"git@developer.sourcefind.cn:zhaoyu6/sglang.git" did not exist on "f8f9244a61544fd90800d94859ed5609798e100d"
test_cameras.py 64.2 KB
Newer Older
1
# Copyright (c) Meta Platforms, Inc. and affiliates.
Patrick Labatut's avatar
Patrick Labatut committed
2
3
4
5
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
facebook-github-bot's avatar
facebook-github-bot committed
6

7
8
# @licenselint-loose-mode

facebook-github-bot's avatar
facebook-github-bot committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# Some of the code below is adapted from Soft Rasterizer (SoftRas)
#
# Copyright (c) 2017 Hiroharu Kato
# Copyright (c) 2018 Nikos Kolotouros
# Copyright (c) 2019 Shichen Liu
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

import math
34
import pickle
facebook-github-bot's avatar
facebook-github-bot committed
35
import unittest
36
from itertools import product
facebook-github-bot's avatar
facebook-github-bot committed
37

38
39
import numpy as np
import torch
Jiali Duan's avatar
Jiali Duan committed
40
from pytorch3d.common.datatypes import Device
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
41
from pytorch3d.renderer.camera_utils import join_cameras_as_batch
facebook-github-bot's avatar
facebook-github-bot committed
42
from pytorch3d.renderer.cameras import (
43
    camera_position_from_spherical_angles,
44
    CamerasBase,
Georgia Gkioxari's avatar
Georgia Gkioxari committed
45
46
    FoVOrthographicCameras,
    FoVPerspectiveCameras,
47
48
49
    get_world_to_view_transform,
    look_at_rotation,
    look_at_view_transform,
Jeremy Reizenstein's avatar
lint  
Jeremy Reizenstein committed
50
51
    OpenGLOrthographicCameras,
    OpenGLPerspectiveCameras,
Georgia Gkioxari's avatar
Georgia Gkioxari committed
52
53
    OrthographicCameras,
    PerspectiveCameras,
Jeremy Reizenstein's avatar
lint  
Jeremy Reizenstein committed
54
55
    SfMOrthographicCameras,
    SfMPerspectiveCameras,
facebook-github-bot's avatar
facebook-github-bot committed
56
)
Jiali Duan's avatar
Jiali Duan committed
57
from pytorch3d.renderer.fisheyecameras import FishEyeCameras
facebook-github-bot's avatar
facebook-github-bot committed
58
from pytorch3d.transforms import Transform3d
David Novotny's avatar
David Novotny committed
59
from pytorch3d.transforms.rotation_conversions import random_rotations
60
from pytorch3d.transforms.so3 import so3_exp_map
facebook-github-bot's avatar
facebook-github-bot committed
61

62
63
from .common_camera_utils import init_random_cameras

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
64
65
from .common_testing import TestCaseMixin

facebook-github-bot's avatar
facebook-github-bot committed
66
67
68
69
70
71
72
73
74
75
76
77
78

# Naive function adapted from SoftRasterizer for test purposes.
def perspective_project_naive(points, fov=60.0):
    """
    Compute perspective projection from a given viewing angle.
    Args:
        points: (N, V, 3) representing the padded points.
        viewing angle: degrees
    Returns:
        (N, V, 3) tensor of projected points preserving the view space z
        coordinate (no z renormalization)
    """
    device = points.device
79
    halfFov = torch.tensor((fov / 2) / 180 * np.pi, dtype=torch.float32, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
    scale = torch.tan(halfFov[None])
    scale = scale[:, None]
    z = points[:, :, 2]
    x = points[:, :, 0] / z / scale
    y = points[:, :, 1] / z / scale
    points = torch.stack((x, y, z), dim=2)
    return points


def sfm_perspective_project_naive(points, fx=1.0, fy=1.0, p0x=0.0, p0y=0.0):
    """
    Compute perspective projection using focal length and principal point.

    Args:
        points: (N, V, 3) representing the padded points.
        fx: world units
        fy: world units
        p0x: pixels
        p0y: pixels
    Returns:
        (N, V, 3) tensor of projected points.
    """
    z = points[:, :, 2]
103
104
    x = (points[:, :, 0] * fx) / z + p0x
    y = (points[:, :, 1] * fy) / z + p0y
facebook-github-bot's avatar
facebook-github-bot committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    points = torch.stack((x, y, 1.0 / z), dim=2)
    return points


# Naive function adapted from SoftRasterizer for test purposes.
def orthographic_project_naive(points, scale_xyz=(1.0, 1.0, 1.0)):
    """
    Compute orthographic projection from a given angle
    Args:
        points: (N, V, 3) representing the padded points.
        scaled: (N, 3) scaling factors for each of xyz directions
    Returns:
        (N, V, 3) tensor of projected points preserving the view space z
        coordinate (no z renormalization).
    """
    if not torch.is_tensor(scale_xyz):
        scale_xyz = torch.tensor(scale_xyz)
    scale_xyz = scale_xyz.view(-1, 3)
    z = points[:, :, 2]
    x = points[:, :, 0] * scale_xyz[:, 0]
    y = points[:, :, 1] * scale_xyz[:, 1]
    points = torch.stack((x, y, z), dim=2)
    return points


Georgia Gkioxari's avatar
Georgia Gkioxari committed
130
131
132
133
134
def ndc_to_screen_points_naive(points, imsize):
    """
    Transforms points from PyTorch3D's NDC space to screen space
    Args:
        points: (N, V, 3) representing padded points
135
        imsize: (N, 2) image size = (height, width)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
136
137
138
    Returns:
        (N, V, 3) tensor of transformed points
    """
139
140
    height, width = imsize.unbind(1)
    width = width.view(-1, 1)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
141
    half_width = width / 2.0
142
    height = height.view(-1, 1)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
143
    half_height = height / 2.0
144
145
146
147

    scale = (
        half_width * (height > width).float() + half_height * (height <= width).float()
    )
Georgia Gkioxari's avatar
Georgia Gkioxari committed
148
149

    x, y, z = points.unbind(2)
150
151
    x = -scale * x + half_width
    y = -scale * y + half_height
Georgia Gkioxari's avatar
Georgia Gkioxari committed
152
153
154
    return torch.stack((x, y, z), dim=2)


Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
155
class TestCameraHelpers(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
156
157
158
159
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(42)

160
161
162
163
    def test_look_at_view_transform_from_eye_point_tuple(self):
        dist = math.sqrt(2)
        elev = math.pi / 4
        azim = 0.0
Georgia Gkioxari's avatar
Georgia Gkioxari committed
164
        eye = ((0.0, 1.0, 1.0),)
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
        # using passed values for dist, elev, azim
        R, t = look_at_view_transform(dist, elev, azim, degrees=False)
        # using other values for dist, elev, azim - eye overrides
        R_eye, t_eye = look_at_view_transform(dist=3, elev=2, azim=1, eye=eye)
        # using only eye value

        R_eye_only, t_eye_only = look_at_view_transform(eye=eye)
        self.assertTrue(torch.allclose(R, R_eye, atol=2e-7))
        self.assertTrue(torch.allclose(t, t_eye, atol=2e-7))
        self.assertTrue(torch.allclose(R, R_eye_only, atol=2e-7))
        self.assertTrue(torch.allclose(t, t_eye_only, atol=2e-7))

    def test_look_at_view_transform_default_values(self):
        dist = 1.0
        elev = 0.0
        azim = 0.0
        # Using passed values for dist, elev, azim
        R, t = look_at_view_transform(dist, elev, azim)
        # Using default dist=1.0, elev=0.0, azim=0.0
        R_default, t_default = look_at_view_transform()
        # test default = passed = expected
        self.assertTrue(torch.allclose(R, R_default, atol=2e-7))
        self.assertTrue(torch.allclose(t, t_default, atol=2e-7))

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    def test_look_at_view_transform_non_default_at_position(self):
        dist = 1.0
        elev = 0.0
        azim = 0.0
        at = ((1, 1, 1),)
        # Using passed values for dist, elev, azim, at
        R, t = look_at_view_transform(dist, elev, azim, at=at)
        # Using default dist=1.0, elev=0.0, azim=0.0
        R_default, t_default = look_at_view_transform()
        # test default = passed = expected
        # R must be the same, t must be translated by (1,-1,1) with respect to t_default
        t_trans = torch.tensor([1, -1, 1], dtype=torch.float32).view(1, 3)
        self.assertTrue(torch.allclose(R, R_default, atol=2e-7))
        self.assertTrue(torch.allclose(t, t_default + t_trans, atol=2e-7))

facebook-github-bot's avatar
facebook-github-bot committed
204
205
206
207
    def test_camera_position_from_angles_python_scalar(self):
        dist = 2.7
        elev = 90.0
        azim = 0.0
208
209
210
        expected_position = torch.tensor([0.0, 2.7, 0.0], dtype=torch.float32).view(
            1, 3
        )
facebook-github-bot's avatar
facebook-github-bot committed
211
        position = camera_position_from_spherical_angles(dist, elev, azim)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
212
        self.assertClose(position, expected_position, atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
213
214
215
216
217
218
219
220
221
222

    def test_camera_position_from_angles_python_scalar_radians(self):
        dist = 2.7
        elev = math.pi / 2
        azim = 0.0
        expected_position = torch.tensor([0.0, 2.7, 0.0], dtype=torch.float32)
        expected_position = expected_position.view(1, 3)
        position = camera_position_from_spherical_angles(
            dist, elev, azim, degrees=False
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
223
        self.assertClose(position, expected_position, atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
224
225
226
227
228

