test_cameras.py 39.5 KB
Newer Older
Patrick Labatut's avatar
Patrick Labatut committed
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
facebook-github-bot's avatar
facebook-github-bot committed
6

Patrick Labatut's avatar
Patrick Labatut committed
7
# @lint-ignore-every LICENSELINT
facebook-github-bot's avatar
facebook-github-bot committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# Some of the code below is adapted from Soft Rasterizer (SoftRas)
#
# Copyright (c) 2017 Hiroharu Kato
# Copyright (c) 2018 Nikos Kolotouros
# Copyright (c) 2019 Shichen Liu
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

import math
David Novotny's avatar
David Novotny committed
33
import typing
facebook-github-bot's avatar
facebook-github-bot committed
34
35
import unittest

36
37
38
import numpy as np
import torch
from common_testing import TestCaseMixin
facebook-github-bot's avatar
facebook-github-bot committed
39
from pytorch3d.renderer.cameras import (
40
    CamerasBase,
Georgia Gkioxari's avatar
Georgia Gkioxari committed
41
42
    FoVOrthographicCameras,
    FoVPerspectiveCameras,
Jeremy Reizenstein's avatar
lint  
Jeremy Reizenstein committed
43
44
    OpenGLOrthographicCameras,
    OpenGLPerspectiveCameras,
Georgia Gkioxari's avatar
Georgia Gkioxari committed
45
46
    OrthographicCameras,
    PerspectiveCameras,
Jeremy Reizenstein's avatar
lint  
Jeremy Reizenstein committed
47
48
    SfMOrthographicCameras,
    SfMPerspectiveCameras,
facebook-github-bot's avatar
facebook-github-bot committed
49
50
51
    camera_position_from_spherical_angles,
    get_world_to_view_transform,
    look_at_rotation,
52
    look_at_view_transform,
facebook-github-bot's avatar
facebook-github-bot committed
53
54
)
from pytorch3d.transforms import Transform3d
David Novotny's avatar
David Novotny committed
55
from pytorch3d.transforms.rotation_conversions import random_rotations
facebook-github-bot's avatar
facebook-github-bot committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from pytorch3d.transforms.so3 import so3_exponential_map


# Naive function adapted from SoftRasterizer for test purposes.
def perspective_project_naive(points, fov=60.0):
    """
    Compute perspective projection from a given viewing angle.
    Args:
        points: (N, V, 3) representing the padded points.
        viewing angle: degrees
    Returns:
        (N, V, 3) tensor of projected points preserving the view space z
        coordinate (no z renormalization)
    """
    device = points.device
71
    halfFov = torch.tensor((fov / 2) / 180 * np.pi, dtype=torch.float32, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    scale = torch.tan(halfFov[None])
    scale = scale[:, None]
    z = points[:, :, 2]
    x = points[:, :, 0] / z / scale
    y = points[:, :, 1] / z / scale
    points = torch.stack((x, y, z), dim=2)
    return points


def sfm_perspective_project_naive(points, fx=1.0, fy=1.0, p0x=0.0, p0y=0.0):
    """
    Compute perspective projection using focal length and principal point.

    Args:
        points: (N, V, 3) representing the padded points.
        fx: world units
        fy: world units
        p0x: pixels
        p0y: pixels
    Returns:
        (N, V, 3) tensor of projected points.
    """
    z = points[:, :, 2]
95
96
    x = (points[:, :, 0] * fx) / z + p0x
    y = (points[:, :, 1] * fy) / z + p0y
facebook-github-bot's avatar
facebook-github-bot committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    points = torch.stack((x, y, 1.0 / z), dim=2)
    return points


# Naive function adapted from SoftRasterizer for test purposes.
def orthographic_project_naive(points, scale_xyz=(1.0, 1.0, 1.0)):
    """
    Compute orthographic projection from a given angle
    Args:
        points: (N, V, 3) representing the padded points.
        scaled: (N, 3) scaling factors for each of xyz directions
    Returns:
        (N, V, 3) tensor of projected points preserving the view space z
        coordinate (no z renormalization).
    """
    if not torch.is_tensor(scale_xyz):
        scale_xyz = torch.tensor(scale_xyz)
    scale_xyz = scale_xyz.view(-1, 3)
    z = points[:, :, 2]
    x = points[:, :, 0] * scale_xyz[:, 0]
    y = points[:, :, 1] * scale_xyz[:, 1]
    points = torch.stack((x, y, z), dim=2)
    return points


Georgia Gkioxari's avatar
Georgia Gkioxari committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
def ndc_to_screen_points_naive(points, imsize):
    """
    Transforms points from PyTorch3D's NDC space to screen space
    Args:
        points: (N, V, 3) representing padded points
        imsize: (N, 2) image size = (width, height)
    Returns:
        (N, V, 3) tensor of transformed points
    """
    imwidth, imheight = imsize.unbind(1)
    imwidth = imwidth.view(-1, 1)
    imheight = imheight.view(-1, 1)

    x, y, z = points.unbind(2)
    x = (1.0 - x) * (imwidth - 1) / 2.0
    y = (1.0 - y) * (imheight - 1) / 2.0
    return torch.stack((x, y, z), dim=2)


