__init__.py 50 KB
Newer Older
1
2
3
# ruff: noqa: F821
# the above line disables the `undefined-name` rule for the model type variables

4
import torch
5
import enum
Nicolas Patry's avatar
Nicolas Patry committed
6
import os
7

8
from loguru import logger
9
from transformers.configuration_utils import PretrainedConfig
10
from transformers.models.auto import modeling_auto
Nicolas Patry's avatar
Nicolas Patry committed
11
from huggingface_hub import hf_hub_download, HfApi
12
from typing import Optional, List, Dict
13
from pathlib import Path
14

Nicolas Patry's avatar
Nicolas Patry committed
15
from text_generation_server.utils.speculate import get_speculate, set_speculate
16
from text_generation_server.models.model import Model
17
18
19
20
21
from text_generation_server.models.causal_lm import CausalLM, CausalLMBatchKeysLast
from text_generation_server.models.custom_modeling.opt_modeling import OPTForCausalLM
from text_generation_server.models.custom_modeling.mpt_modeling import (
    MPTForCausalLM,
)
22
from text_generation_server.models.bloom import BloomCausalLMBatch
23
24
25
from text_generation_server.models.custom_modeling.bloom_modeling import (
    BloomForCausalLM,
)
26
from text_generation_server.models.seq2seq_lm import Seq2SeqLM
27
28
29
30
31
32
33
34
from text_generation_server.models.galactica import GalacticaCausalLMBatch
from text_generation_server.models.custom_modeling.neox_modeling import (
    GPTNeoxForCausalLM,
)
from text_generation_server.models.custom_modeling.phi_modeling import (
    PhiConfig,
    PhiForCausalLM,
)
drbh's avatar
drbh committed
35
36
37
from text_generation_server.models.custom_modeling.flash_phi_moe_modeling import (
    PhiMoEConfig,
)
38
39
40
from text_generation_server.models.custom_modeling.t5_modeling import (
    T5ForConditionalGeneration,
)
41

42
43
44
45
46
47
48
49
50
51

from text_generation_server.utils.adapter import (
    AdapterParameters,
    build_layer_weight_lookup,
    load_and_merge_adapters,
    AdapterInfo,
)
from text_generation_server.adapters.lora import LoraWeights


52
from text_generation_server.utils.import_utils import SYSTEM
53
from text_generation_server.utils.log import log_master
54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
# in PyTorch 1.12 and later.
torch.backends.cuda.matmul.allow_tf32 = True

# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
torch.backends.cudnn.allow_tf32 = True

# Disable gradients
torch.set_grad_enabled(False)

__all__ = [
    "Model",
    "CausalLM",
    "Seq2SeqLM",
69
    "get_model_with_lora_adapters",
70
71
]

72
FLASH_ATT_ERROR_MESSAGE = "{} requires Flash Attention enabled models."
73

74
FLASH_ATTENTION = True
75

76
try:
77
    from text_generation_server.models.flash_causal_lm import FlashCausalLM
78
    from text_generation_server.models.vlm_causal_lm import VlmCausalLM
Nicolas Patry's avatar
Nicolas Patry committed
79
    from text_generation_server.models.mllama_causal_lm import MllamaCausalLM
80
81
82
83
    from text_generation_server.models.custom_modeling.flash_deepseek_v2_modeling import (
        FlashDeepseekV2ForCausalLM,
        DeepseekV2Config,
    )
84
85
    from text_generation_server.models.custom_modeling.flash_llama_modeling import (
        FlashLlamaForCausalLM,
86
    )
87
88
    from text_generation_server.models.custom_modeling.flash_cohere_modeling import (
        FlashCohereForCausalLM,
OlivierDehaene's avatar
OlivierDehaene committed
89
    )
90
91
    from text_generation_server.models.custom_modeling.flash_gemma_modeling import (
        FlashGemmaForCausalLM,
OlivierDehaene's avatar
OlivierDehaene committed
92
    )
93
94
    from text_generation_server.models.custom_modeling.flash_gemma2_modeling import (
        FlashGemma2ForCausalLM,
95
    )
96
97
98
99
100
101
102
103
104
105
    from text_generation_server.models.custom_modeling.flash_dbrx_modeling import (
        FlashDbrxForCausalLM,
        DbrxConfig,
    )
    from text_generation_server.models.custom_modeling.flash_rw_modeling import (
        RWConfig,
        FlashRWForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_neox_modeling import (
        FlashGPTNeoXForCausalLM,
Nicolas Patry's avatar
Nicolas Patry committed
106
    )
drbh's avatar
drbh committed
107
    from text_generation_server.models.pali_gemma import (
108
        PaliGemmaBatch,
drbh's avatar
drbh committed
109
    )
110
111
112
113
114
    from text_generation_server.models.custom_modeling.flash_pali_gemma_modeling import (
        PaliGemmaForConditionalGeneration,
    )
    from text_generation_server.models.custom_modeling.flash_phi_modeling import (
        FlashPhiForCausalLM,
115
    )
Nicolas Patry's avatar
Nicolas Patry committed
116
117
118
119
120
    from text_generation_server.models.idefics_causal_lm import IdeficsCausalLM
    from text_generation_server.models.mllama_causal_lm import MllamaCausalLMBatch
    from text_generation_server.models.custom_modeling.mllama import (
        MllamaForConditionalGeneration,
    )
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    from text_generation_server.models.custom_modeling.llava_next import (
        LlavaNextForConditionalGeneration,
    )

    from text_generation_server.models.custom_modeling.flash_santacoder_modeling import (
        FlashSantacoderForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_starcoder2_modeling import (
        FlashStarcoder2ForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_qwen2_modeling import (
        Qwen2ForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_mistral_modeling import (
        FlashMistralForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_mixtral_modeling import (
        FlashMixtralForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_gpt2_modeling import (
        FlashGPT2ForCausalLM,
    )
143
144
145
    from text_generation_server.models.custom_modeling.flash_gptj_modeling import (
        FlashGPTJForCausalLM,
    )
146
147
148
    from text_generation_server.models.custom_modeling.idefics2 import (
        Idefics2ForConditionalGeneration,
    )
149
    from text_generation_server.layers.attention import SUPPORTS_WINDOWING
150
except ImportError as e:
151
    log_master(logger.warning, f"Could not import Flash Attention enabled models: {e}")
152
    SUPPORTS_WINDOWING = False
153
    FLASH_ATTENTION = False
154