    def test_camera_position_from_angles_torch_scalars(self):
        dist = torch.tensor(2.7)
        elev = torch.tensor(0.0)
        azim = torch.tensor(90.0)
229
230
231
        expected_position = torch.tensor([2.7, 0.0, 0.0], dtype=torch.float32).view(
            1, 3
        )
facebook-github-bot's avatar
facebook-github-bot committed
232
        position = camera_position_from_spherical_angles(dist, elev, azim)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
233
        self.assertClose(position, expected_position, atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
234
235
236
237
238

    def test_camera_position_from_angles_mixed_scalars(self):
        dist = 2.7
        elev = torch.tensor(0.0)
        azim = 90.0
239
240
241
        expected_position = torch.tensor([2.7, 0.0, 0.0], dtype=torch.float32).view(
            1, 3
        )
facebook-github-bot's avatar
facebook-github-bot committed
242
        position = camera_position_from_spherical_angles(dist, elev, azim)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
243
        self.assertClose(position, expected_position, atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

    def test_camera_position_from_angles_torch_scalar_grads(self):
        dist = torch.tensor(2.7, requires_grad=True)
        elev = torch.tensor(45.0, requires_grad=True)
        azim = torch.tensor(45.0)
        position = camera_position_from_spherical_angles(dist, elev, azim)
        position.sum().backward()
        self.assertTrue(hasattr(elev, "grad"))
        self.assertTrue(hasattr(dist, "grad"))
        elev_grad = elev.grad.clone()
        dist_grad = dist.grad.clone()
        elev = math.pi / 180.0 * elev.detach()
        azim = math.pi / 180.0 * azim
        grad_dist = (
            torch.cos(elev) * torch.sin(azim)
            + torch.sin(elev)
260
            + torch.cos(elev) * torch.cos(azim)
facebook-github-bot's avatar
facebook-github-bot committed
261
262
        )
        grad_elev = (
Nikhila Ravi's avatar
Nikhila Ravi committed
263
            -(torch.sin(elev)) * torch.sin(azim)
facebook-github-bot's avatar
facebook-github-bot committed
264
            + torch.cos(elev)
265
            - torch.sin(elev) * torch.cos(azim)
facebook-github-bot's avatar
facebook-github-bot committed
266
267
        )
        grad_elev = dist * (math.pi / 180.0) * grad_elev
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
268
269
        self.assertClose(elev_grad, grad_elev)
        self.assertClose(dist_grad, grad_dist)
facebook-github-bot's avatar
facebook-github-bot committed
270
271
272
273
274
275
276
277
278

    def test_camera_position_from_angles_vectors(self):
        dist = torch.tensor([2.0, 2.0])
        elev = torch.tensor([0.0, 90.0])
        azim = torch.tensor([90.0, 0.0])
        expected_position = torch.tensor(
            [[2.0, 0.0, 0.0], [0.0, 2.0, 0.0]], dtype=torch.float32
        )
        position = camera_position_from_spherical_angles(dist, elev, azim)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
279
        self.assertClose(position, expected_position, atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
280
281
282
283
284
285

    def test_camera_position_from_angles_vectors_broadcast(self):
        dist = torch.tensor([2.0, 3.0, 5.0])
        elev = torch.tensor([0.0])
        azim = torch.tensor([90.0])
        expected_position = torch.tensor(
286
            [[2.0, 0.0, 0.0], [3.0, 0.0, 0.0], [5.0, 0.0, 0.0]], dtype=torch.float32
facebook-github-bot's avatar
facebook-github-bot committed
287
288
        )
        position = camera_position_from_spherical_angles(dist, elev, azim)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
289
        self.assertClose(position, expected_position, atol=3e-7)
facebook-github-bot's avatar
facebook-github-bot committed
290
291
292
293
294
295

    def test_camera_position_from_angles_vectors_mixed_broadcast(self):
        dist = torch.tensor([2.0, 3.0, 5.0])
        elev = 0.0
        azim = torch.tensor(90.0)
        expected_position = torch.tensor(
296
            [[2.0, 0.0, 0.0], [3.0, 0.0, 0.0], [5.0, 0.0, 0.0]], dtype=torch.float32
facebook-github-bot's avatar
facebook-github-bot committed
297
298
        )
        position = camera_position_from_spherical_angles(dist, elev, azim)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
299
        self.assertClose(position, expected_position, atol=3e-7)
facebook-github-bot's avatar
facebook-github-bot committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316

    def test_camera_position_from_angles_vectors_mixed_broadcast_grads(self):
        dist = torch.tensor([2.0, 3.0, 5.0], requires_grad=True)
        elev = torch.tensor(45.0, requires_grad=True)
        azim = 45.0
        position = camera_position_from_spherical_angles(dist, elev, azim)
        position.sum().backward()
        self.assertTrue(hasattr(elev, "grad"))
        self.assertTrue(hasattr(dist, "grad"))
        elev_grad = elev.grad.clone()
        dist_grad = dist.grad.clone()
        azim = torch.tensor(azim)
        elev = math.pi / 180.0 * elev.detach()
        azim = math.pi / 180.0 * azim
        grad_dist = (
            torch.cos(elev) * torch.sin(azim)
            + torch.sin(elev)
317
            + torch.cos(elev) * torch.cos(azim)
facebook-github-bot's avatar
facebook-github-bot committed
318
319
        )
        grad_elev = (
Nikhila Ravi's avatar
Nikhila Ravi committed
320
            -(torch.sin(elev)) * torch.sin(azim)
facebook-github-bot's avatar
facebook-github-bot committed
321
            + torch.cos(elev)
322
            - torch.sin(elev) * torch.cos(azim)
facebook-github-bot's avatar
facebook-github-bot committed
323
324
        )
        grad_elev = (dist * (math.pi / 180.0) * grad_elev).sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
325
326
        self.assertClose(elev_grad, grad_elev)
        self.assertClose(dist_grad, torch.full([3], grad_dist))
facebook-github-bot's avatar
facebook-github-bot committed
327
328
329
330
331
332
333
334
335
336
337
338

    def test_camera_position_from_angles_vectors_bad_broadcast(self):
        # Batch dim for broadcast must be N or 1
        dist = torch.tensor([2.0, 3.0, 5.0])
        elev = torch.tensor([0.0, 90.0])
        azim = torch.tensor([90.0])
        with self.assertRaises(ValueError):
            camera_position_from_spherical_angles(dist, elev, azim)

    def test_look_at_rotation_python_list(self):
        camera_position = [[0.0, 0.0, -1.0]]  # camera pointing along negative z
        rot_mat = look_at_rotation(camera_position)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
339
        self.assertClose(rot_mat, torch.eye(3)[None], atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

    def test_look_at_rotation_input_fail(self):
        camera_position = [-1.0]  # expected to have xyz positions
        with self.assertRaises(ValueError):
            look_at_rotation(camera_position)

    def test_look_at_rotation_list_broadcast(self):
        # fmt: off
        camera_positions = [[0.0, 0.0, -1.0], [0.0, 0.0, 1.0]]
        rot_mats_expected = torch.tensor(
            [
                [
                    [1.0, 0.0, 0.0],
                    [0.0, 1.0, 0.0],
                    [0.0, 0.0, 1.0]
                ],
                [
                    [-1.0, 0.0,  0.0],  # noqa: E241, E201
                    [ 0.0, 1.0,  0.0],  # noqa: E241, E201
                    [ 0.0, 0.0, -1.0]   # noqa: E241, E201
                ],
            ],
            dtype=torch.float32
        )
        # fmt: on
        rot_mats = look_at_rotation(camera_positions)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
366
        self.assertClose(rot_mats, rot_mats_expected, atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

    def test_look_at_rotation_tensor_broadcast(self):
        # fmt: off
        camera_positions = torch.tensor([
            [0.0, 0.0, -1.0],
            [0.0, 0.0,  1.0]   # noqa: E241, E201
        ], dtype=torch.float32)
        rot_mats_expected = torch.tensor(
            [
                [
                    [1.0, 0.0, 0.0],
                    [0.0, 1.0, 0.0],
                    [0.0, 0.0, 1.0]
                ],
                [
                    [-1.0, 0.0,  0.0],  # noqa: E241, E201
                    [ 0.0, 1.0,  0.0],  # noqa: E241, E201
                    [ 0.0, 0.0, -1.0]   # noqa: E241, E201
                ],
            ],
            dtype=torch.float32
        )
        # fmt: on
        rot_mats = look_at_rotation(camera_positions)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
391
        self.assertClose(rot_mats, rot_mats_expected, atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
392
393
394
395
396
397

    def test_look_at_rotation_tensor_grad(self):
        camera_position = torch.tensor([[0.0, 0.0, -1.0]], requires_grad=True)
        rot_mat = look_at_rotation(camera_position)
        rot_mat.sum().backward()
        self.assertTrue(hasattr(camera_position, "grad"))
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
398
399
        self.assertClose(
            camera_position.grad, torch.zeros_like(camera_position), atol=2e-7
facebook-github-bot's avatar
facebook-github-bot committed
400
401
402
403
404
405
406
407
        )

    def test_view_transform(self):
        T = torch.tensor([0.0, 0.0, -1.0], requires_grad=True).view(1, -1)
        R = look_at_rotation(T)
        RT = get_world_to_view_transform(R=R, T=T)
        self.assertTrue(isinstance(RT, Transform3d))

Amitav Baruah's avatar
Amitav Baruah committed
408
409
410
411
412
413
414
415
416
417
418
419
420
421
    def test_look_at_view_transform_corner_case(self):
        dist = 2.7
        elev = 90
        azim = 90
        expected_position = torch.tensor([0.0, 2.7, 0.0], dtype=torch.float32).view(
            1, 3
        )
        position = camera_position_from_spherical_angles(dist, elev, azim)
        self.assertClose(position, expected_position, atol=2e-7)
        R, _ = look_at_view_transform(eye=position)
        x_axis = R[:, :, 0]
        expected_x_axis = torch.tensor([0.0, 0.0, -1.0], dtype=torch.float32).view(1, 3)
        self.assertClose(x_axis, expected_x_axis, atol=5e-3)