David Novotny's avatar
David Novotny committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
def init_random_cameras(
    cam_type: typing.Type[CamerasBase], batch_size: int, random_z: bool = False
):
    cam_params = {}
    T = torch.randn(batch_size, 3) * 0.03
    if not random_z:
        T[:, 2] = 4
    R = so3_exponential_map(torch.randn(batch_size, 3) * 3.0)
    cam_params = {"R": R, "T": T}
    if cam_type in (OpenGLPerspectiveCameras, OpenGLOrthographicCameras):
        cam_params["znear"] = torch.rand(batch_size) * 10 + 0.1
        cam_params["zfar"] = torch.rand(batch_size) * 4 + 1 + cam_params["znear"]
        if cam_type == OpenGLPerspectiveCameras:
            cam_params["fov"] = torch.rand(batch_size) * 60 + 30
            cam_params["aspect_ratio"] = torch.rand(batch_size) * 0.5 + 0.5
        else:
            cam_params["top"] = torch.rand(batch_size) * 0.2 + 0.9
            cam_params["bottom"] = -(torch.rand(batch_size)) * 0.2 - 0.9
            cam_params["left"] = -(torch.rand(batch_size)) * 0.2 - 0.9
            cam_params["right"] = torch.rand(batch_size) * 0.2 + 0.9
    elif cam_type in (FoVPerspectiveCameras, FoVOrthographicCameras):
        cam_params["znear"] = torch.rand(batch_size) * 10 + 0.1
        cam_params["zfar"] = torch.rand(batch_size) * 4 + 1 + cam_params["znear"]
        if cam_type == FoVPerspectiveCameras:
            cam_params["fov"] = torch.rand(batch_size) * 60 + 30
            cam_params["aspect_ratio"] = torch.rand(batch_size) * 0.5 + 0.5
        else:
            cam_params["max_y"] = torch.rand(batch_size) * 0.2 + 0.9
            cam_params["min_y"] = -(torch.rand(batch_size)) * 0.2 - 0.9
            cam_params["min_x"] = -(torch.rand(batch_size)) * 0.2 - 0.9
            cam_params["max_x"] = torch.rand(batch_size) * 0.2 + 0.9
    elif cam_type in (
        SfMOrthographicCameras,
        SfMPerspectiveCameras,
        OrthographicCameras,
        PerspectiveCameras,
    ):
        cam_params["focal_length"] = torch.rand(batch_size) * 10 + 0.1
        cam_params["principal_point"] = torch.randn((batch_size, 2))

    else:
        raise ValueError(str(cam_type))
    return cam_type(**cam_params)


Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
186
class TestCameraHelpers(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
187
188
189
190
191
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(42)
        np.random.seed(42)

192
193
194
195
    def test_look_at_view_transform_from_eye_point_tuple(self):
        dist = math.sqrt(2)
        elev = math.pi / 4
        azim = 0.0
Georgia Gkioxari's avatar
Georgia Gkioxari committed
196
        eye = ((0.0, 1.0, 1.0),)
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
        # using passed values for dist, elev, azim
        R, t = look_at_view_transform(dist, elev, azim, degrees=False)
        # using other values for dist, elev, azim - eye overrides
        R_eye, t_eye = look_at_view_transform(dist=3, elev=2, azim=1, eye=eye)
        # using only eye value

        R_eye_only, t_eye_only = look_at_view_transform(eye=eye)
        self.assertTrue(torch.allclose(R, R_eye, atol=2e-7))
        self.assertTrue(torch.allclose(t, t_eye, atol=2e-7))
        self.assertTrue(torch.allclose(R, R_eye_only, atol=2e-7))
        self.assertTrue(torch.allclose(t, t_eye_only, atol=2e-7))

    def test_look_at_view_transform_default_values(self):
        dist = 1.0
        elev = 0.0
        azim = 0.0
        # Using passed values for dist, elev, azim
        R, t = look_at_view_transform(dist, elev, azim)
        # Using default dist=1.0, elev=0.0, azim=0.0
        R_default, t_default = look_at_view_transform()
        # test default = passed = expected
        self.assertTrue(torch.allclose(R, R_default, atol=2e-7))
        self.assertTrue(torch.allclose(t, t_default, atol=2e-7))