155
if FLASH_ATTENTION:
156
    __all__.append(FlashCausalLM)
Nicolas Patry's avatar
Nicolas Patry committed
157
    __all__.append(IdeficsCausalLM)
OlivierDehaene's avatar
OlivierDehaene committed
158

drbh's avatar
drbh committed
159
160
161
162
MAMBA_AVAILABLE = True
try:
    from text_generation_server.models.mamba import Mamba
except ImportError as e:
163
    log_master(logger.warning, f"Could not import Mamba: {e}")
drbh's avatar
drbh committed
164
165
166
167
    MAMBA_AVAILABLE = False

if MAMBA_AVAILABLE:
    __all__.append(Mamba)
OlivierDehaene's avatar
OlivierDehaene committed
168

169

170
class ModelType(enum.Enum):
171
172
173
174
175
    DEEPSEEK_V2 = {
        "type": "deepseek_v2",
        "name": "Deepseek V2",
        "url": "https://huggingface.co/deepseek-ai/DeepSeek-V2",
    }
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
    IDEFICS2 = {
        "type": "idefics2",
        "name": "Idefics 2",
        "url": "https://huggingface.co/HuggingFaceM4/idefics2-8b",
        "multimodal": True,
    }
    LLAVA_NEXT = {
        "type": "llava_next",
        "name": "Llava Next (1.6)",
        "url": "https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf",
        "multimodal": True,
    }
    LLAMA = {
        "type": "llama",
        "name": "Llama",
191
        "url": "https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f",
192
193
194
195
196
197
    }
    PHI3 = {
        "type": "phi3",
        "name": "Phi 3",
        "url": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct",
    }
198
199
200
201
202
    GRANITE = {
        "type": "granite",
        "name": "Granite",
        "url": "https://huggingface.co/ibm-granite/granite-3.0-8b-instruct",
    }
203
204
205
206
207
    GEMMA = {
        "type": "gemma",
        "name": "Gemma",
        "url": "https://huggingface.co/google/gemma-7b",
    }
208
209
210
211
212
    PALIGEMMA = {
        "type": "paligemma",
        "name": "PaliGemma",
        "url": "https://huggingface.co/google/paligemma-3b-pt-224",
    }
Nicolas Patry's avatar
Nicolas Patry committed
213
214
215
    GEMMA2 = {
        "type": "gemma2",
        "name": "Gemma2",
216
        "url": "https://huggingface.co/collections/google/gemma-2-release-667d6600fd5220e7b967f315",
Nicolas Patry's avatar
Nicolas Patry committed
217
    }
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    COHERE = {
        "type": "cohere",
        "name": "Cohere",
        "url": "https://huggingface.co/CohereForAI/c4ai-command-r-plus",
    }
    DBRX = {
        "type": "dbrx",
        "name": "Dbrx",
        "url": "https://huggingface.co/databricks/dbrx-instruct",
    }
    MAMBA = {
        "type": "ssm",
        "name": "Mamba",
        "url": "https://huggingface.co/state-spaces/mamba-2.8b-slimpj",
    }
    MISTRAL = {
        "type": "mistral",
        "name": "Mistral",
236
        "url": "https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407",
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
    }
    MIXTRAL = {
        "type": "mixtral",
        "name": "Mixtral",
        "url": "https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1",
    }
    GPT_BIGCODE = {
        "type": "gpt_bigcode",
        "name": "Gpt Bigcode",
        "url": "https://huggingface.co/bigcode/gpt_bigcode-santacoder",
    }
    PHI = {
        "type": "phi",
        "name": "Phi",
        "url": "https://huggingface.co/microsoft/phi-1_5",
    }
drbh's avatar
drbh committed
253
254
255
256
257
    PHI_MOE = {
        "type": "phimoe",
        "name": "PhiMoe",
        "url": "https://huggingface.co/microsoft/Phi-3.5-MoE-instruct",
    }
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
    BAICHUAN = {
        "type": "baichuan",
        "name": "Baichuan",
        "url": "https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat",
    }
    FALCON = {
        "type": "falcon",
        "name": "Falcon",
        "url": "https://huggingface.co/tiiuae/falcon-7b-instruct",
    }
    STARCODER2 = {
        "type": "starcoder2",
        "name": "StarCoder 2",
        "url": "https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1",
    }
    QWEN2 = {
        "type": "qwen2",
        "name": "Qwen 2",
276
        "url": "https://huggingface.co/collections/Qwen/qwen2-6659360b33528ced941e557f",
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
    }
    OPT = {
        "type": "opt",
        "name": "Opt",
        "url": "https://huggingface.co/facebook/opt-6.7b",
    }
    T5 = {
        "type": "t5",
        "name": "T5",
        "url": "https://huggingface.co/google/flan-t5-xxl",
    }
    GALACTICA = {
        "type": "galactica",
        "name": "Galactica",
        "url": "https://huggingface.co/facebook/galactica-120b",
    }
    SANTACODER = {
        "type": "santacoder",
        "name": "SantaCoder",
        "url": "https://huggingface.co/bigcode/santacoder",
    }
    BLOOM = {
        "type": "bloom",
        "name": "Bloom",
        "url": "https://huggingface.co/bigscience/bloom-560m",
    }
    MPT = {
        "type": "mpt",
        "name": "Mpt",
        "url": "https://huggingface.co/mosaicml/mpt-7b-instruct",
    }
    GPT2 = {
        "type": "gpt2",
        "name": "Gpt2",
        "url": "https://huggingface.co/openai-community/gpt2",
    }
    GPT_NEOX = {
        "type": "gpt_neox",
        "name": "Gpt Neox",
        "url": "https://huggingface.co/EleutherAI/gpt-neox-20b",
    }
318
319
320
321
322
    GPTJ = {
        "type": "gptj",
        "name": "Gptj",
        "url": "https://huggingface.co/EleutherAI/gpt-j-6b",
    }
323
324
325
326
327
328
    IDEFICS = {
        "type": "idefics",
        "name": "Idefics",
        "url": "https://huggingface.co/HuggingFaceM4/idefics-9b",
        "multimodal": True,
    }
Nicolas Patry's avatar
Nicolas Patry committed
329
330
331
332
333
334
    MLLAMA = {
        "type": "mllama",
        "name": "Mllama",
        "url": "https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct",
        "multimodal": True,
    }
335
336
337
338
339
340
341