422
423

class TestCamerasCommon(TestCaseMixin, unittest.TestCase):
424
425
426
427
428
429
430
431
432
433
434
435
436
437
    def test_K(self, batch_size=10):
        T = torch.randn(batch_size, 3)
        R = random_rotations(batch_size)
        K = torch.randn(batch_size, 4, 4)
        for cam_type in (
            FoVOrthographicCameras,
            FoVPerspectiveCameras,
            OrthographicCameras,
            PerspectiveCameras,
        ):
            cam = cam_type(R=R, T=T, K=K)
            cam.get_projection_transform()
            # Just checking that we don't crash or anything

facebook-github-bot's avatar
facebook-github-bot committed
438
439
440
441
442
443
444
445
446
    def test_view_transform_class_method(self):
        T = torch.tensor([0.0, 0.0, -1.0], requires_grad=True).view(1, -1)
        R = look_at_rotation(T)
        RT = get_world_to_view_transform(R=R, T=T)
        for cam_type in (
            OpenGLPerspectiveCameras,
            OpenGLOrthographicCameras,
            SfMOrthographicCameras,
            SfMPerspectiveCameras,
Georgia Gkioxari's avatar
Georgia Gkioxari committed
447
448
449
450
            FoVOrthographicCameras,
            FoVPerspectiveCameras,
            OrthographicCameras,
            PerspectiveCameras,
facebook-github-bot's avatar
facebook-github-bot committed
451
452
453
        ):
            cam = cam_type(R=R, T=T)
            RT_class = cam.get_world_to_view_transform()
454
            self.assertTrue(torch.allclose(RT.get_matrix(), RT_class.get_matrix()))
facebook-github-bot's avatar
facebook-github-bot committed
455
456
457
458
459

        self.assertTrue(isinstance(RT, Transform3d))

    def test_get_camera_center(self, batch_size=10):
        T = torch.randn(batch_size, 3)
David Novotny's avatar
David Novotny committed
460
        R = random_rotations(batch_size)
facebook-github-bot's avatar
facebook-github-bot committed
461
462
463
464
465
        for cam_type in (
            OpenGLPerspectiveCameras,
            OpenGLOrthographicCameras,
            SfMOrthographicCameras,
            SfMPerspectiveCameras,
Georgia Gkioxari's avatar
Georgia Gkioxari committed
466
467
468
469
            FoVOrthographicCameras,
            FoVPerspectiveCameras,
            OrthographicCameras,
            PerspectiveCameras,
facebook-github-bot's avatar
facebook-github-bot committed
470
471
472
473
474
475
        ):
            cam = cam_type(R=R, T=T)
            C = cam.get_camera_center()
            C_ = -torch.bmm(R, T[:, :, None])[:, :, 0]
            self.assertTrue(torch.allclose(C, C_, atol=1e-05))

Georgia Gkioxari's avatar
Georgia Gkioxari committed
476
477
478
479
    @staticmethod
    def init_equiv_cameras_ndc_screen(cam_type: CamerasBase, batch_size: int):
        T = torch.randn(batch_size, 3) * 0.03
        T[:, 2] = 4
480
        R = so3_exp_map(torch.randn(batch_size, 3) * 3.0)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
481
482
483
        screen_cam_params = {"R": R, "T": T}
        ndc_cam_params = {"R": R, "T": T}
        if cam_type in (OrthographicCameras, PerspectiveCameras):
484
485
486
            fcl = torch.rand((batch_size, 2)) * 3.0 + 0.1
            prc = torch.randn((batch_size, 2)) * 0.2
            # (height, width)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
487
            image_size = torch.randint(low=2, high=64, size=(batch_size, 2))
488
            # scale
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
489
            scale = (image_size.min(dim=1, keepdim=True).values) / 2.0
490
491
492
493
494

            ndc_cam_params["focal_length"] = fcl
            ndc_cam_params["principal_point"] = prc
            ndc_cam_params["image_size"] = image_size

Georgia Gkioxari's avatar
Georgia Gkioxari committed
495
            screen_cam_params["image_size"] = image_size
496
            screen_cam_params["focal_length"] = fcl * scale
Georgia Gkioxari's avatar
Georgia Gkioxari committed
497
            screen_cam_params["principal_point"] = (
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
498
                image_size[:, [1, 0]]
499
500
            ) / 2.0 - prc * scale
            screen_cam_params["in_ndc"] = False
Georgia Gkioxari's avatar
Georgia Gkioxari committed
501
502
503
504
        else:
            raise ValueError(str(cam_type))
        return cam_type(**ndc_cam_params), cam_type(**screen_cam_params)

505
506
507
508
509
510
511
512
513
514
515
    def test_unproject_points(self, batch_size=50, num_points=100):
        """
        Checks that an unprojection of a randomly projected point cloud
        stays the same.
        """

        for cam_type in (
            SfMOrthographicCameras,
            OpenGLPerspectiveCameras,
            OpenGLOrthographicCameras,
            SfMPerspectiveCameras,
Georgia Gkioxari's avatar
Georgia Gkioxari committed
516
517
518
519
            FoVOrthographicCameras,
            FoVPerspectiveCameras,
            OrthographicCameras,
            PerspectiveCameras,
520
521
        ):
            # init the cameras
David Novotny's avatar
David Novotny committed
522
            cameras = init_random_cameras(cam_type, batch_size)
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
            # xyz - the ground truth point cloud
            xyz = torch.randn(batch_size, num_points, 3) * 0.3
            # xyz in camera coordinates
            xyz_cam = cameras.get_world_to_view_transform().transform_points(xyz)
            # depth = z-component of xyz_cam
            depth = xyz_cam[:, :, 2:]
            # project xyz
            xyz_proj = cameras.transform_points(xyz)
            xy, cam_depth = xyz_proj.split(2, dim=2)
            # input to the unprojection function
            xy_depth = torch.cat((xy, depth), dim=2)

            for to_world in (False, True):
                if to_world:
                    matching_xyz = xyz
                else:
                    matching_xyz = xyz_cam

Georgia Gkioxari's avatar
Georgia Gkioxari committed
541
                # if we have FoV (= OpenGL) cameras
542
                # test for scaled_depth_input=True/False
Georgia Gkioxari's avatar
Georgia Gkioxari committed
543
544
545
546
547
548
                if cam_type in (
                    OpenGLPerspectiveCameras,
                    OpenGLOrthographicCameras,
                    FoVPerspectiveCameras,
                    FoVOrthographicCameras,
                ):
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
                    for scaled_depth_input in (True, False):
                        if scaled_depth_input:
                            xy_depth_ = xyz_proj
                        else:
                            xy_depth_ = xy_depth
                        xyz_unproj = cameras.unproject_points(
                            xy_depth_,
                            world_coordinates=to_world,
                            scaled_depth_input=scaled_depth_input,
                        )
                        self.assertTrue(
                            torch.allclose(xyz_unproj, matching_xyz, atol=1e-4)
                        )
                else:
                    xyz_unproj = cameras.unproject_points(
                        xy_depth, world_coordinates=to_world
                    )
                    self.assertTrue(torch.allclose(xyz_unproj, matching_xyz, atol=1e-4))

Jiali Duan's avatar
Jiali Duan committed
568
    @staticmethod
Jiali Duan's avatar
Jiali Duan committed
569
570
571
    def unproject_points(
        cam_type, batch_size=50, num_points=100, device: Device = "cpu"
    ):
Jiali Duan's avatar
Jiali Duan committed
572
573
574
575
        """
        Checks that an unprojection of a randomly projected point cloud
        stays the same.
        """
Jiali Duan's avatar
Jiali Duan committed
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
        if device == "cuda":
            device = torch.device("cuda:0")
        else:
            device = torch.device("cpu")

        str2cls = {  # noqa
            "OpenGLOrthographicCameras": OpenGLOrthographicCameras,
            "OpenGLPerspectiveCameras": OpenGLPerspectiveCameras,
            "SfMOrthographicCameras": SfMOrthographicCameras,
            "SfMPerspectiveCameras": SfMPerspectiveCameras,
            "FoVOrthographicCameras": FoVOrthographicCameras,
            "FoVPerspectiveCameras": FoVPerspectiveCameras,
            "OrthographicCameras": OrthographicCameras,
            "PerspectiveCameras": PerspectiveCameras,
            "FishEyeCameras": FishEyeCameras,
        }
Jiali Duan's avatar
Jiali Duan committed
592
593
594

        def run_cameras():
            # init the cameras
Jiali Duan's avatar
Jiali Duan committed
595
            cameras = init_random_cameras(str2cls[cam_type], batch_size, device=device)
Jiali Duan's avatar
Jiali Duan committed
596
597
598
599
600
601
            # xyz - the ground truth point cloud
            xyz = torch.randn(num_points, 3) * 0.3
            xyz = cameras.unproject_points(xyz, scaled_depth_input=True)

        return run_cameras

Georgia Gkioxari's avatar
Georgia Gkioxari committed
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
    def test_project_points_screen(self, batch_size=50, num_points=100):
        """
        Checks that an unprojection of a randomly projected point cloud
        stays the same.
        """

        for cam_type in (
            OpenGLOrthographicCameras,
            OpenGLPerspectiveCameras,
            SfMOrthographicCameras,
            SfMPerspectiveCameras,
            FoVOrthographicCameras,
            FoVPerspectiveCameras,
            OrthographicCameras,
            PerspectiveCameras,
        ):