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    def test_look_at_view_transform_non_default_at_position(self):
        dist = 1.0
        elev = 0.0
        azim = 0.0
        at = ((1, 1, 1),)
        # Using passed values for dist, elev, azim, at
        R, t = look_at_view_transform(dist, elev, azim, at=at)
        # Using default dist=1.0, elev=0.0, azim=0.0
        R_default, t_default = look_at_view_transform()
        # test default = passed = expected
        # R must be the same, t must be translated by (1,-1,1) with respect to t_default
        t_trans = torch.tensor([1, -1, 1], dtype=torch.float32).view(1, 3)
        self.assertTrue(torch.allclose(R, R_default, atol=2e-7))
        self.assertTrue(torch.allclose(t, t_default + t_trans, atol=2e-7))

facebook-github-bot's avatar
facebook-github-bot committed
236
237
238
239
    def test_camera_position_from_angles_python_scalar(self):
        dist = 2.7
        elev = 90.0
        azim = 0.0
240
241
242
        expected_position = torch.tensor([0.0, 2.7, 0.0], dtype=torch.float32).view(
            1, 3
        )
facebook-github-bot's avatar
facebook-github-bot committed
243
        position = camera_position_from_spherical_angles(dist, elev, azim)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
244
        self.assertClose(position, expected_position, atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
245
246
247
248
249
250
251
252
253
254

    def test_camera_position_from_angles_python_scalar_radians(self):
        dist = 2.7
        elev = math.pi / 2
        azim = 0.0
        expected_position = torch.tensor([0.0, 2.7, 0.0], dtype=torch.float32)
        expected_position = expected_position.view(1, 3)
        position = camera_position_from_spherical_angles(
            dist, elev, azim, degrees=False
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
255
        self.assertClose(position, expected_position, atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
256
257
258
259
260

    def test_camera_position_from_angles_torch_scalars(self):
        dist = torch.tensor(2.7)
        elev = torch.tensor(0.0)
        azim = torch.tensor(90.0)
261
262
263
        expected_position = torch.tensor([2.7, 0.0, 0.0], dtype=torch.float32).view(
            1, 3
        )
facebook-github-bot's avatar
facebook-github-bot committed
264
        position = camera_position_from_spherical_angles(dist, elev, azim)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
265
        self.assertClose(position, expected_position, atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
266
267
268
269
270

    def test_camera_position_from_angles_mixed_scalars(self):
        dist = 2.7
        elev = torch.tensor(0.0)
        azim = 90.0
271
272
273
        expected_position = torch.tensor([2.7, 0.0, 0.0], dtype=torch.float32).view(
            1, 3
        )
facebook-github-bot's avatar
facebook-github-bot committed
274
        position = camera_position_from_spherical_angles(dist, elev, azim)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
275
        self.assertClose(position, expected_position, atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

    def test_camera_position_from_angles_torch_scalar_grads(self):
        dist = torch.tensor(2.7, requires_grad=True)
        elev = torch.tensor(45.0, requires_grad=True)
        azim = torch.tensor(45.0)
        position = camera_position_from_spherical_angles(dist, elev, azim)
        position.sum().backward()
        self.assertTrue(hasattr(elev, "grad"))
        self.assertTrue(hasattr(dist, "grad"))
        elev_grad = elev.grad.clone()
        dist_grad = dist.grad.clone()
        elev = math.pi / 180.0 * elev.detach()
        azim = math.pi / 180.0 * azim
        grad_dist = (
            torch.cos(elev) * torch.sin(azim)
            + torch.sin(elev)
292
            + torch.cos(elev) * torch.cos(azim)
facebook-github-bot's avatar
facebook-github-bot committed
293
294
        )
        grad_elev = (
Nikhila Ravi's avatar
Nikhila Ravi committed
295
            -(torch.sin(elev)) * torch.sin(azim)
facebook-github-bot's avatar
facebook-github-bot committed
296
            + torch.cos(elev)
297
            - torch.sin(elev) * torch.cos(azim)
facebook-github-bot's avatar
facebook-github-bot committed
298
299
        )
        grad_elev = dist * (math.pi / 180.0) * grad_elev
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
300
301
        self.assertClose(elev_grad, grad_elev)
        self.assertClose(dist_grad, grad_dist)
facebook-github-bot's avatar
facebook-github-bot committed
302
303
304
305
306
307
308
309
310

    def test_camera_position_from_angles_vectors(self):
        dist = torch.tensor([2.0, 2.0])
        elev = torch.tensor([0.0, 90.0])
        azim = torch.tensor([90.0, 0.0])
        expected_position = torch.tensor(
            [[2.0, 0.0, 0.0], [0.0, 2.0, 0.0]], dtype=torch.float32
        )
        position = camera_position_from_spherical_angles(dist, elev, azim)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
311
        self.assertClose(position, expected_position, atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
312
313
314
315
316
317

    def test_camera_position_from_angles_vectors_broadcast(self):
        dist = torch.tensor([2.0, 3.0, 5.0])
        elev = torch.tensor([0.0])
        azim = torch.tensor([90.0])
        expected_position = torch.tensor(
318
            [[2.0, 0.0, 0.0], [3.0, 0.0, 0.0], [5.0, 0.0, 0.0]], dtype=torch.float32
facebook-github-bot's avatar
facebook-github-bot committed
319
320
        )
        position = camera_position_from_spherical_angles(dist, elev, azim)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
321
        self.assertClose(position, expected_position, atol=3e-7)
facebook-github-bot's avatar
facebook-github-bot committed
322
323
324
325
326
327