__GLOBALS = locals()
for data in ModelType:
    __GLOBALS[data.name] = data.value["type"]


342
def get_model(
343
    model_id: str,
drbh's avatar
drbh committed
344
    lora_adapter_ids: Optional[List[str]],
345
346
347
    revision: Optional[str],
    sharded: bool,
    quantize: Optional[str],
Nicolas Patry's avatar
Nicolas Patry committed
348
    speculate: Optional[int],
349
    dtype: Optional[str],
350
    kv_cache_dtype: Optional[str],
351
    trust_remote_code: bool,
352
    max_input_tokens: int,
353
) -> Model:
354
    global FLASH_ATTENTION
355
356
357
358
359
360
361

    config_dict, _ = PretrainedConfig.get_config_dict(
        model_id, revision=revision, trust_remote_code=trust_remote_code
    )
    model_type = config_dict.get("model_type", None)

    quantization_config = config_dict.get("quantization_config", None)
362
    compression_config = config_dict.get("compression_config", None)
363
364
    if quantization_config is not None and quantize is None:
        method = quantization_config.get("quant_method", None)
365
        config_groups = quantization_config.get("config_groups", None)
366
367
368
        if method in {"gptq", "awq", "exl2"}:
            log_master(logger.info, f"Auto selecting quantization method {method}")
            quantize = method
369
        elif method == "fbgemm_fp8" or method == "fp8":
370
371
            log_master(logger.info, "Auto selecting quantization method fp8")
            quantize = "fp8"
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
        elif config_groups is not None:
            # TODO: at some point we should probably fully parse the compression
            # configuration to know which parameters are compressed.
            for _, group in config_groups.items():
                weights_config = group.get("weights")
                if weights_config is not None:
                    if (
                        weights_config["type"] == "float"
                        and weights_config["num_bits"] == 8
                    ):
                        log_master(
                            logger.info, "Auto selecting quantization method fp8"
                        )
                        quantize = "fp8"
                        break
387
388
        else:
            log_master(logger.warning, f"Unknown quantization method {method}")
389
    elif compression_config is not None:
390
        # `compression_config` renamed to `quantization_config`; support retained for backward compatibility.
391
392
393
394
395
396
397
398
399
400
401
402
403
404
        config_groups = compression_config.get("config_groups")
        if config_groups is not None:
            for _, group in config_groups.items():
                weights_config = group.get("weights")
                if weights_config is not None:
                    if (
                        weights_config["type"] == "float"
                        and weights_config["num_bits"] == 8
                    ):
                        log_master(
                            logger.info, "Auto selecting quantization method fp8"
                        )
                        quantize = "fp8"
                        break
405

406
    if dtype is None:
407
        if quantize in ["awq", "exl2", "gptq", "marlin"]:
Nicolas Patry's avatar
Nicolas Patry committed
408
409
410
411
412
            if SYSTEM == "ipex" and not hasattr(torch, "xpu"):
                dtype = torch.bfloat16
            else:
                # These quantizers only work with float16 params.
                dtype = torch.float16
413
        elif quantize == "fp8":
414
            from text_generation_server.layers.fp8 import FBGEMM_DYN_AVAILABLE
415

416
            if FBGEMM_DYN_AVAILABLE:
417
418
                # fbgemm kernels are fp8xfp8->bf16
                dtype = torch.bfloat16
419
420
421
422
        else:
            # Keep it as default for now and let
            # every model resolve their own default dtype.
            dtype = None
423
424
425
426
427
428
429
    elif dtype == "float16":
        dtype = torch.float16
    elif dtype == "bfloat16":
        dtype = torch.bfloat16
    else:
        raise RuntimeError(f"Unknown dtype {dtype}")

430
431
    if kv_cache_dtype is None:
        kv_cache_dtype = dtype
432
433
    elif kv_cache_dtype == "fp8_e4m3fn":
        kv_cache_dtype = torch.float8_e4m3fn
434
435
436
437
438
    elif kv_cache_dtype == "fp8_e5m2":
        kv_cache_dtype = torch.float8_e5m2
    else:
        raise RuntimeError(f"Unknown kv_cache_dtype: {kv_cache_dtype}")

Nicolas Patry's avatar
Nicolas Patry committed
439
440
441
442
443
    if speculate is not None:
        set_speculate(speculate)
    else:
        set_speculate(0)

Nicolas Patry's avatar
Nicolas Patry committed
444
    speculator = None
Nicolas Patry's avatar
Nicolas Patry committed
445
    if "medusa_num_heads" in config_dict:
446
447
        medusa_model_id = model_id
        medusa_revision = revision
Nicolas Patry's avatar
Nicolas Patry committed
448
449
450
451
452
        model_id = config_dict["base_model_name_or_path"]
        revision = "main"
        speculate_medusa = config_dict["medusa_num_heads"]
        if speculate is not None:
            if speculate > speculate_medusa:
OlivierDehaene's avatar
OlivierDehaene committed
453
                raise RuntimeError(
OlivierDehaene's avatar
OlivierDehaene committed
454
                    f"Speculate is set to `{speculate}` but this medusa models only has `{speculate_medusa}` heads, please make them match"
OlivierDehaene's avatar
OlivierDehaene committed
455
                )
Nicolas Patry's avatar
Nicolas Patry committed
456
457
458
459
460
461
462
463
            else:
                set_speculate(speculate)
        else:
            set_speculate(speculate_medusa)

        config_dict, _ = PretrainedConfig.get_config_dict(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
Nicolas Patry's avatar
Nicolas Patry committed
464
465
        # Reload model type from parent.
        model_type = config_dict.get("model_type", None)
466
467
468
469
470
471
472
473
474
475
        is_local = Path(medusa_model_id).exists()
        if not is_local:
            medusa_config = hf_hub_download(
                medusa_model_id, revision=medusa_revision, filename="config.json"
            )
            hf_hub_download(
                medusa_model_id,
                revision=medusa_revision,
                filename="medusa_lm_head.safetensors",
            )
Nicolas Patry's avatar
Nicolas Patry committed
476
477
478
479
            speculator = {
                "path": Path(medusa_config).parent,
                "model_paths": ["medusa_lm_head.safetensors"],
            }
480
        else:
Nicolas Patry's avatar
Nicolas Patry committed
481
482
483
484
            speculator = {
                "path": Path(medusa_model_id),
                "model_paths": ["medusa_lm_head.safetensors"],
            }
485