            # init the cameras
David Novotny's avatar
David Novotny committed
620
            cameras = init_random_cameras(cam_type, batch_size)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
621
            # xyz - the ground truth point cloud
622
623
624
            xy = torch.randn(batch_size, num_points, 2) * 2.0 - 1.0
            z = torch.randn(batch_size, num_points, 1) * 3.0 + 1.0
            xyz = torch.cat((xy, z), dim=2)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
625
            # image size
626
            image_size = torch.randint(low=32, high=64, size=(batch_size, 2))
Georgia Gkioxari's avatar
Georgia Gkioxari committed
627
            # project points
628
629
630
631
            xyz_project_ndc = cameras.transform_points_ndc(xyz)
            xyz_project_screen = cameras.transform_points_screen(
                xyz, image_size=image_size
            )
Georgia Gkioxari's avatar
Georgia Gkioxari committed
632
633
634
635
            # naive
            xyz_project_screen_naive = ndc_to_screen_points_naive(
                xyz_project_ndc, image_size
            )
636
            # we set atol to 1e-4, remember that screen points are in [0, W]x[0, H] space
637
            self.assertClose(xyz_project_screen, xyz_project_screen_naive, atol=1e-4)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
638

Jiali Duan's avatar
Jiali Duan committed
639
    @staticmethod
Jiali Duan's avatar
Jiali Duan committed
640
641
642
    def transform_points(
        cam_type, batch_size=50, num_points=100, device: Device = "cpu"
    ):
Jiali Duan's avatar
Jiali Duan committed
643
644
645
646
647
        """
        Checks that an unprojection of a randomly projected point cloud
        stays the same.
        """

Jiali Duan's avatar
Jiali Duan committed
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
        if device == "cuda":
            device = torch.device("cuda:0")
        else:
            device = torch.device("cpu")
        str2cls = {  # noqa
            "OpenGLOrthographicCameras": OpenGLOrthographicCameras,
            "OpenGLPerspectiveCameras": OpenGLPerspectiveCameras,
            "SfMOrthographicCameras": SfMOrthographicCameras,
            "SfMPerspectiveCameras": SfMPerspectiveCameras,
            "FoVOrthographicCameras": FoVOrthographicCameras,
            "FoVPerspectiveCameras": FoVPerspectiveCameras,
            "OrthographicCameras": OrthographicCameras,
            "PerspectiveCameras": PerspectiveCameras,
            "FishEyeCameras": FishEyeCameras,
        }

Jiali Duan's avatar
Jiali Duan committed
664
665
        def run_cameras():
            # init the cameras
Jiali Duan's avatar
Jiali Duan committed
666
            cameras = init_random_cameras(str2cls[cam_type], batch_size, device=device)
Jiali Duan's avatar
Jiali Duan committed
667
668
669
670
671
672
673
674
            # xyz - the ground truth point cloud
            xy = torch.randn(num_points, 2) * 2.0 - 1.0
            z = torch.randn(num_points, 1) * 3.0 + 1.0
            xyz = torch.cat((xy, z), dim=-1)
            xy = cameras.transform_points(xyz)

        return run_cameras

Georgia Gkioxari's avatar
Georgia Gkioxari committed
675
676
677
678
679
680
681
682
683
684
685
    def test_equiv_project_points(self, batch_size=50, num_points=100):
        """
        Checks that NDC and screen cameras project points to ndc correctly.
        Applies only to OrthographicCameras and PerspectiveCameras.
        """
        for cam_type in (OrthographicCameras, PerspectiveCameras):
            # init the cameras
            (
                ndc_cameras,
                screen_cameras,
            ) = TestCamerasCommon.init_equiv_cameras_ndc_screen(cam_type, batch_size)
686
687
688
689
            # xyz - the ground truth point cloud in Py3D space
            xy = torch.randn(batch_size, num_points, 2) * 0.3
            z = torch.rand(batch_size, num_points, 1) + 3.0 + 0.1
            xyz = torch.cat((xy, z), dim=2)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
690
            # project points
691
692
693
694
            xyz_ndc = ndc_cameras.transform_points_ndc(xyz)
            xyz_screen = screen_cameras.transform_points_ndc(xyz)
            # check correctness
            self.assertClose(xyz_ndc, xyz_screen, atol=1e-5)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
695

696
697
698
699
700
701
702
703
704
    def test_clone(self, batch_size: int = 10):
        """
        Checks the clone function of the cameras.
        """
        for cam_type in (
            SfMOrthographicCameras,
            OpenGLPerspectiveCameras,
            OpenGLOrthographicCameras,
            SfMPerspectiveCameras,
Georgia Gkioxari's avatar
Georgia Gkioxari committed
705
706
707
708
            FoVOrthographicCameras,
            FoVPerspectiveCameras,
            OrthographicCameras,
            PerspectiveCameras,
709
        ):
David Novotny's avatar
David Novotny committed
710
            cameras = init_random_cameras(cam_type, batch_size)
711
712
713
714
715
716
717
718
719
720
721
722
            cameras = cameras.to(torch.device("cpu"))
            cameras_clone = cameras.clone()

            for var in cameras.__dict__.keys():
                val = getattr(cameras, var)
                val_clone = getattr(cameras_clone, var)
                if torch.is_tensor(val):
                    self.assertClose(val, val_clone)
                    self.assertSeparate(val, val_clone)
                else:
                    self.assertTrue(val == val_clone)

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
    def test_join_cameras_as_batch_errors(self):
        cam0 = PerspectiveCameras(device="cuda:0")
        cam1 = OrthographicCameras(device="cuda:0")

        # Cameras not of the same type
        with self.assertRaisesRegex(ValueError, "same type"):
            join_cameras_as_batch([cam0, cam1])

        cam2 = OrthographicCameras(device="cpu")
        # Cameras not on the same device
        with self.assertRaisesRegex(ValueError, "same device"):
            join_cameras_as_batch([cam1, cam2])

        cam3 = OrthographicCameras(in_ndc=False, device="cuda:0")
        # Different coordinate systems -- all should be in ndc or in screen
        with self.assertRaisesRegex(
            ValueError, "Attribute _in_ndc is not constant across inputs"
        ):
            join_cameras_as_batch([cam1, cam3])

    def join_cameras_as_batch_fov(self, camera_cls):
        R0 = torch.randn((6, 3, 3))
        R1 = torch.randn((3, 3, 3))
        cam0 = camera_cls(znear=10.0, zfar=100.0, R=R0, device="cuda:0")
        cam1 = camera_cls(znear=10.0, zfar=200.0, R=R1, device="cuda:0")

        cam_batch = join_cameras_as_batch([cam0, cam1])

        self.assertEqual(cam_batch._N, cam0._N + cam1._N)
        self.assertEqual(cam_batch.device, cam0.device)
        self.assertClose(cam_batch.R, torch.cat((R0, R1), dim=0).to(device="cuda:0"))

    def join_cameras_as_batch(self, camera_cls):
        R0 = torch.randn((6, 3, 3))
        R1 = torch.randn((3, 3, 3))
        p0 = torch.randn((6, 2, 1))
        p1 = torch.randn((3, 2, 1))
        f0 = 5.0
        f1 = torch.randn(3, 2)
        f2 = torch.randn(3, 1)
        cam0 = camera_cls(
            R=R0,
            focal_length=f0,
            principal_point=p0,
        )
        cam1 = camera_cls(
            R=R1,
            focal_length=f0,
            principal_point=p1,
        )
        cam2 = camera_cls(
            R=R1,
            focal_length=f1,
            principal_point=p1,
        )
        cam3 = camera_cls(
            R=R1,
            focal_length=f2,
            principal_point=p1,
        )
        cam_batch = join_cameras_as_batch([cam0, cam1])

        self.assertEqual(cam_batch._N, cam0._N + cam1._N)
        self.assertEqual(cam_batch.device, cam0.device)
        self.assertClose(cam_batch.R, torch.cat((R0, R1), dim=0))
        self.assertClose(cam_batch.principal_point, torch.cat((p0, p1), dim=0))
        self.assertEqual(cam_batch._in_ndc, cam0._in_ndc)

        # Test one broadcasted value and one fixed value
        # Focal length as (N,) in one camera and (N, 2) in the other
        cam_batch = join_cameras_as_batch([cam0, cam2])
        self.assertEqual(cam_batch._N, cam0._N + cam2._N)
        self.assertClose(cam_batch.R, torch.cat((R0, R1), dim=0))
        self.assertClose(
            cam_batch.focal_length,
            torch.cat([torch.tensor([[f0, f0]]).expand(6, -1), f1], dim=0),
        )

        # Focal length as (N, 1) in one camera and (N, 2) in the other
        cam_batch = join_cameras_as_batch([cam2, cam3])
        self.assertClose(
            cam_batch.focal_length,
            torch.cat([f1, f2.expand(-1, 2)], dim=0),
        )

    def test_join_batch_perspective(self):
        self.join_cameras_as_batch_fov(FoVPerspectiveCameras)
        self.join_cameras_as_batch(PerspectiveCameras)

    def test_join_batch_orthographic(self):
        self.join_cameras_as_batch_fov(FoVOrthographicCameras)
        self.join_cameras_as_batch(OrthographicCameras)