    def test_camera_position_from_angles_vectors_mixed_broadcast(self):
        dist = torch.tensor([2.0, 3.0, 5.0])
        elev = 0.0
        azim = torch.tensor(90.0)
        expected_position = torch.tensor(
328
            [[2.0, 0.0, 0.0], [3.0, 0.0, 0.0], [5.0, 0.0, 0.0]], dtype=torch.float32
facebook-github-bot's avatar
facebook-github-bot committed
329
330
        )
        position = camera_position_from_spherical_angles(dist, elev, azim)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
331
        self.assertClose(position, expected_position, atol=3e-7)
facebook-github-bot's avatar
facebook-github-bot committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

    def test_camera_position_from_angles_vectors_mixed_broadcast_grads(self):
        dist = torch.tensor([2.0, 3.0, 5.0], requires_grad=True)
        elev = torch.tensor(45.0, requires_grad=True)
        azim = 45.0
        position = camera_position_from_spherical_angles(dist, elev, azim)
        position.sum().backward()
        self.assertTrue(hasattr(elev, "grad"))
        self.assertTrue(hasattr(dist, "grad"))
        elev_grad = elev.grad.clone()
        dist_grad = dist.grad.clone()
        azim = torch.tensor(azim)
        elev = math.pi / 180.0 * elev.detach()
        azim = math.pi / 180.0 * azim
        grad_dist = (
            torch.cos(elev) * torch.sin(azim)
            + torch.sin(elev)
349
            + torch.cos(elev) * torch.cos(azim)
facebook-github-bot's avatar
facebook-github-bot committed
350
351
        )
        grad_elev = (
Nikhila Ravi's avatar
Nikhila Ravi committed
352
            -(torch.sin(elev)) * torch.sin(azim)
facebook-github-bot's avatar
facebook-github-bot committed
353
            + torch.cos(elev)
354
            - torch.sin(elev) * torch.cos(azim)
facebook-github-bot's avatar
facebook-github-bot committed
355
356
        )
        grad_elev = (dist * (math.pi / 180.0) * grad_elev).sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
357
358
        self.assertClose(elev_grad, grad_elev)
        self.assertClose(dist_grad, torch.full([3], grad_dist))
facebook-github-bot's avatar
facebook-github-bot committed
359
360
361
362
363
364
365
366
367
368
369
370

    def test_camera_position_from_angles_vectors_bad_broadcast(self):
        # Batch dim for broadcast must be N or 1
        dist = torch.tensor([2.0, 3.0, 5.0])
        elev = torch.tensor([0.0, 90.0])
        azim = torch.tensor([90.0])
        with self.assertRaises(ValueError):
            camera_position_from_spherical_angles(dist, elev, azim)

    def test_look_at_rotation_python_list(self):
        camera_position = [[0.0, 0.0, -1.0]]  # camera pointing along negative z
        rot_mat = look_at_rotation(camera_position)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
371
        self.assertClose(rot_mat, torch.eye(3)[None], atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

    def test_look_at_rotation_input_fail(self):
        camera_position = [-1.0]  # expected to have xyz positions
        with self.assertRaises(ValueError):
            look_at_rotation(camera_position)

    def test_look_at_rotation_list_broadcast(self):
        # fmt: off
        camera_positions = [[0.0, 0.0, -1.0], [0.0, 0.0, 1.0]]
        rot_mats_expected = torch.tensor(
            [
                [
                    [1.0, 0.0, 0.0],
                    [0.0, 1.0, 0.0],
                    [0.0, 0.0, 1.0]
                ],
                [
                    [-1.0, 0.0,  0.0],  # noqa: E241, E201
                    [ 0.0, 1.0,  0.0],  # noqa: E241, E201
                    [ 0.0, 0.0, -1.0]   # noqa: E241, E201
                ],
            ],
            dtype=torch.float32
        )
        # fmt: on
        rot_mats = look_at_rotation(camera_positions)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
398
        self.assertClose(rot_mats, rot_mats_expected, atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

    def test_look_at_rotation_tensor_broadcast(self):
        # fmt: off
        camera_positions = torch.tensor([
            [0.0, 0.0, -1.0],
            [0.0, 0.0,  1.0]   # noqa: E241, E201
        ], dtype=torch.float32)
        rot_mats_expected = torch.tensor(
            [
                [
                    [1.0, 0.0, 0.0],
                    [0.0, 1.0, 0.0],
                    [0.0, 0.0, 1.0]
                ],
                [
                    [-1.0, 0.0,  0.0],  # noqa: E241, E201
                    [ 0.0, 1.0,  0.0],  # noqa: E241, E201
                    [ 0.0, 0.0, -1.0]   # noqa: E241, E201
                ],
            ],
            dtype=torch.float32
        )
        # fmt: on
        rot_mats = look_at_rotation(camera_positions)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
423
        self.assertClose(rot_mats, rot_mats_expected, atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
424
425
426
427
428
429