Nicolas Patry's avatar
Nicolas Patry committed
486
        method = "medusa"
Nicolas Patry's avatar
Nicolas Patry committed
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
    elif model_type == "mlp_speculator":
        mlp_model_id = model_id
        mlp_revision = revision
        model_id = config_dict["base_model_name_or_path"]
        revision = "main"
        speculate_mlp = config_dict["n_predict"]
        if speculate is not None:
            if speculate > speculate_mlp:
                raise RuntimeError(
                    f"Speculate is set to `{speculate}` but this mlp_speculator models only has `{speculate_mlp}` heads, please make them match"
                )
            else:
                set_speculate(speculate)
        else:
            set_speculate(speculate_mlp)

        config_dict, _ = PretrainedConfig.get_config_dict(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
        # Reload model type from parent.
        model_type = config_dict.get("model_type", None)
        is_local = Path(mlp_model_id).exists()
        extension = ".safetensors"
        if not is_local:
            mlp_speculator_config = hf_hub_download(
                mlp_model_id, revision=mlp_revision, filename="config.json"
            )
            api = HfApi()
            info = api.model_info(mlp_model_id, revision=mlp_revision)
            filenames = [
                s.rfilename
                for s in info.siblings
                if s.rfilename.endswith(extension)
                and len(s.rfilename.split("/")) == 1
                and "arguments" not in s.rfilename
                and "args" not in s.rfilename
                and "training" not in s.rfilename
            ]
            for filename in filenames:
                hf_hub_download(
                    mlp_model_id,
                    revision=mlp_revision,
                    filename=filename,
                )
531
532
533
534
535
            speculator_dir_path = Path(mlp_speculator_config).parent
            # if these are downloaded, they get converted to safetensors
            filenames.extend(
                [p for p in os.listdir(speculator_dir_path) if p.endswith(extension)]
            )
Nicolas Patry's avatar
Nicolas Patry committed
536
537
538
539
540
541
542
543
544
            speculator = {
                "path": Path(mlp_speculator_config).parent,
                "model_paths": filenames,
            }
        else:
            speculator = Path(mlp_model_id)
            filenames = [p for p in os.listdir(speculator) if p.endswith(extension)]
            speculator = {"path": speculator, "model_paths": filenames}
        method = "mlp_speculator"
Nicolas Patry's avatar
Nicolas Patry committed
545
546
547
548
549
    else:
        method = "n-gram"

    speculate = get_speculate()
    if speculate > 0:
550
551
552
        log_master(
            logger.info, f"Using speculation {method} with {speculate} input ids."
        )
Nicolas Patry's avatar
Nicolas Patry committed
553

drbh's avatar
drbh committed
554
555
556
557
558
559
560
561
562
563
    if model_type is None:
        # TODO: fix how we determine model type for Mamba
        if "ssm_cfg" in config_dict:
            # *only happens in Mamba case
            model_type = "ssm"
        else:
            raise RuntimeError(
                f"Could not determine model type for {model_id} revision {revision}"
            )

564
565
566
567
    if quantize == "exl2" and sharded:
        raise RuntimeError(
            "Sharding is currently not supported with `exl2` quantization"
        )
drbh's avatar
drbh committed
568
569
570
571
572
573

    sliding_window = (
        config_dict.get("sliding_window")
        if config_dict.get("sliding_window") is not None
        else -1
    )
574

575
576
577
    use_sliding_window = sliding_window is not None and sliding_window != -1
    needs_sliding_window = (
        max_input_tokens is not None and max_input_tokens > sliding_window
578
    )
579
580
581
582
    if use_sliding_window and needs_sliding_window and not SUPPORTS_WINDOWING:
        raise ValueError(
            f"The backend {SYSTEM} does not support sliding window attention that is used by the model type {model_type}. To use this model nonetheless with the {SYSTEM} backend, please launch TGI with the argument `--max-input-tokens` smaller than sliding_window={sliding_window} (got here max_input_tokens={max_input_tokens})."
        )
583

584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
    if model_type == DEEPSEEK_V2:
        if FLASH_ATTENTION:
            head_size = max(
                config_dict.get("qk_nope_dim", 128)
                + config_dict.get("qk_rope_dim", 64),
                config_dict.get("v_head_dim", 128),
            )
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashDeepseekV2ForCausalLM,
                revision=revision,
                quantize=quantize,
                speculator=speculator,
                default_dtype=torch.bfloat16,
                dtype=dtype,
599
                kv_cache_dtype=kv_cache_dtype,
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
                trust_remote_code=trust_remote_code,
                lora_adapter_ids=lora_adapter_ids,
                config_class=DeepseekV2Config,
                head_size=head_size,
            )
        elif sharded:
            raise NotImplementedError(
                FLASH_ATT_ERROR_MESSAGE.format("Sharded Deepseek V2")
            )
        else:
            return CausalLM.fallback(
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
    elif model_type == MAMBA:
drbh's avatar
drbh committed
619
620
621
622
        return Mamba(
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
623
            speculator=speculator,
drbh's avatar
drbh committed
624
625
626
            dtype=dtype,
            trust_remote_code=trust_remote_code,
        )
627

OlivierDehaene's avatar
OlivierDehaene committed
628
    if model_id.startswith("facebook/galactica"):
629
630
631
632
633
        return CausalLM(
            model_id=model_id,
            # Yes galactica is just an OPT model.
            model_class=OPTForCausalLM,
            revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
634
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
635
            speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
636
637
            dtype=dtype,
            trust_remote_code=trust_remote_code,
638
            batch_class=GalacticaCausalLMBatch,
OlivierDehaene's avatar
OlivierDehaene committed
639
640
        )