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
816
817
818
819
820
    def test_iterable(self):
        for camera_type in [PerspectiveCameras, OrthographicCameras]:
            a_list = list(camera_type())
            self.assertEqual(len(a_list), 1)

facebook-github-bot's avatar
facebook-github-bot committed
821

Georgia Gkioxari's avatar
Georgia Gkioxari committed
822
823
824
825
826
827
############################################################
#                FoVPerspective Camera                     #
############################################################


class TestFoVPerspectiveProjection(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
828
829
830
    def test_perspective(self):
        far = 10.0
        near = 1.0
Georgia Gkioxari's avatar
Georgia Gkioxari committed
831
        cameras = FoVPerspectiveCameras(znear=near, zfar=far, fov=60.0)
facebook-github-bot's avatar
facebook-github-bot committed
832
833
834
835
836
837
838
839
840
        P = cameras.get_projection_transform()
        # vertices are at the far clipping plane so z gets mapped to 1.
        vertices = torch.tensor([1, 2, far], dtype=torch.float32)
        projected_verts = torch.tensor(
            [np.sqrt(3) / far, 2 * np.sqrt(3) / far, 1.0], dtype=torch.float32
        )
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
        v2 = perspective_project_naive(vertices, fov=60.0)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
841
842
843
        self.assertClose(v1[..., :2], v2[..., :2])
        self.assertClose(far * v1[..., 2], v2[..., 2])
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
844
845
846
847
848
849
850
851

        # vertices are at the near clipping plane so z gets mapped to 0.0.
        vertices[..., 2] = near
        projected_verts = torch.tensor(
            [np.sqrt(3) / near, 2 * np.sqrt(3) / near, 0.0], dtype=torch.float32
        )
        v1 = P.transform_points(vertices)
        v2 = perspective_project_naive(vertices, fov=60.0)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
852
853
        self.assertClose(v1[..., :2], v2[..., :2])
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
854
855

    def test_perspective_kwargs(self):
Georgia Gkioxari's avatar
Georgia Gkioxari committed
856
        cameras = FoVPerspectiveCameras(znear=5.0, zfar=100.0, fov=0.0)
facebook-github-bot's avatar
facebook-github-bot committed
857
858
859
860
861
862
863
864
865
        # Override defaults by passing in values to get_projection_transform
        far = 10.0
        P = cameras.get_projection_transform(znear=1.0, zfar=far, fov=60.0)
        vertices = torch.tensor([1, 2, far], dtype=torch.float32)
        projected_verts = torch.tensor(
            [np.sqrt(3) / far, 2 * np.sqrt(3) / far, 1.0], dtype=torch.float32
        )
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
866
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
867
868
869
870
871

    def test_perspective_mixed_inputs_broadcast(self):
        far = torch.tensor([10.0, 20.0], dtype=torch.float32)
        near = 1.0
        fov = torch.tensor(60.0)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
872
        cameras = FoVPerspectiveCameras(znear=near, zfar=far, fov=fov)
facebook-github-bot's avatar
facebook-github-bot committed
873
874
875
        P = cameras.get_projection_transform()
        vertices = torch.tensor([1, 2, 10], dtype=torch.float32)
        z1 = 1.0  # vertices at far clipping plane so z = 1.0
Nikhila Ravi's avatar
Nikhila Ravi committed
876
        z2 = (20.0 / (20.0 - 1.0) * 10.0 + -20.0 / (20.0 - 1.0)) / 10.0
facebook-github-bot's avatar
facebook-github-bot committed
877
878
879
880
881
882
883
884
885
886
        projected_verts = torch.tensor(
            [
                [np.sqrt(3) / 10.0, 2 * np.sqrt(3) / 10.0, z1],
                [np.sqrt(3) / 10.0, 2 * np.sqrt(3) / 10.0, z2],
            ],
            dtype=torch.float32,
        )
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
        v2 = perspective_project_naive(vertices, fov=60.0)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
887
888
        self.assertClose(v1[..., :2], torch.cat([v2, v2])[..., :2])
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
889
890
891
892
893

    def test_perspective_mixed_inputs_grad(self):
        far = torch.tensor([10.0])
        near = 1.0
        fov = torch.tensor(60.0, requires_grad=True)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
894
        cameras = FoVPerspectiveCameras(znear=near, zfar=far, fov=fov)
facebook-github-bot's avatar
facebook-github-bot committed
895
896
897
898
899
900
901
902
903
904
905
        P = cameras.get_projection_transform()
        vertices = torch.tensor([1, 2, 10], dtype=torch.float32)
        vertices_batch = vertices[None, None, :]
        v1 = P.transform_points(vertices_batch).squeeze()
        v1.sum().backward()
        self.assertTrue(hasattr(fov, "grad"))
        fov_grad = fov.grad.clone()
        half_fov_rad = (math.pi / 180.0) * fov.detach() / 2.0
        grad_cotan = -(1.0 / (torch.sin(half_fov_rad) ** 2.0) * 1 / 2.0)
        grad_fov = (math.pi / 180.0) * grad_cotan
        grad_fov = (vertices[0] + vertices[1]) * grad_fov / 10.0
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
906
        self.assertClose(fov_grad, grad_fov)
facebook-github-bot's avatar
facebook-github-bot committed
907
908
909

    def test_camera_class_init(self):
        device = torch.device("cuda:0")
Georgia Gkioxari's avatar
Georgia Gkioxari committed
910
        cam = FoVPerspectiveCameras(znear=10.0, zfar=(100.0, 200.0))
facebook-github-bot's avatar
facebook-github-bot committed
911
912
913
914
915
916
917
918
919

        # Check broadcasting
        self.assertTrue(cam.znear.shape == (2,))
        self.assertTrue(cam.zfar.shape == (2,))

        # Test to
        new_cam = cam.to(device=device)
        self.assertTrue(new_cam.device == device)

920
    def test_getitem(self):
Roman Shapovalov's avatar
Roman Shapovalov committed
921
922
        N_CAMERAS = 6
        R_matrix = torch.randn((N_CAMERAS, 3, 3))
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
        cam = FoVPerspectiveCameras(znear=10.0, zfar=100.0, R=R_matrix)

        # Check get item returns an instance of the same class
        # with all the same keys
        c0 = cam[0]
        self.assertTrue(isinstance(c0, FoVPerspectiveCameras))
        self.assertEqual(cam.__dict__.keys(), c0.__dict__.keys())

        # Check all fields correct in get item with int index
        self.assertEqual(len(c0), 1)
        self.assertClose(c0.zfar, torch.tensor([100.0]))
        self.assertClose(c0.znear, torch.tensor([10.0]))
        self.assertClose(c0.R, R_matrix[0:1, ...])
        self.assertEqual(c0.device, torch.device("cpu"))

        # Check list(int) index
        c012 = cam[[0, 1, 2]]
        self.assertEqual(len(c012), 3)
        self.assertClose(c012.zfar, torch.tensor([100.0] * 3))
        self.assertClose(c012.znear, torch.tensor([10.0] * 3))
        self.assertClose(c012.R, R_matrix[0:3, ...])

        # Check torch.LongTensor index
Roman Shapovalov's avatar
Roman Shapovalov committed
946
947
        SLICE = [1, 3, 5]
        index = torch.tensor(SLICE, dtype=torch.int64)
948
949
950
951
        c135 = cam[index]
        self.assertEqual(len(c135), 3)
        self.assertClose(c135.zfar, torch.tensor([100.0] * 3))
        self.assertClose(c135.znear, torch.tensor([10.0] * 3))
Roman Shapovalov's avatar
Roman Shapovalov committed
952
953
954
955
956
957
958
959
960
961
        self.assertClose(c135.R, R_matrix[SLICE, ...])

        # Check torch.BoolTensor index
        bool_slice = [i in SLICE for i in range(N_CAMERAS)]
        index = torch.tensor(bool_slice, dtype=torch.bool)
        c135 = cam[index]
        self.assertEqual(len(c135), 3)
        self.assertClose(c135.zfar, torch.tensor([100.0] * 3))
        self.assertClose(c135.znear, torch.tensor([10.0] * 3))
        self.assertClose(c135.R, R_matrix[SLICE, ...])
962
963

        # Check errors with get item
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
964
        with self.assertRaisesRegex(IndexError, "out of bounds"):
Roman Shapovalov's avatar
Roman Shapovalov committed
965
966
967
968
969
            cam[N_CAMERAS]

        with self.assertRaisesRegex(ValueError, "does not match cameras"):
            index = torch.tensor([1, 0, 1], dtype=torch.bool)
            cam[index]
970
971
972
973
974

        with self.assertRaisesRegex(ValueError, "Invalid index type"):
            cam[slice(0, 1)]

        with self.assertRaisesRegex(ValueError, "Invalid index type"):
Roman Shapovalov's avatar
Roman Shapovalov committed
975
976
977
978
            cam[[True, False]]

        with self.assertRaisesRegex(ValueError, "Invalid index type"):
            index = torch.tensor(SLICE, dtype=torch.float32)
979
980
            cam[index]

facebook-github-bot's avatar
facebook-github-bot committed
981
    def test_get_full_transform(self):
Georgia Gkioxari's avatar
Georgia Gkioxari committed
982
        cam = FoVPerspectiveCameras()
facebook-github-bot's avatar
facebook-github-bot committed
983
984
985
986
        T = torch.tensor([0.0, 0.0, 1.0]).view(1, -1)
        R = look_at_rotation(T)
        P = cam.get_full_projection_transform(R=R, T=T)
        self.assertTrue(isinstance(P, Transform3d))
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
987
988
        self.assertClose(cam.R, R)
        self.assertClose(cam.T, T)
facebook-github-bot's avatar
facebook-github-bot committed
989
990
991
992
993

    def test_transform_points(self):
        # Check transform_points methods works with default settings for
        # RT and P
        far = 10.0
Georgia Gkioxari's avatar
Georgia Gkioxari committed
994
        cam = FoVPerspectiveCameras(znear=1.0, zfar=far, fov=60.0)
facebook-github-bot's avatar
facebook-github-bot committed
995
996
997
998
999
1000
1001
        points = torch.tensor([1, 2, far], dtype=torch.float32)
        points = points.view(1, 1, 3).expand(5, 10, -1)
        projected_points = torch.tensor(
            [np.sqrt(3) / far, 2 * np.sqrt(3) / far, 1.0], dtype=torch.float32
        )
        projected_points = projected_points.view(1, 1, 3).expand(5, 10, -1)
        new_points = cam.transform_points(points)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1002
        self.assertClose(new_points, projected_points)
facebook-github-bot's avatar
facebook-github-bot committed
1003