    def test_look_at_rotation_tensor_grad(self):
        camera_position = torch.tensor([[0.0, 0.0, -1.0]], requires_grad=True)
        rot_mat = look_at_rotation(camera_position)
        rot_mat.sum().backward()
        self.assertTrue(hasattr(camera_position, "grad"))
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
430
431
        self.assertClose(
            camera_position.grad, torch.zeros_like(camera_position), atol=2e-7
facebook-github-bot's avatar
facebook-github-bot committed
432
433
434
435
436
437
438
439
        )

    def test_view_transform(self):
        T = torch.tensor([0.0, 0.0, -1.0], requires_grad=True).view(1, -1)
        R = look_at_rotation(T)
        RT = get_world_to_view_transform(R=R, T=T)
        self.assertTrue(isinstance(RT, Transform3d))

Amitav Baruah's avatar
Amitav Baruah committed
440
441
442
443
444
445
446
447
448
449
450
451
452
453
    def test_look_at_view_transform_corner_case(self):
        dist = 2.7
        elev = 90
        azim = 90
        expected_position = torch.tensor([0.0, 2.7, 0.0], dtype=torch.float32).view(
            1, 3
        )
        position = camera_position_from_spherical_angles(dist, elev, azim)
        self.assertClose(position, expected_position, atol=2e-7)
        R, _ = look_at_view_transform(eye=position)
        x_axis = R[:, :, 0]
        expected_x_axis = torch.tensor([0.0, 0.0, -1.0], dtype=torch.float32).view(1, 3)
        self.assertClose(x_axis, expected_x_axis, atol=5e-3)

454
455

class TestCamerasCommon(TestCaseMixin, unittest.TestCase):
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    def test_K(self, batch_size=10):
        T = torch.randn(batch_size, 3)
        R = random_rotations(batch_size)
        K = torch.randn(batch_size, 4, 4)
        for cam_type in (
            FoVOrthographicCameras,
            FoVPerspectiveCameras,
            OrthographicCameras,
            PerspectiveCameras,
        ):
            cam = cam_type(R=R, T=T, K=K)
            cam.get_projection_transform()
            # Just checking that we don't crash or anything

facebook-github-bot's avatar
facebook-github-bot committed
470
471
472
473
474
475
476
477
478
    def test_view_transform_class_method(self):
        T = torch.tensor([0.0, 0.0, -1.0], requires_grad=True).view(1, -1)
        R = look_at_rotation(T)
        RT = get_world_to_view_transform(R=R, T=T)
        for cam_type in (
            OpenGLPerspectiveCameras,
            OpenGLOrthographicCameras,
            SfMOrthographicCameras,
            SfMPerspectiveCameras,
Georgia Gkioxari's avatar
Georgia Gkioxari committed
479
480
481
482
            FoVOrthographicCameras,
            FoVPerspectiveCameras,
            OrthographicCameras,
            PerspectiveCameras,
facebook-github-bot's avatar
facebook-github-bot committed
483
484
485
        ):
            cam = cam_type(R=R, T=T)
            RT_class = cam.get_world_to_view_transform()
486
            self.assertTrue(torch.allclose(RT.get_matrix(), RT_class.get_matrix()))
facebook-github-bot's avatar
facebook-github-bot committed
487
488
489
490
491

        self.assertTrue(isinstance(RT, Transform3d))

    def test_get_camera_center(self, batch_size=10):
        T = torch.randn(batch_size, 3)
David Novotny's avatar
David Novotny committed
492
        R = random_rotations(batch_size)
facebook-github-bot's avatar
facebook-github-bot committed
493
494
495
496
497
        for cam_type in (
            OpenGLPerspectiveCameras,
            OpenGLOrthographicCameras,
            SfMOrthographicCameras,
            SfMPerspectiveCameras,
Georgia Gkioxari's avatar
Georgia Gkioxari committed
498
499
500
501
            FoVOrthographicCameras,
            FoVPerspectiveCameras,
            OrthographicCameras,
            PerspectiveCameras,
facebook-github-bot's avatar
facebook-github-bot committed
502
503
504
505
506
507
        ):
            cam = cam_type(R=R, T=T)
            C = cam.get_camera_center()
            C_ = -torch.bmm(R, T[:, :, None])[:, :, 0]
            self.assertTrue(torch.allclose(C, C_, atol=1e-05))