641
    if (
642
643
        model_type == GPT_BIGCODE
        or model_type == GPT2
644
645
        and model_id.startswith("bigcode/")
    ):
646
        if FLASH_ATTENTION:
647
648
649
650
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashSantacoderForCausalLM,
                revision=revision,
651
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
652
                speculator=speculator,
653
                dtype=dtype,
654
                kv_cache_dtype=kv_cache_dtype,
655
                trust_remote_code=trust_remote_code,
656
657
658
                lora_adapter_ids=lora_adapter_ids,
                aliases={"transformer.wte.weight": ["lm_head.weight"]},
                num_kv_heads=1,
659
            )
660
661
662
663
        elif sharded:
            raise NotImplementedError(
                FLASH_ATT_ERROR_MESSAGE.format("Sharded Santacoder")
            )
664
        else:
665
666
667
            return CausalLM.fallback(
                model_id=model_id,
                revision=revision,
668
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
669
                speculator=speculator,
670
                dtype=dtype,
671
672
                trust_remote_code=trust_remote_code,
            )
673

674
    if model_type == BLOOM:
675
676
677
678
        return CausalLM(
            model_id=model_id,
            model_class=BloomForCausalLM,
            revision=revision,
679
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
680
            speculator=speculator,
681
682
            dtype=dtype,
            trust_remote_code=trust_remote_code,
683
            batch_class=BloomCausalLMBatch,
684
        )
685
    elif model_type == MPT:
686
687
688
689
        return CausalLM(
            model_id=model_id,
            model_class=MPTForCausalLM,
            revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
690
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
691
            speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
692
693
            dtype=dtype,
            trust_remote_code=trust_remote_code,
694
            batch_class=CausalLMBatchKeysLast,
695
        )
696
    elif model_type == GPT2:
697
        if FLASH_ATTENTION:
698
            try:
699
700
701
702
                return FlashCausalLM(
                    model_id=model_id,
                    model_class=FlashGPT2ForCausalLM,
                    revision=revision,
703
704
705
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
706
                    kv_cache_dtype=kv_cache_dtype,
707
                    trust_remote_code=trust_remote_code,
708
                    lora_adapter_ids=lora_adapter_ids,
709
710
711
                )
            except RuntimeError as e:
                # Lots of legacy models with various weight names.
712
                log_master(logger.warning, f"Couldn't load flash gpt2 variant: {e}")
713
                return CausalLM.fallback(
714
715
716
717
718
719
720
                    model_id,
                    revision,
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
                    trust_remote_code=trust_remote_code,
                )
721
722
723
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded GPT-2"))
        else:
724
            return CausalLM.fallback(
725
726
727
728
729
730
731
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
732
733
734
735
736
737
738
739
740
741
    elif model_type == GPTJ:
        if FLASH_ATTENTION:
            try:
                return FlashCausalLM(
                    model_id=model_id,
                    model_class=FlashGPTJForCausalLM,
                    revision=revision,
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
742
                    kv_cache_dtype=kv_cache_dtype,
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
                    trust_remote_code=trust_remote_code,
                    lora_adapter_ids=lora_adapter_ids,
                )
            except RuntimeError as e:
                # Lots of legacy models with various weight names.
                log_master(logger.warning, f"Couldn't load flash gptj variant: {e}")
                return CausalLM.fallback(
                    model_id,
                    revision,
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
                    trust_remote_code=trust_remote_code,
                )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded GPT-J"))
        else:
            return CausalLM.fallback(
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
768
    elif model_type == GPT_NEOX:
769
        if FLASH_ATTENTION:
770
771
772
773
            from text_generation_server.models.custom_modeling.flash_neox_modeling import (
                GPTNeoXConfig,
            )

774
775
776
777
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashGPTNeoXForCausalLM,
                revision=revision,
778
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
779
                speculator=speculator,
780
                dtype=dtype,
781
                kv_cache_dtype=kv_cache_dtype,
782
                trust_remote_code=trust_remote_code,
783
                lora_adapter_ids=lora_adapter_ids,
784
                config_class=GPTNeoXConfig,
785
786
            )
        elif sharded:
787
788
789
790
            return CausalLM(
                model_id=model_id,
                model_class=GPTNeoxForCausalLM,
                revision=revision,
791
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
792
                speculator=speculator,
793
                dtype=dtype,
794
795
                trust_remote_code=trust_remote_code,
            )
796
        else:
797
            return CausalLM.fallback(
798
799
800
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
801
                speculator=speculator,
802
                dtype=dtype,
803
804
                trust_remote_code=trust_remote_code,
            )
OlivierDehaene's avatar
OlivierDehaene committed
805

806
    elif model_type == PHI:
drbh's avatar
drbh committed
807
        if FLASH_ATTENTION:
808
809
810
811
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashPhiForCausalLM,
                revision=revision,
drbh's avatar
drbh committed
812
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
813
                speculator=speculator,
drbh's avatar
drbh committed
814
                dtype=dtype,
815
                kv_cache_dtype=kv_cache_dtype,
drbh's avatar
drbh committed
816
                trust_remote_code=trust_remote_code,
817
                lora_adapter_ids=lora_adapter_ids,
drbh's avatar
drbh committed
818
819
            )
        else:
820
            return CausalLM.fallback(
drbh's avatar
drbh committed
821
822
823
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
824
                speculator=speculator,
drbh's avatar
drbh committed
825
826
827
828
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

drbh's avatar
drbh committed
829
830
831
832
833
834
835
836
837
838
    elif model_type == PHI_MOE:
        if FLASH_ATTENTION:
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashLlamaForCausalLM,
                config_class=PhiMoEConfig,
                revision=revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
839
                kv_cache_dtype=kv_cache_dtype,
drbh's avatar
drbh committed
840
841
842
843
844
845
846
847
848
849
850
851
852
                trust_remote_code=trust_remote_code,
                lora_adapter_ids=lora_adapter_ids,
            )
        else:
            return CausalLM.fallback(
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

drbh's avatar
drbh committed
853
854
    elif model_type == "phi-msft":
        if FLASH_ATTENTION:
OlivierDehaene's avatar
OlivierDehaene committed
855
856
857
            raise NotImplementedError(
                "Legacy phi-msft is not supported with Flash Attention"
            )
drbh's avatar
drbh committed
858
        else:
859
860
861
862
863
            return CausalLM(
                model_id=model_id,
                model_class=PhiForCausalLM,
                config_class=PhiConfig,
                revision=revision,
drbh's avatar
drbh committed
864
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
865
                speculator=speculator,
drbh's avatar
drbh committed
866
867
868
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
869

