoder_last_hidden_state is not None:
            encoder_last_hidden_state = [encoder_last_hidden_state]

351
352
353
354
355
        outputs = self.model.forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
OlivierDehaene's avatar
OlivierDehaene committed
356
            encoder_outputs=encoder_last_hidden_state,
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
            past_key_values=past_key_values,
            use_cache=True,
        )
        return (
            outputs.logits,
            outputs.encoder_last_hidden_state,
            outputs.past_key_values,
        )

    def generate_token(
        self, batch: Seq2SeqLMBatch
    ) -> Tuple[List[GeneratedText], Optional[Seq2SeqLMBatch]]:
        # For some reason, inference_mode does not work well with GLOO which we use on CPU
        context_manager = (
            torch.no_grad if self.device.type == "cpu" else torch.inference_mode
        )
        with context_manager():
            logits, encoder_last_hidden_state, past = self.forward(
                batch.input_ids,
                batch.attention_mask,
                batch.decoder_input_ids,
                batch.decoder_attention_mask,
                batch.encoder_last_hidden_state,
                batch.past_key_values,
            )

        # List of indices to cache
        next_batch_keep_indices = []

OlivierDehaene's avatar
OlivierDehaene committed
386
        # New values for next forward
387
388
389
390
        next_batch_input_lengths = []
        next_batch_decoder_input_ids = []
        next_batch_decoder_input_lengths = []

OlivierDehaene's avatar
OlivierDehaene committed
391
        # Metadata
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
        next_batch_size = 0
        next_batch_max_input_length = 0
        next_batch_max_decoder_input_length = 0

        # Finished requests
        generated_texts: List[GeneratedText] = []

        # Zipped iterator
        iterator = zip(
            batch.requests,
            batch.input_lengths,
            batch.decoder_input_lengths,
            logits,
            batch.next_token_choosers,
            batch.stopping_criterias,
            batch.input_ids,
            batch.decoder_input_ids,
        )

        # For each member of the batch
        for i, (
            request,
            input_length,
            decoder_input_length,
            logits,
            next_token_chooser,
            stopping_criteria,
            input_tokens,
            decoder_tokens,
        ) in enumerate(iterator):
            all_tokens = torch.cat([input_tokens, decoder_tokens])
            # Select next token
            next_token = next_token_chooser(all_tokens, logits.unsqueeze(0)[:, -1])

            # Append next token to decoder tokens
            decoder_tokens = torch.cat([decoder_tokens, next_token.squeeze(1)])

            # Evaluate stopping criteria
            if stopping_criteria(decoder_tokens):
OlivierDehaene's avatar
OlivierDehaene committed
431
                # Decode tokens
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
                output = self.tokenizer.decode(decoder_tokens, skip_special_tokens=True)
                # Add to the list of finished generations with the original request
                generated_texts.append(
                    GeneratedText(request, output, stopping_criteria.current_tokens)
                )
            # add to the next batch
            else:
                next_batch_keep_indices.append(i)
                next_batch_decoder_input_ids.append(decoder_tokens.unsqueeze(0))
                next_batch_size += 1
                new_decoder_input_length = decoder_input_length + 1
                next_batch_input_lengths.append(input_length)
                next_batch_decoder_input_lengths.append(new_decoder_input_length)
                next_batch_max_input_length = max(
                    next_batch_max_input_length, input_length
                )
                next_batch_max_decoder_input_length = max(
                    next_batch_max_decoder_input_length, new_decoder_input_length
                )

        # We finished all generations in the batch; there is no next batch
        if not next_batch_keep_indices:
            return generated_texts, None

        next_batch_decoder_input_ids = torch.cat(next_batch_decoder_input_ids)
OlivierDehaene's avatar
OlivierDehaene committed
457
458
        # If we finished at least one generation, we need to evict the indices of the generations that finished
        # from the values of the next batch
459
        if generated_texts:
OlivierDehaene's avatar
OlivierDehaene committed
460
            # Apply indices to attention mask, past key values and other items that need to be cached
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
            next_batch_input_ids = batch.input_ids[next_batch_keep_indices]
            next_batch_attention_mask = batch.attention_mask[next_batch_keep_indices]

            if batch.decoder_attention_mask is not None:
                next_batch_decoder_attention_mask = batch.decoder_attention_mask[
                    next_batch_keep_indices
                ]
            else:
                next_batch_decoder_attention_mask = None

            next_batch_encoder_last_hidden_state = encoder_last_hidden_state[
                next_batch_keep_indices
            ]

            next_batch_past_key_values = [
                [t[next_batch_keep_indices] for t in layer] for layer in past
            ]
            next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
            next_batch_next_token_choosers = [
                batch.next_token_choosers[i] for i in next_batch_keep_indices
            ]
            next_batch_stopping_criterias = [
                batch.stopping_criterias[i] for i in next_batch_keep_indices
            ]
        else:
            next_batch_input_ids = batch.input_ids
            next_batch_attention_mask = batch.attention_mask
            next_batch_decoder_attention_mask = batch.decoder_attention_mask
            next_batch_encoder_last_hidden_state = encoder_last_hidden_state
            next_batch_past_key_values = past

            next_batch_requests = batch.requests
            next_batch_next_token_choosers = batch.next_token_choosers
            next_batch_stopping_criterias = batch.stopping_criterias

OlivierDehaene's avatar
OlivierDehaene committed
496
        # Update decoder_attention_mask with padding as we added a new token to input_ids
497
498
499
500
        if next_batch_decoder_attention_mask is not None:
            next_batch_decoder_attention_mask = torch.cat(
                [
                    next_batch_decoder_attention_mask,
501
                    next_batch_decoder_attention_mask.new_ones(next_batch_size, 1),
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
                ],
                dim=1,
            )

        next_batch = Seq2SeqLMBatch(
            batch_id=batch.batch_id,
            requests=next_batch_requests,
            input_ids=next_batch_input_ids,
            attention_mask=next_batch_attention_mask,
            decoder_input_ids=next_batch_decoder_input_ids,
            decoder_attention_mask=next_batch_decoder_attention_mask,
            encoder_last_hidden_state=next_batch_encoder_last_hidden_state,
            past_key_values=next_batch_past_key_values,
            input_lengths=next_batch_input_lengths,
            decoder_input_lengths=next_batch_decoder_input_lengths,
            next_token_choosers=next_batch_next_token_choosers,
            stopping_criterias=next_batch_stopping_criterias,
            size=next_batch_size,
            max_input_length=next_batch_max_input_length,
            max_decoder_input_length=next_batch_max_decoder_input_length,
        )
        return generated_texts, next_batch