Georgia Gkioxari's avatar
Georgia Gkioxari committed
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
    @staticmethod
    def init_equiv_cameras_ndc_screen(cam_type: CamerasBase, batch_size: int):
        T = torch.randn(batch_size, 3) * 0.03
        T[:, 2] = 4
        R = so3_exponential_map(torch.randn(batch_size, 3) * 3.0)
        screen_cam_params = {"R": R, "T": T}
        ndc_cam_params = {"R": R, "T": T}
        if cam_type in (OrthographicCameras, PerspectiveCameras):
            ndc_cam_params["focal_length"] = torch.rand((batch_size, 2)) * 3.0
            ndc_cam_params["principal_point"] = torch.randn((batch_size, 2))

            image_size = torch.randint(low=2, high=64, size=(batch_size, 2))
            screen_cam_params["image_size"] = image_size
            screen_cam_params["focal_length"] = (
                ndc_cam_params["focal_length"] * image_size / 2.0
            )
            screen_cam_params["principal_point"] = (
                (1.0 - ndc_cam_params["principal_point"]) * image_size / 2.0
            )
        else:
            raise ValueError(str(cam_type))
        return cam_type(**ndc_cam_params), cam_type(**screen_cam_params)

531
532
533
534
535
536
537
538
539
540
541
    def test_unproject_points(self, batch_size=50, num_points=100):
        """
        Checks that an unprojection of a randomly projected point cloud
        stays the same.
        """

        for cam_type in (
            SfMOrthographicCameras,
            OpenGLPerspectiveCameras,
            OpenGLOrthographicCameras,
            SfMPerspectiveCameras,
Georgia Gkioxari's avatar
Georgia Gkioxari committed
542
543
544
545
            FoVOrthographicCameras,
            FoVPerspectiveCameras,
            OrthographicCameras,
            PerspectiveCameras,
546
547
        ):
            # init the cameras
David Novotny's avatar
David Novotny committed
548
            cameras = init_random_cameras(cam_type, batch_size)
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
            # xyz - the ground truth point cloud
            xyz = torch.randn(batch_size, num_points, 3) * 0.3
            # xyz in camera coordinates
            xyz_cam = cameras.get_world_to_view_transform().transform_points(xyz)
            # depth = z-component of xyz_cam
            depth = xyz_cam[:, :, 2:]
            # project xyz
            xyz_proj = cameras.transform_points(xyz)
            xy, cam_depth = xyz_proj.split(2, dim=2)
            # input to the unprojection function
            xy_depth = torch.cat((xy, depth), dim=2)

            for to_world in (False, True):
                if to_world:
                    matching_xyz = xyz
                else:
                    matching_xyz = xyz_cam

Georgia Gkioxari's avatar
Georgia Gkioxari committed
567
                # if we have FoV (= OpenGL) cameras
568
                # test for scaled_depth_input=True/False
Georgia Gkioxari's avatar
Georgia Gkioxari committed
569
570
571
572
573
574
                if cam_type in (
                    OpenGLPerspectiveCameras,
                    OpenGLOrthographicCameras,
                    FoVPerspectiveCameras,
                    FoVOrthographicCameras,
                ):
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
                    for scaled_depth_input in (True, False):
                        if scaled_depth_input:
                            xy_depth_ = xyz_proj
                        else:
                            xy_depth_ = xy_depth
                        xyz_unproj = cameras.unproject_points(
                            xy_depth_,
                            world_coordinates=to_world,
                            scaled_depth_input=scaled_depth_input,
                        )
                        self.assertTrue(
                            torch.allclose(xyz_unproj, matching_xyz, atol=1e-4)
                        )
                else:
                    xyz_unproj = cameras.unproject_points(
                        xy_depth, world_coordinates=to_world
                    )
                    self.assertTrue(torch.allclose(xyz_unproj, matching_xyz, atol=1e-4))

Georgia Gkioxari's avatar
Georgia Gkioxari committed
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
    def test_project_points_screen(self, batch_size=50, num_points=100):
        """
        Checks that an unprojection of a randomly projected point cloud
        stays the same.
        """

        for cam_type in (
            OpenGLOrthographicCameras,
            OpenGLPerspectiveCameras,
            SfMOrthographicCameras,
            SfMPerspectiveCameras,
            FoVOrthographicCameras,
            FoVPerspectiveCameras,
            OrthographicCameras,
            PerspectiveCameras,
        ):

            # init the cameras
David Novotny's avatar
David Novotny committed
612
            cameras = init_random_cameras(cam_type, batch_size)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
            # xyz - the ground truth point cloud
            xyz = torch.randn(batch_size, num_points, 3) * 0.3
            # image size
            image_size = torch.randint(low=2, high=64, size=(batch_size, 2))
            # project points
            xyz_project_ndc = cameras.transform_points(xyz)
            xyz_project_screen = cameras.transform_points_screen(xyz, image_size)
            # naive
            xyz_project_screen_naive = ndc_to_screen_points_naive(
                xyz_project_ndc, image_size
            )
            self.assertClose(xyz_project_screen, xyz_project_screen_naive)

    def test_equiv_project_points(self, batch_size=50, num_points=100):
        """
        Checks that NDC and screen cameras project points to ndc correctly.
        Applies only to OrthographicCameras and PerspectiveCameras.
        """
        for cam_type in (OrthographicCameras, PerspectiveCameras):
            # init the cameras
            (
                ndc_cameras,
                screen_cameras,
            ) = TestCamerasCommon.init_equiv_cameras_ndc_screen(cam_type, batch_size)
            # xyz - the ground truth point cloud
            xyz = torch.randn(batch_size, num_points, 3) * 0.3
            # project points
            xyz_ndc_cam = ndc_cameras.transform_points(xyz)
            xyz_screen_cam = screen_cameras.transform_points(xyz)
            self.assertClose(xyz_ndc_cam, xyz_screen_cam, atol=1e-6)