870
871
872
873
874
875
    elif (
        model_type == LLAMA
        or model_type == BAICHUAN
        or model_type == PHI3
        or model_type == GRANITE
    ):
876
        if FLASH_ATTENTION:
877
878
879
880
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashLlamaForCausalLM,
                revision=revision,
881
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
882
                speculator=speculator,
883
                dtype=dtype,
884
                kv_cache_dtype=kv_cache_dtype,
885
                trust_remote_code=trust_remote_code,
drbh's avatar
drbh committed
886
                lora_adapter_ids=lora_adapter_ids,
887
            )
888
        elif sharded:
889
890
891
            raise NotImplementedError(
                FLASH_ATT_ERROR_MESSAGE.format(f"Sharded {model_type}")
            )
892
        else:
893
            return CausalLM.fallback(
894
895
896
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
897
                speculator=speculator,
898
                dtype=dtype,
899
900
                trust_remote_code=trust_remote_code,
            )
901
    if model_type == GEMMA:
902
        if FLASH_ATTENTION:
903
904
905
906
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashGemmaForCausalLM,
                revision=revision,
907
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
908
                speculator=speculator,
909
                dtype=dtype,
910
                kv_cache_dtype=kv_cache_dtype,
911
912
                # Works better for these models
                default_dtype=torch.bfloat16,
913
                trust_remote_code=trust_remote_code,
914
                lora_adapter_ids=lora_adapter_ids,
915
916
            )
        elif sharded:
OlivierDehaene's avatar
OlivierDehaene committed
917
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Gemma"))
918
        else:
919
            return CausalLM.fallback(
920
921
922
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
923
                speculator=speculator,
924
925
926
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
Nicolas Patry's avatar
Nicolas Patry committed
927
928
    elif model_type == GEMMA2:
        if FLASH_ATTENTION:
929
930
931
932
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashGemma2ForCausalLM,
                revision=revision,
Nicolas Patry's avatar
Nicolas Patry committed
933
934
935
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
936
                kv_cache_dtype=kv_cache_dtype,
937
938
                # Works better for these models
                default_dtype=torch.bfloat16,
Nicolas Patry's avatar
Nicolas Patry committed
939
                trust_remote_code=trust_remote_code,
940
                lora_adapter_ids=lora_adapter_ids,
Nicolas Patry's avatar
Nicolas Patry committed
941
942
943
944
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Gemma2"))
        else:
945
            return CausalLM.fallback(
Nicolas Patry's avatar
Nicolas Patry committed
946
947
948
949
950
951
952
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
953

954
    if model_type == COHERE:
OlivierDehaene's avatar
OlivierDehaene committed
955
        if FLASH_ATTENTION:
956
957
958
959
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashCohereForCausalLM,
                revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
960
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
961
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
962
                dtype=dtype,
963
                kv_cache_dtype=kv_cache_dtype,
OlivierDehaene's avatar
OlivierDehaene committed
964
                trust_remote_code=trust_remote_code,
965
                lora_adapter_ids=lora_adapter_ids,
OlivierDehaene's avatar
OlivierDehaene committed
966
967
968
969
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Cohere"))
        else:
970
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
971
972
973
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
974
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
975
976
977
978
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

979
    if model_type == DBRX:
980
        if FLASH_ATTENTION:
981
982
983
984
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashDbrxForCausalLM,
                revision=revision,
985
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
986
                speculator=speculator,
987
                dtype=dtype,
988
                kv_cache_dtype=kv_cache_dtype,
989
990
                # Dbrx works better in bfloat16.
                default_dtype=torch.bfloat16,
991
                trust_remote_code=trust_remote_code,
992
993
                lora_adapter_ids=lora_adapter_ids,
                config_class=DbrxConfig,
994
995
996
997
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded DBRX"))
        else:
998
            return CausalLM.fallback(
999
1000
1001
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1002
                speculator=speculator,
1003
1004
1005
1006
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

1007
    if model_type in ["RefinedWeb", "RefinedWebModel", FALCON]:
1008
1009
        if sharded:
            if FLASH_ATTENTION:
1010
                if config_dict.get("alibi", False):
1011
                    raise NotImplementedError("sharded is not supported for this model")
1012
1013
1014
1015
                return FlashCausalLM(
                    model_id=model_id,
                    model_class=FlashRWForCausalLM,
                    revision=revision,
1016
                    quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1017
                    speculator=speculator,
1018
                    dtype=dtype,
1019
                    kv_cache_dtype=kv_cache_dtype,
1020
1021
1022
1023
                    aliases={
                        "lm_head.weight": ["transformer.word_embeddings.weight"],
                        "transformer.word_embeddings.weight": ["lm_head.weight"],
                    },
1024
                    trust_remote_code=trust_remote_code,
1025
1026
                    lora_adapter_ids=lora_adapter_ids,
                    config_class=RWConfig,
1027
                )
1028
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Falcon"))
1029
        else:
1030
            if FLASH_ATTENTION and not config_dict.get("alibi", False):
1031
1032
1033
1034
                return FlashCausalLM(
                    model_id=model_id,
                    model_class=FlashRWForCausalLM,
                    revision=revision,
1035
                    quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1036
                    speculator=speculator,
1037
                    dtype=dtype,
1038
                    kv_cache_dtype=kv_cache_dtype,
1039
1040
1041
1042
                    aliases={
                        "lm_head.weight": ["transformer.word_embeddings.weight"],
                        "transformer.word_embeddings.weight": ["lm_head.weight"],
                    },
1043
                    trust_remote_code=trust_remote_code,
1044
1045
                    lora_adapter_ids=lora_adapter_ids,
                    config_class=RWConfig,
1046
1047
                )
            else:
1048
                return CausalLM.fallback(
1049
1050
1051
                    model_id,
                    revision,
                    quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1052
                    speculator=speculator,
1053
                    dtype=dtype,
1054
1055
1056
                    trust_remote_code=trust_remote_code,
                )