1004
1005
1006
    def test_perspective_type(self):
        cam = FoVPerspectiveCameras(znear=1.0, zfar=10.0, fov=60.0)
        self.assertTrue(cam.is_perspective())
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1007
        self.assertEqual(cam.get_znear(), 1.0)
1008

facebook-github-bot's avatar
facebook-github-bot committed
1009

Georgia Gkioxari's avatar
Georgia Gkioxari committed
1010
1011
1012
1013
1014
1015
############################################################
#                FoVOrthographic Camera                    #
############################################################


class TestFoVOrthographicProjection(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
1016
1017
1018
    def test_orthographic(self):
        far = 10.0
        near = 1.0
Georgia Gkioxari's avatar
Georgia Gkioxari committed
1019
        cameras = FoVOrthographicCameras(znear=near, zfar=far)
facebook-github-bot's avatar
facebook-github-bot committed
1020
1021
1022
1023
1024
1025
1026
        P = cameras.get_projection_transform()

        vertices = torch.tensor([1, 2, far], dtype=torch.float32)
        projected_verts = torch.tensor([1, 2, 1], dtype=torch.float32)
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1027
1028
        self.assertClose(v1[..., :2], v2[..., :2])
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
1029
1030
1031
1032
1033

        vertices[..., 2] = near
        projected_verts[2] = 0.0
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1034
1035
        self.assertClose(v1[..., :2], v2[..., :2])
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
1036
1037
1038
1039
1040
1041
1042
1043

    def test_orthographic_scaled(self):
        vertices = torch.tensor([1, 2, 0.5], dtype=torch.float32)
        vertices = vertices[None, None, :]
        scale = torch.tensor([[2.0, 0.5, 20]])
        # applying the scale puts the z coordinate at the far clipping plane
        # so the z is mapped to 1.0
        projected_verts = torch.tensor([2, 1, 1], dtype=torch.float32)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
1044
        cameras = FoVOrthographicCameras(znear=1.0, zfar=10.0, scale_xyz=scale)
facebook-github-bot's avatar
facebook-github-bot committed
1045
1046
1047
        P = cameras.get_projection_transform()
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(vertices, scale)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1048
1049
        self.assertClose(v1[..., :2], v2[..., :2])
        self.assertClose(v1, projected_verts[None, None])
facebook-github-bot's avatar
facebook-github-bot committed
1050
1051

    def test_orthographic_kwargs(self):
Georgia Gkioxari's avatar
Georgia Gkioxari committed
1052
        cameras = FoVOrthographicCameras(znear=5.0, zfar=100.0)
facebook-github-bot's avatar
facebook-github-bot committed
1053
1054
1055
1056
1057
1058
        far = 10.0
        P = cameras.get_projection_transform(znear=1.0, zfar=far)
        vertices = torch.tensor([1, 2, far], dtype=torch.float32)
        projected_verts = torch.tensor([1, 2, 1], dtype=torch.float32)
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1059
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
1060
1061
1062
1063

    def test_orthographic_mixed_inputs_broadcast(self):
        far = torch.tensor([10.0, 20.0])
        near = 1.0
Georgia Gkioxari's avatar
Georgia Gkioxari committed
1064
        cameras = FoVOrthographicCameras(znear=near, zfar=far)
facebook-github-bot's avatar
facebook-github-bot committed
1065
1066
        P = cameras.get_projection_transform()
        vertices = torch.tensor([1.0, 2.0, 10.0], dtype=torch.float32)
Nikhila Ravi's avatar
Nikhila Ravi committed
1067
        z2 = 1.0 / (20.0 - 1.0) * 10.0 + -1.0 / (20.0 - 1.0)
facebook-github-bot's avatar
facebook-github-bot committed
1068
1069
1070
1071
1072
1073
        projected_verts = torch.tensor(
            [[1.0, 2.0, 1.0], [1.0, 2.0, z2]], dtype=torch.float32
        )
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1074
1075
        self.assertClose(v1[..., :2], torch.cat([v2, v2])[..., :2])
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
1076
1077
1078
1079
1080

    def test_orthographic_mixed_inputs_grad(self):
        far = torch.tensor([10.0])
        near = 1.0
        scale = torch.tensor([[1.0, 1.0, 1.0]], requires_grad=True)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
1081
        cameras = FoVOrthographicCameras(znear=near, zfar=far, scale_xyz=scale)
facebook-github-bot's avatar
facebook-github-bot committed
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
        P = cameras.get_projection_transform()
        vertices = torch.tensor([1.0, 2.0, 10.0], dtype=torch.float32)
        vertices_batch = vertices[None, None, :]
        v1 = P.transform_points(vertices_batch)
        v1.sum().backward()
        self.assertTrue(hasattr(scale, "grad"))
        scale_grad = scale.grad.clone()
        grad_scale = torch.tensor(
            [
                [
                    vertices[0] * P._matrix[:, 0, 0],
                    vertices[1] * P._matrix[:, 1, 1],
                    vertices[2] * P._matrix[:, 2, 2],
                ]
            ]
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1098
        self.assertClose(scale_grad, grad_scale)
facebook-github-bot's avatar
facebook-github-bot committed
1099

1100
1101
1102
    def test_perspective_type(self):
        cam = FoVOrthographicCameras(znear=1.0, zfar=10.0)
        self.assertFalse(cam.is_perspective())
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1103
        self.assertEqual(cam.get_znear(), 1.0)
1104

1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
    def test_getitem(self):
        R_matrix = torch.randn((6, 3, 3))
        scale = torch.tensor([[1.0, 1.0, 1.0]], requires_grad=True)
        cam = FoVOrthographicCameras(
            znear=10.0, zfar=100.0, R=R_matrix, scale_xyz=scale
        )

        # Check get item returns an instance of the same class
        # with all the same keys
        c0 = cam[0]
        self.assertTrue(isinstance(c0, FoVOrthographicCameras))
        self.assertEqual(cam.__dict__.keys(), c0.__dict__.keys())

        # Check torch.LongTensor index
        index = torch.tensor([1, 3, 5], dtype=torch.int64)
        c135 = cam[index]
        self.assertEqual(len(c135), 3)
        self.assertClose(c135.zfar, torch.tensor([100.0] * 3))
        self.assertClose(c135.znear, torch.tensor([10.0] * 3))
        self.assertClose(c135.min_x, torch.tensor([-1.0] * 3))
        self.assertClose(c135.max_x, torch.tensor([1.0] * 3))
        self.assertClose(c135.R, R_matrix[[1, 3, 5], ...])
        self.assertClose(c135.scale_xyz, scale.expand(3, -1))

facebook-github-bot's avatar
facebook-github-bot committed
1129

Georgia Gkioxari's avatar
Georgia Gkioxari committed
1130
1131
1132
1133
1134
1135
############################################################
#                Orthographic Camera                       #
############################################################


class TestOrthographicProjection(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
1136
    def test_orthographic(self):
Georgia Gkioxari's avatar
Georgia Gkioxari committed
1137
        cameras = OrthographicCameras()
facebook-github-bot's avatar
facebook-github-bot committed
1138
1139
1140
1141
1142
1143
1144
        P = cameras.get_projection_transform()

        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        projected_verts = vertices.clone()
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(vertices)

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1145
1146
        self.assertClose(v1[..., :2], v2[..., :2])
        self.assertClose(v1, projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
1147
1148
1149
1150
1151

    def test_orthographic_scaled(self):
        focal_length_x = 10.0
        focal_length_y = 15.0

Georgia Gkioxari's avatar
Georgia Gkioxari committed
1152
        cameras = OrthographicCameras(focal_length=((focal_length_x, focal_length_y),))
facebook-github-bot's avatar
facebook-github-bot committed
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
        P = cameras.get_projection_transform()

        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        projected_verts = vertices.clone()
        projected_verts[:, :, 0] *= focal_length_x
        projected_verts[:, :, 1] *= focal_length_y
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(
            vertices, scale_xyz=(focal_length_x, focal_length_y, 1.0)
        )
        v3 = cameras.transform_points(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1164
1165
1166
        self.assertClose(v1[..., :2], v2[..., :2])
        self.assertClose(v3[..., :2], v2[..., :2])
        self.assertClose(v1, projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
1167
1168

    def test_orthographic_kwargs(self):
Georgia Gkioxari's avatar
Georgia Gkioxari committed
1169
        cameras = OrthographicCameras(focal_length=5.0, principal_point=((2.5, 2.5),))
facebook-github-bot's avatar
facebook-github-bot committed
1170
1171
1172
1173
1174
1175
1176
1177
1178
        P = cameras.get_projection_transform(
            focal_length=2.0, principal_point=((2.5, 3.5),)
        )
        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        projected_verts = vertices.clone()
        projected_verts[:, :, :2] *= 2.0
        projected_verts[:, :, 0] += 2.5
        projected_verts[:, :, 1] += 3.5
        v1 = P.transform_points(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1179
        self.assertClose(v1, projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
1180

1181
1182
1183
    def test_perspective_type(self):
        cam = OrthographicCameras(focal_length=5.0, principal_point=((2.5, 2.5),))
        self.assertFalse(cam.is_perspective())
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1184
        self.assertIsNone(cam.get_znear())
1185