644
645
646
647
648
649
650
651
652
    def test_clone(self, batch_size: int = 10):
        """
        Checks the clone function of the cameras.
        """
        for cam_type in (
            SfMOrthographicCameras,
            OpenGLPerspectiveCameras,
            OpenGLOrthographicCameras,
            SfMPerspectiveCameras,
Georgia Gkioxari's avatar
Georgia Gkioxari committed
653
654
655
656
            FoVOrthographicCameras,
            FoVPerspectiveCameras,
            OrthographicCameras,
            PerspectiveCameras,
657
        ):
David Novotny's avatar
David Novotny committed
658
            cameras = init_random_cameras(cam_type, batch_size)
659
660
661
662
663
664
665
666
667
668
669
670
            cameras = cameras.to(torch.device("cpu"))
            cameras_clone = cameras.clone()

            for var in cameras.__dict__.keys():
                val = getattr(cameras, var)
                val_clone = getattr(cameras_clone, var)
                if torch.is_tensor(val):
                    self.assertClose(val, val_clone)
                    self.assertSeparate(val, val_clone)
                else:
                    self.assertTrue(val == val_clone)

facebook-github-bot's avatar
facebook-github-bot committed
671

Georgia Gkioxari's avatar
Georgia Gkioxari committed
672
673
674
675
676
677
############################################################
#                FoVPerspective Camera                     #
############################################################


class TestFoVPerspectiveProjection(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
678
679
680
    def test_perspective(self):
        far = 10.0
        near = 1.0
Georgia Gkioxari's avatar
Georgia Gkioxari committed
681
        cameras = FoVPerspectiveCameras(znear=near, zfar=far, fov=60.0)
facebook-github-bot's avatar
facebook-github-bot committed
682
683
684
685
686
687
688
689
690
        P = cameras.get_projection_transform()
        # vertices are at the far clipping plane so z gets mapped to 1.
        vertices = torch.tensor([1, 2, far], dtype=torch.float32)
        projected_verts = torch.tensor(
            [np.sqrt(3) / far, 2 * np.sqrt(3) / far, 1.0], dtype=torch.float32
        )
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
        v2 = perspective_project_naive(vertices, fov=60.0)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
691
692
693
        self.assertClose(v1[..., :2], v2[..., :2])
        self.assertClose(far * v1[..., 2], v2[..., 2])
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
694
695
696
697
698
699
700
701

        # vertices are at the near clipping plane so z gets mapped to 0.0.
        vertices[..., 2] = near
        projected_verts = torch.tensor(
            [np.sqrt(3) / near, 2 * np.sqrt(3) / near, 0.0], dtype=torch.float32
        )
        v1 = P.transform_points(vertices)
        v2 = perspective_project_naive(vertices, fov=60.0)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
702
703
        self.assertClose(v1[..., :2], v2[..., :2])
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
704
705

    def test_perspective_kwargs(self):
Georgia Gkioxari's avatar
Georgia Gkioxari committed
706
        cameras = FoVPerspectiveCameras(znear=5.0, zfar=100.0, fov=0.0)
facebook-github-bot's avatar
facebook-github-bot committed
707
708
709
710
711
712
713
714
715
        # Override defaults by passing in values to get_projection_transform
        far = 10.0
        P = cameras.get_projection_transform(znear=1.0, zfar=far, fov=60.0)
        vertices = torch.tensor([1, 2, far], dtype=torch.float32)
        projected_verts = torch.tensor(
            [np.sqrt(3) / far, 2 * np.sqrt(3) / far, 1.0], dtype=torch.float32
        )
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
716
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
717
718
719
720
721

    def test_perspective_mixed_inputs_broadcast(self):
        far = torch.tensor([10.0, 20.0], dtype=torch.float32)
        near = 1.0
        fov = torch.tensor(60.0)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
722
        cameras = FoVPerspectiveCameras(znear=near, zfar=far, fov=fov)
facebook-github-bot's avatar
facebook-github-bot committed
723
724
725
        P = cameras.get_projection_transform()
        vertices = torch.tensor([1, 2, 10], dtype=torch.float32)
        z1 = 1.0  # vertices at far clipping plane so z = 1.0
Nikhila Ravi's avatar
Nikhila Ravi committed
726
        z2 = (20.0 / (20.0 - 1.0) * 10.0 + -20.0 / (20.0 - 1.0)) / 10.0
facebook-github-bot's avatar
facebook-github-bot committed
727
728
729
730
731
732
733
734
735
736
        projected_verts = torch.tensor(
            [
                [np.sqrt(3) / 10.0, 2 * np.sqrt(3) / 10.0, z1],
                [np.sqrt(3) / 10.0, 2 * np.sqrt(3) / 10.0, z2],
            ],
            dtype=torch.float32,
        )
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
        v2 = perspective_project_naive(vertices, fov=60.0)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
737
738
        self.assertClose(v1[..., :2], torch.cat([v2, v2])[..., :2])
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
739
740
741
742
743