1057
    if model_type == MISTRAL:
1058
        if FLASH_ATTENTION:
1059
1060
1061
1062
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashMistralForCausalLM,
                revision=revision,
1063
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1064
                speculator=speculator,
1065
                dtype=dtype,
1066
                kv_cache_dtype=kv_cache_dtype,
1067
                trust_remote_code=trust_remote_code,
1068
                lora_adapter_ids=lora_adapter_ids,
1069
            )
OlivierDehaene's avatar
OlivierDehaene committed
1070
1071
1072
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Mistral"))
        else:
1073
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
1074
1075
1076
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1077
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1078
1079
1080
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
OlivierDehaene's avatar
OlivierDehaene committed
1081

1082
    if model_type == MIXTRAL:
1083
        if FLASH_ATTENTION:
1084
1085
1086
1087
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashMixtralForCausalLM,
                revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
1088
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1089
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1090
                dtype=dtype,
1091
                kv_cache_dtype=kv_cache_dtype,
OlivierDehaene's avatar
OlivierDehaene committed
1092
                trust_remote_code=trust_remote_code,
1093
                lora_adapter_ids=lora_adapter_ids,
OlivierDehaene's avatar
OlivierDehaene committed
1094
            )
OlivierDehaene's avatar
OlivierDehaene committed
1095
1096
1097
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Mixtral"))
        else:
1098
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
1099
1100
1101
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1102
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1103
1104
1105
1106
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

1107
    if model_type == STARCODER2:
1108
        if FLASH_ATTENTION:
1109
1110
1111
1112
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashStarcoder2ForCausalLM,
                revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
1113
                quantize=quantize,
1114
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1115
                dtype=dtype,
1116
                kv_cache_dtype=kv_cache_dtype,
OlivierDehaene's avatar
OlivierDehaene committed
1117
                trust_remote_code=trust_remote_code,
1118
                lora_adapter_ids=lora_adapter_ids,
OlivierDehaene's avatar
OlivierDehaene committed
1119
1120
1121
1122
1123
1124
            )
        elif sharded:
            raise NotImplementedError(
                FLASH_ATT_ERROR_MESSAGE.format("Sharded Starcoder2")
            )
        else:
1125
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
1126
1127
1128
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1129
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1130
1131
1132
1133
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

1134
    if model_type == QWEN2:
1135
        if FLASH_ATTENTION:
1136
1137
1138
1139
            return FlashCausalLM(
                model_id=model_id,
                model_class=Qwen2ForCausalLM,
                revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
1140
                quantize=quantize,
1141
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1142
                dtype=dtype,
1143
                kv_cache_dtype=kv_cache_dtype,
OlivierDehaene's avatar
OlivierDehaene committed
1144
                trust_remote_code=trust_remote_code,
1145
                lora_adapter_ids=lora_adapter_ids,
OlivierDehaene's avatar
OlivierDehaene committed
1146
1147
1148
1149
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Qwen2"))
        else:
1150
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
1151
1152
1153
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1154
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1155
                dtype=dtype,
OlivierDehaene's avatar
OlivierDehaene committed
1156
1157
                trust_remote_code=trust_remote_code,
            )
1158

1159
    if model_type == OPT:
1160
1161
1162
1163
        return CausalLM(
            model_id=model_id,
            model_class=OPTForCausalLM,
            revision=revision,
1164
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1165
            speculator=speculator,
1166
1167
            dtype=dtype,
            trust_remote_code=trust_remote_code,
1168
        )
1169

1170
    if model_type == T5:
1171
1172
1173
1174
        return Seq2SeqLM(
            model_id=model_id,
            model_class=T5ForConditionalGeneration,
            revision=revision,
1175
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1176
            speculator=speculator,
1177
            dtype=dtype,
1178
            trust_remote_code=trust_remote_code,
1179
1180
1181
1182
1183
1184
            aliases={
                "shared.weight": [
                    "encoder.embed_tokens.weight",
                    "decoder.embed_tokens.weight",
                ]
            },
1185
        )
1186
    if model_type == IDEFICS:
1187
        if FLASH_ATTENTION:
Nicolas Patry's avatar
Nicolas Patry committed
1188
            return IdeficsCausalLM(
OlivierDehaene's avatar
OlivierDehaene committed
1189
1190
1191
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1192
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1193
1194
1195
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
1196
1197
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
Nicolas Patry's avatar
Nicolas Patry committed
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
    if model_type == MLLAMA:
        if FLASH_ATTENTION:
            return MllamaCausalLM(
                model_id=model_id,
                model_class=MllamaForConditionalGeneration,
                batch_class=MllamaCausalLMBatch,
                revision=revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                default_dtype=torch.bfloat16,
                trust_remote_code=trust_remote_code,
                lora_adapter_ids=lora_adapter_ids,
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Mllama"))
1214
    if model_type == IDEFICS2:
Nicolas Patry's avatar
Nicolas Patry committed
1215
        if FLASH_ATTENTION:
1216
1217
1218
1219
            return VlmCausalLM(
                model_id=model_id,
                model_class=Idefics2ForConditionalGeneration,
                revision=revision,
Nicolas Patry's avatar
Nicolas Patry committed
1220
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1221
                speculator=speculator,
Nicolas Patry's avatar
Nicolas Patry committed
1222
                dtype=dtype,
1223
                kv_cache_dtype=kv_cache_dtype,
Nicolas Patry's avatar
Nicolas Patry committed
1224
                trust_remote_code=trust_remote_code,
1225
1226
1227
1228
                lora_adapter_ids=lora_adapter_ids,
                # XXX: Extremely important to cap resolution in order to limit
                # VRAM usage.
                processor_kwargs={"size": {"longest_edge": 448, "shortest_edge": 378}},
Nicolas Patry's avatar
Nicolas Patry committed
1229
1230
1231
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
1232
    if model_type == PALIGEMMA:
drbh's avatar
drbh committed
1233
        if FLASH_ATTENTION:
1234
1235
1236
1237
            return VlmCausalLM(
                model_id=model_id,
                model_class=PaliGemmaForConditionalGeneration,
                revision=revision,
drbh's avatar
drbh committed
1238
1239
1240
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
1241
                kv_cache_dtype=kv_cache_dtype,
1242
1243
                # Works better for these models
                default_dtype=torch.bfloat16,
drbh's avatar
drbh committed
1244
                trust_remote_code=trust_remote_code,
1245
1246
                lora_adapter_ids=lora_adapter_ids,
                batch_class=PaliGemmaBatch,
drbh's avatar
drbh committed
1247
1248
1249
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
1250