1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
    def test_getitem(self):
        R_matrix = torch.randn((6, 3, 3))
        principal_point = torch.randn((6, 2, 1))
        focal_length = 5.0
        cam = OrthographicCameras(
            R=R_matrix,
            focal_length=focal_length,
            principal_point=principal_point,
        )

        # Check get item returns an instance of the same class
        # with all the same keys
        c0 = cam[0]
        self.assertTrue(isinstance(c0, OrthographicCameras))
        self.assertEqual(cam.__dict__.keys(), c0.__dict__.keys())

        # Check torch.LongTensor index
        index = torch.tensor([1, 3, 5], dtype=torch.int64)
        c135 = cam[index]
        self.assertEqual(len(c135), 3)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1206
        self.assertClose(c135.focal_length, torch.tensor([[5.0, 5.0]] * 3))
1207
1208
1209
        self.assertClose(c135.R, R_matrix[[1, 3, 5], ...])
        self.assertClose(c135.principal_point, principal_point[[1, 3, 5], ...])

facebook-github-bot's avatar
facebook-github-bot committed
1210

Georgia Gkioxari's avatar
Georgia Gkioxari committed
1211
1212
1213
1214
1215
1216
############################################################
#                Perspective Camera                        #
############################################################


class TestPerspectiveProjection(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
1217
    def test_perspective(self):
Georgia Gkioxari's avatar
Georgia Gkioxari committed
1218
        cameras = PerspectiveCameras()
facebook-github-bot's avatar
facebook-github-bot committed
1219
1220
1221
1222
1223
        P = cameras.get_projection_transform()

        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        v1 = P.transform_points(vertices)
        v2 = sfm_perspective_project_naive(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1224
        self.assertClose(v1, v2)
facebook-github-bot's avatar
facebook-github-bot committed
1225
1226
1227
1228
1229
1230
1231

    def test_perspective_scaled(self):
        focal_length_x = 10.0
        focal_length_y = 15.0
        p0x = 15.0
        p0y = 30.0

Georgia Gkioxari's avatar
Georgia Gkioxari committed
1232
        cameras = PerspectiveCameras(
facebook-github-bot's avatar
facebook-github-bot committed
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
            focal_length=((focal_length_x, focal_length_y),),
            principal_point=((p0x, p0y),),
        )
        P = cameras.get_projection_transform()

        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        v1 = P.transform_points(vertices)
        v2 = sfm_perspective_project_naive(
            vertices, fx=focal_length_x, fy=focal_length_y, p0x=p0x, p0y=p0y
        )
        v3 = cameras.transform_points(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1244
1245
        self.assertClose(v1, v2)
        self.assertClose(v3[..., :2], v2[..., :2])
facebook-github-bot's avatar
facebook-github-bot committed
1246
1247

    def test_perspective_kwargs(self):
Georgia Gkioxari's avatar
Georgia Gkioxari committed
1248
        cameras = PerspectiveCameras(focal_length=5.0, principal_point=((2.5, 2.5),))
facebook-github-bot's avatar
facebook-github-bot committed
1249
1250
1251
1252
1253
        P = cameras.get_projection_transform(
            focal_length=2.0, principal_point=((2.5, 3.5),)
        )
        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        v1 = P.transform_points(vertices)
1254
        v2 = sfm_perspective_project_naive(vertices, fx=2.0, fy=2.0, p0x=2.5, p0y=3.5)
1255
        self.assertClose(v1, v2, atol=1e-6)
1256
1257
1258
1259

    def test_perspective_type(self):
        cam = PerspectiveCameras(focal_length=5.0, principal_point=((2.5, 2.5),))
        self.assertTrue(cam.is_perspective())
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1260
        self.assertIsNone(cam.get_znear())
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281

    def test_getitem(self):
        R_matrix = torch.randn((6, 3, 3))
        principal_point = torch.randn((6, 2, 1))
        focal_length = 5.0
        cam = PerspectiveCameras(
            R=R_matrix,
            focal_length=focal_length,
            principal_point=principal_point,
        )

        # Check get item returns an instance of the same class
        # with all the same keys
        c0 = cam[0]
        self.assertTrue(isinstance(c0, PerspectiveCameras))
        self.assertEqual(cam.__dict__.keys(), c0.__dict__.keys())

        # Check torch.LongTensor index
        index = torch.tensor([1, 3, 5], dtype=torch.int64)
        c135 = cam[index]
        self.assertEqual(len(c135), 3)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1282
        self.assertClose(c135.focal_length, torch.tensor([[5.0, 5.0]] * 3))
1283
1284
1285
1286
1287
        self.assertClose(c135.R, R_matrix[[1, 3, 5], ...])
        self.assertClose(c135.principal_point, principal_point[[1, 3, 5], ...])

        # Check in_ndc is handled correctly
        self.assertEqual(cam._in_ndc, c0._in_ndc)
Jiali Duan's avatar
Jiali Duan committed
1288

1289
1290
1291
1292
1293
    def test_clone_picklable(self):
        camera = PerspectiveCameras()
        pickle.dumps(camera)
        pickle.dumps(camera.clone())

Jiali Duan's avatar
Jiali Duan committed
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350

############################################################
#                FishEye Camera                        #
############################################################


class TestFishEyeProjection(TestCaseMixin, unittest.TestCase):
    def setUpSimpleCase(self) -> None:
        super().setUp()
        focal = torch.tensor([[240]], dtype=torch.float32)
        principal_point = torch.tensor([[320, 240]])
        p_3d = torch.tensor(
            [
                [2.0, 3.0, 1.0],
                [3.0, 2.0, 1.0],
            ],
            dtype=torch.float32,
        )
        return focal, principal_point, p_3d

    def setUpAriaCase(self) -> None:
        super().setUp()
        torch.manual_seed(42)
        focal = torch.tensor([[608.9255557152]], dtype=torch.float32)
        principal_point = torch.tensor(
            [[712.0114821205, 706.8666571177]], dtype=torch.float32
        )
        radial_params = torch.tensor(
            [
                [
                    0.3877090026,
                    -0.315613384,
                    -0.3434984955,
                    1.8565874201,
                    -2.1799372221,
                    0.7713834763,
                ],
            ],
            dtype=torch.float32,
        )
        tangential_params = torch.tensor(
            [[-0.0002747019, 0.0005228974]], dtype=torch.float32
        )
        thin_prism_params = torch.tensor(
            [
                [0.000134884, -0.000084822, -0.0009420014, -0.0001276838],
            ],
            dtype=torch.float32,
        )
        return (
            focal,
            principal_point,
            radial_params,
            tangential_params,
            thin_prism_params,
        )

1351
    def setUpBatchCameras(self, combination: None) -> None:
Jiali Duan's avatar
Jiali Duan committed
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
        super().setUp()
        focal, principal_point, p_3d = self.setUpSimpleCase()
        radial_params = torch.tensor(
            [
                [0, 0, 0, 0, 0, 0],
            ],
            dtype=torch.float32,
        )
        tangential_params = torch.tensor([[0, 0]], dtype=torch.float32)
        thin_prism_params = torch.tensor([[0, 0, 0, 0]], dtype=torch.float32)
        (
            focal1,
            principal_point1,
            radial_params1,
            tangential_params1,
            thin_prism_params1,
        ) = self.setUpAriaCase()
        focal = torch.cat([focal, focal1], dim=0)
        principal_point = torch.cat([principal_point, principal_point1], dim=0)
        radial_params = torch.cat([radial_params, radial_params1], dim=0)
        tangential_params = torch.cat([tangential_params, tangential_params1], dim=0)
        thin_prism_params = torch.cat([thin_prism_params, thin_prism_params1], dim=0)
1374
1375
        if combination is None:
            combination = [True, True, True]
Jiali Duan's avatar
Jiali Duan committed
1376
        cameras = FishEyeCameras(
1377
1378
1379
            use_radial=combination[0],
            use_tangential=combination[1],
            use_thin_prism=combination[2],
Jiali Duan's avatar
Jiali Duan committed
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
            focal_length=focal,
            principal_point=principal_point,
            radial_params=radial_params,
            tangential_params=tangential_params,
            thin_prism_params=thin_prism_params,
        )

        return cameras

    def test_distortion_params_set_to_zeors(self):
        # test case 1: all distortion params are 0. Note that
        # setting radial_params to zeros is not equivalent to
        # disabling radial distortions, set use_radial=False does
        focal, principal_point, p_3d = self.setUpSimpleCase()
        cameras = FishEyeCameras(
            focal_length=focal,
            principal_point=principal_point,
        )
        uv_case1 = cameras.transform_points(p_3d)
        self.assertClose(
            uv_case1,
            torch.tensor(
                [[493.0993, 499.6489, 1.0], [579.6489, 413.0993, 1.0]],
            ),
        )
        # test case 2: equivalent of test case 1 by
        # disabling use_tangential and use_thin_prism
        cameras = FishEyeCameras(
            focal_length=focal,
            principal_point=principal_point,
            use_tangential=False,
            use_thin_prism=False,
        )
        uv_case2 = cameras.transform_points(p_3d)
        self.assertClose(uv_case2, uv_case1)

    def test_fisheye_against_perspective_cameras(self):
        # test case: check equivalence with PerspectiveCameras
        # by disabling all distortions
        focal, principal_point, p_3d = self.setUpSimpleCase()
        cameras = PerspectiveCameras(
            focal_length=focal,
            principal_point=principal_point,
        )
        P = cameras.get_projection_transform()
        uv_perspective = P.transform_points(p_3d)

        # disable all distortions
        cameras = FishEyeCameras(
            focal_length=focal,
            principal_point=principal_point,
            use_radial=False,
            use_tangential=False,
            use_thin_prism=False,
        )
        uv = cameras.transform_points(p_3d)
        self.assertClose(uv, uv_perspective)

    def test_project_shape_broadcasts(self):
        focal, principal_point, p_3d = self.setUpSimpleCase()
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
        torch.set_printoptions(precision=6)
        combinations = product([0, 1], repeat=3)
        for combination in combinations:
            cameras = FishEyeCameras(
                use_radial=combination[0],
                use_tangential=combination[1],
                use_thin_prism=combination[2],
                focal_length=focal,
                principal_point=principal_point,
            )
            # test case 1:
            # 1 transform with points of shape (P, 3) -> (P, 3)
            # 1 transform with points of shape (1, P, 3) -> (1, P, 3)
            # 1 transform with points of shape (M, P, 3) -> (M, P, 3)
            points = p_3d.repeat(1, 1, 1)
            cameras = FishEyeCameras(
                focal_length=focal,
                principal_point=principal_point,
                use_radial=False,
                use_tangential=False,
                use_thin_prism=False,
            )
            uv = cameras.transform_points(p_3d)
            uv_point_batch = cameras.transform_points(points)
            self.assertClose(uv_point_batch, uv.repeat(1, 1, 1))
Jiali Duan's avatar
Jiali Duan committed
1465
1466
1467
1468
1469
1470
1471
1472

        points = p_3d.repeat(3, 1, 1)
        uv_point_batch = cameras.transform_points(points)
        self.assertClose(uv_point_batch, uv.repeat(3, 1, 1))

        # test case 2
        # test with N transforms and points of shape (P, 3) -> (N, P, 3)
        # test with N transforms and points of shape (1, P, 3) -> (N, P, 3)
1473
        torch.set_printoptions(sci_mode=False)
Jiali Duan's avatar
Jiali Duan committed
1474
1475
1476
1477
1478
1479
1480
1481
1482
        p_3d = torch.tensor(
            [
                [2.0, 3.0, 1.0],
                [3.0, 2.0, 1.0],
            ]
        )
        expected_res = torch.tensor(
            [
                [
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
                    [
                        [800.000000, 960.000000, 1.000000],
                        [1040.000000, 720.000000, 1.000000],
                    ],
                    [
                        [1929.862549, 2533.643311, 1.000000],
                        [2538.788086, 1924.717773, 1.000000],
                    ],
                ],
                [
                    [
                        [800.000000, 960.000000, 1.000000],
                        [1040.000000, 720.000000, 1.000000],
                    ],
                    [
                        [1927.272095, 2524.220459, 1.000000],
                        [2536.197754, 1915.295166, 1.000000],
                    ],
                ],
                [
                    [
                        [800.000000, 960.000000, 1.000000],
                        [1040.000000, 720.000000, 1.000000],
                    ],
                    [
                        [1930.050293, 2538.434814, 1.000000],
                        [2537.956543, 1927.569092, 1.000000],
                    ],
                ],
                [
                    [
                        [800.000000, 960.000000, 1.000000],
                        [1040.000000, 720.000000, 1.000000],
                    ],
                    [
                        [1927.459839, 2529.011963, 1.000000],
                        [2535.366211, 1918.146484, 1.000000],
                    ],
                ],
                [
                    [
                        [493.099304, 499.648926, 1.000000],
                        [579.648926, 413.099304, 1.000000],
                    ],
                    [
                        [1662.673950, 2132.860352, 1.000000],
                        [2138.005127, 1657.529053, 1.000000],
                    ],
                ],
                [
                    [
                        [493.099304, 499.648926, 1.000000],
                        [579.648926, 413.099304, 1.000000],
                    ],
                    [
                        [1660.083496, 2123.437744, 1.000000],
                        [2135.414795, 1648.106445, 1.000000],
                    ],
                ],
                [
                    [
                        [493.099304, 499.648926, 1.000000],
                        [579.648926, 413.099304, 1.000000],
                    ],
                    [
                        [1662.861816, 2137.651855, 1.000000],
                        [2137.173828, 1660.380371, 1.000000],
                    ],
Jiali Duan's avatar
Jiali Duan committed
1551
1552
                ],
                [
1553
1554
1555
1556
1557
1558
1559
1560
                    [
                        [493.099304, 499.648926, 1.000000],
                        [579.648926, 413.099304, 1.000000],
                    ],
                    [
                        [1660.271240, 2128.229248, 1.000000],
                        [2134.583496, 1650.957764, 1.000000],
                    ],
Jiali Duan's avatar
Jiali Duan committed
1561
1562
1563
                ],
            ]
        )
1564
1565
1566
1567
1568
        combinations = product([0, 1], repeat=3)
        for i, combination in enumerate(combinations):
            cameras = self.setUpBatchCameras(combination)
            uv_point_batch = cameras.transform_points(p_3d)
            self.assertClose(uv_point_batch, expected_res[i])
Jiali Duan's avatar
Jiali Duan committed
1569

1570
1571
            uv_point_batch = cameras.transform_points(p_3d.repeat(1, 1, 1))
            self.assertClose(uv_point_batch, expected_res[i].repeat(1, 1, 1))
Jiali Duan's avatar
Jiali Duan committed
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618

    def test_cuda(self):
        """
        Test cuda device
        """
        focal, principal_point, p_3d = self.setUpSimpleCase()
        cameras_cuda = FishEyeCameras(
            focal_length=focal,
            principal_point=principal_point,
            device="cuda:0",
        )
        uv = cameras_cuda.transform_points(p_3d)
        expected_res = torch.tensor(
            [[493.0993, 499.6489, 1.0], [579.6489, 413.0993, 1.0]],
        )
        self.assertClose(uv, expected_res.to("cuda:0"))

        rep_3d = cameras_cuda.unproject_points(uv)
        self.assertClose(rep_3d, p_3d.to("cuda:0"))

    def test_unproject_shape_broadcasts(self):
        # test case 1:
        # 1 transform with points of (P, 3) -> (P, 3)
        # 1 transform with points of (M, P, 3) -> (M, P, 3)
        (
            focal,
            principal_point,
            radial_params,
            tangential_params,
            thin_prism_params,
        ) = self.setUpAriaCase()
        xy_depth = torch.tensor(
            [
                [2134.5814033, 1650.95653328, 1.0],
                [1074.25442904, 1159.52461285, 1.0],
            ]
        )
        cameras = FishEyeCameras(
            focal_length=focal,
            principal_point=principal_point,
            radial_params=radial_params,
            tangential_params=tangential_params,
            thin_prism_params=thin_prism_params,
        )
        rep_3d = cameras.unproject_points(xy_depth)
        expected_res = torch.tensor(
            [
1619
1620
1621
1622
1623
1624
1625
1626
1627
                [[2.999442, 1.990583, 1.000000], [0.666728, 0.833142, 1.000000]],
                [[2.997338, 2.005411, 1.000000], [0.666859, 0.834456, 1.000000]],
                [[3.002090, 1.985229, 1.000000], [0.666537, 0.832025, 1.000000]],
                [[2.999999, 2.000000, 1.000000], [0.666667, 0.833333, 1.000000]],
                [[2.999442, 1.990583, 1.000000], [0.666728, 0.833142, 1.000000]],
                [[2.997338, 2.005411, 1.000000], [0.666859, 0.834456, 1.000000]],
                [[3.002090, 1.985229, 1.000000], [0.666537, 0.832025, 1.000000]],
                [[2.999999, 2.000000, 1.000000], [0.666667, 0.833333, 1.000000]],
            ]
Jiali Duan's avatar
Jiali Duan committed
1628
        )
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
        torch.set_printoptions(precision=6)
        combinations = product([0, 1], repeat=3)
        for i, combination in enumerate(combinations):
            cameras = FishEyeCameras(
                use_radial=combination[0],
                use_tangential=combination[1],
                use_thin_prism=combination[2],
                focal_length=focal,
                principal_point=principal_point,
                radial_params=radial_params,
                tangential_params=tangential_params,
                thin_prism_params=thin_prism_params,
            )
            rep_3d = cameras.unproject_points(xy_depth)
            self.assertClose(rep_3d, expected_res[i])
            rep_3d = cameras.unproject_points(xy_depth.repeat(3, 1, 1))
            self.assertClose(rep_3d, expected_res[i].repeat(3, 1, 1))

            # test case 2:
            # N transforms with points of (P, 3) -> (N, P, 3)
            # N transforms with points of (1, P, 3) -> (N, P, 3)
            cameras = FishEyeCameras(
                use_radial=combination[0],
                use_tangential=combination[1],
                use_thin_prism=combination[2],
                focal_length=focal.repeat(2, 1),
                principal_point=principal_point.repeat(2, 1),
                radial_params=radial_params.repeat(2, 1),
                tangential_params=tangential_params.repeat(2, 1),
                thin_prism_params=thin_prism_params.repeat(2, 1),
            )
            rep_3d = cameras.unproject_points(xy_depth)
            self.assertClose(rep_3d, expected_res[i].repeat(2, 1, 1))
Jiali Duan's avatar
Jiali Duan committed
1662
1663
1664
1665
1666
1667

    def test_unhandled_shape(self):
        """
        Test error handling when shape of transforms
        and points are not expected.
        """
1668
        cameras = self.setUpBatchCameras(None)
Jiali Duan's avatar
Jiali Duan committed
1669
1670
1671
1672
1673
1674
1675
        points = torch.rand(3, 3, 1)
        with self.assertRaises(ValueError):
            cameras.transform_points(points)

    def test_getitem(self):
        # Check get item returns an instance of the same class
        # with all the same keys
1676
        cam = self.setUpBatchCameras(None)
Jiali Duan's avatar
Jiali Duan committed
1677
1678
1679
        c0 = cam[0]
        self.assertTrue(isinstance(c0, FishEyeCameras))
        self.assertEqual(cam.__dict__.keys(), c0.__dict__.keys())