1251
    if model_type == LLAVA_NEXT:
1252
        if FLASH_ATTENTION:
1253
1254
1255
1256
            return VlmCausalLM(
                model_class=LlavaNextForConditionalGeneration,
                model_id=model_id,
                revision=revision,
1257
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1258
                speculator=speculator,
1259
                dtype=dtype,
1260
                kv_cache_dtype=kv_cache_dtype,
1261
1262
1263
1264
1265
                trust_remote_code=trust_remote_code,
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("LlavaNext"))

1266
    if sharded:
1267
        raise NotImplementedError("sharded is not supported for AutoModel")
1268
    if quantize == "gptq":
1269
        raise NotImplementedError(
1270
1271
            "gptq quantization is not supported for AutoModel, you can try to quantize it with `text-generation-server quantize ORIGINAL_MODEL_ID NEW_MODEL_ID`"
        )
1272
    if quantize == "awq":
1273
        raise NotImplementedError("awq quantization is not supported for AutoModel")
Nicolas Patry's avatar
Nicolas Patry committed
1274
    elif (quantize == "bitsandbytes-fp4") or (quantize == "bitsandbytes-nf4"):
1275
        raise NotImplementedError("4bit quantization is not supported for AutoModel")
OlivierDehaene's avatar
OlivierDehaene committed
1276
    elif quantize == "eetq":
1277
        raise NotImplementedError("Eetq quantization is not supported for AutoModel")
1278
1279
    elif quantize == "exl2":
        raise NotImplementedError("exl2 quantization is not supported for AutoModel")
1280
    if model_type in modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
1281
        return CausalLM.fallback(
1282
1283
1284
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1285
            speculator=speculator,
1286
1287
            dtype=dtype,
            trust_remote_code=trust_remote_code,
1288
        )
1289
    if model_type in modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES:
1290
        return Seq2SeqLM.fallback(
1291
1292
1293
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1294
            speculator=speculator,
1295
1296
            dtype=dtype,
            trust_remote_code=trust_remote_code,
1297
1298
        )

1299
    auto_map = config_dict.get("auto_map", None)
1300
1301
    if trust_remote_code and auto_map is not None:
        if "AutoModelForCausalLM" in auto_map.keys():
1302
            return CausalLM.fallback(
1303
1304
1305
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1306
                speculator=speculator,
1307
                dtype=dtype,
1308
1309
                trust_remote_code=trust_remote_code,
            )
1310
        if "AutoModelForSeq2SeqLM" in auto_map.keys():
1311
            return Seq2SeqLM.fallback(
1312
1313
1314
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1315
                speculator=speculator,
1316
                dtype=dtype,
1317
1318
                trust_remote_code=trust_remote_code,
            )
1319
1320

    raise ValueError(f"Unsupported model type {model_type}")
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332


# get_model_with_lora_adapters wraps the internal get_model function and adds support for loading adapters
# this provides a post model loading hook to load adapters into the model after the model has been loaded
def get_model_with_lora_adapters(
    model_id: str,
    lora_adapters: Optional[List[AdapterInfo]],
    revision: Optional[str],
    sharded: bool,
    quantize: Optional[str],
    speculate: Optional[int],
    dtype: Optional[str],
1333
    kv_cache_dtype: Optional[str],
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
    trust_remote_code: bool,
    max_input_tokens: int,
    adapter_to_index: Dict[str, int],
):
    lora_adapter_ids = [adapter.id for adapter in lora_adapters]
    model = get_model(
        model_id,
        lora_adapter_ids,
        revision,
        sharded,
        quantize,
        speculate,
        dtype,
1347
        kv_cache_dtype,
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
        trust_remote_code,
        max_input_tokens,
    )

    if len(lora_adapters) > 0:
        target_to_layer = build_layer_weight_lookup(model.model)

        for index, adapter in enumerate(lora_adapters):
            # The AdapterParameters object allows for merging multiple adapters into a single adapter.
            # At the moment, we only support loading a single adapter into the model, but we keep the
            # AdapterParameters object for easier extension in the future.
            adapter_parameters = AdapterParameters(
                adapter_info=[adapter],
                # when merging multiple adapters we can weight them differently
                # if this is not set, all adapters will be weighted equally
                # see: text_generation_server.utils.merges.strategies for impl
                weights=None,
                merge_strategy=0,
                density=1.0,
                majority_sign_method=0,
            )

            adapter_index = index + 1
            adapter_to_index[adapter.id] = adapter_index

            logger.info(
                f"Loading adapter weights into model: {','.join([adapter.id for adapter in adapter_parameters.adapter_info])}"
            )
            weight_names = tuple([v[0] for v in target_to_layer.values()])
            (
                module_map,
                adapter_config,
                adapter_weight_names,
                adapter_tokenizer,
            ) = load_and_merge_adapters(
                model.model_id,
                adapter_parameters,
                adapter_index,
                weight_names,
                False,
            )

            unused_weight_names = adapter_weight_names.copy()

            adapter_layers = [
                "q_proj",
                "k_proj",
                "v_proj",
                "o_proj",
                "gate_proj",
                "up_proj",
                "down_proj",
1400
                "qkv_proj",
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
            ]

            for layer_name in adapter_layers:
                nlayers = (
                    1 if layer_name == "lm_head" else len(model.model.model.layers)
                )
                adapter_weights = LoraWeights.prepare_weights(
                    config=adapter_config,
                    module_map=module_map,
                    layer_type=layer_name,
                    unused_weight_names=unused_weight_names,
                    nlayers=nlayers,
                    dtype=model.dtype,
                    world_size=model.world_size,
                    process_group=model.process_group,
                    target_to_layer=target_to_layer,
                )

                if adapter_weights is None:
                    continue

                model.layer_to_adapter_weights[layer_name].add_adapter(
                    adapter_index, adapter_weights
                )

            if len(unused_weight_names) > 0:
                logger.warning(
1428
                    f"{','.join([a.id for a in lora_adapters])} unused adapter weights: {unused_weight_names}"
1429
1430
1431
1432
1433
1434
1435
1436
                )

            if adapter_tokenizer is not None:
                model.tokenizers.add_tokenizer(adapter_index, adapter_tokenizer)

            model.loaded_adapters.add(adapter_index)

    return model