    def test_perspective_mixed_inputs_grad(self):
        far = torch.tensor([10.0])
        near = 1.0
        fov = torch.tensor(60.0, requires_grad=True)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
744
        cameras = FoVPerspectiveCameras(znear=near, zfar=far, fov=fov)
facebook-github-bot's avatar
facebook-github-bot committed
745
746
747
748
749
750
751
752
753
754
755
        P = cameras.get_projection_transform()
        vertices = torch.tensor([1, 2, 10], dtype=torch.float32)
        vertices_batch = vertices[None, None, :]
        v1 = P.transform_points(vertices_batch).squeeze()
        v1.sum().backward()
        self.assertTrue(hasattr(fov, "grad"))
        fov_grad = fov.grad.clone()
        half_fov_rad = (math.pi / 180.0) * fov.detach() / 2.0
        grad_cotan = -(1.0 / (torch.sin(half_fov_rad) ** 2.0) * 1 / 2.0)
        grad_fov = (math.pi / 180.0) * grad_cotan
        grad_fov = (vertices[0] + vertices[1]) * grad_fov / 10.0
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
756
        self.assertClose(fov_grad, grad_fov)
facebook-github-bot's avatar
facebook-github-bot committed
757
758
759

    def test_camera_class_init(self):
        device = torch.device("cuda:0")
Georgia Gkioxari's avatar
Georgia Gkioxari committed
760
        cam = FoVPerspectiveCameras(znear=10.0, zfar=(100.0, 200.0))
facebook-github-bot's avatar
facebook-github-bot committed
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778

        # Check broadcasting
        self.assertTrue(cam.znear.shape == (2,))
        self.assertTrue(cam.zfar.shape == (2,))

        # update znear element 1
        cam[1].znear = 20.0
        self.assertTrue(cam.znear[1] == 20.0)

        # Get item and get value
        c0 = cam[0]
        self.assertTrue(c0.zfar == 100.0)

        # Test to
        new_cam = cam.to(device=device)
        self.assertTrue(new_cam.device == device)

    def test_get_full_transform(self):
Georgia Gkioxari's avatar
Georgia Gkioxari committed
779
        cam = FoVPerspectiveCameras()
facebook-github-bot's avatar
facebook-github-bot committed
780
781
782
783
        T = torch.tensor([0.0, 0.0, 1.0]).view(1, -1)
        R = look_at_rotation(T)
        P = cam.get_full_projection_transform(R=R, T=T)
        self.assertTrue(isinstance(P, Transform3d))
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
784
785
        self.assertClose(cam.R, R)
        self.assertClose(cam.T, T)
facebook-github-bot's avatar
facebook-github-bot committed
786
787
788
789
790

    def test_transform_points(self):
        # Check transform_points methods works with default settings for
        # RT and P
        far = 10.0
Georgia Gkioxari's avatar
Georgia Gkioxari committed
791
        cam = FoVPerspectiveCameras(znear=1.0, zfar=far, fov=60.0)
facebook-github-bot's avatar
facebook-github-bot committed
792
793
794
795
796
797
798
        points = torch.tensor([1, 2, far], dtype=torch.float32)
        points = points.view(1, 1, 3).expand(5, 10, -1)
        projected_points = torch.tensor(
            [np.sqrt(3) / far, 2 * np.sqrt(3) / far, 1.0], dtype=torch.float32
        )
        projected_points = projected_points.view(1, 1, 3).expand(5, 10, -1)
        new_points = cam.transform_points(points)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
799
        self.assertClose(new_points, projected_points)
facebook-github-bot's avatar
facebook-github-bot committed
800

801
802
803
804
805
    def test_perspective_type(self):
        cam = FoVPerspectiveCameras(znear=1.0, zfar=10.0, fov=60.0)
        self.assertTrue(cam.is_perspective())
        self.assertEquals(cam.get_znear(), 1.0)

facebook-github-bot's avatar
facebook-github-bot committed
806

Georgia Gkioxari's avatar
Georgia Gkioxari committed
807
808
809
810
811
812
############################################################
#                FoVOrthographic Camera                    #
############################################################


class TestFoVOrthographicProjection(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
813
814
815
    def test_orthographic(self):
        far = 10.0
        near = 1.0
Georgia Gkioxari's avatar
Georgia Gkioxari committed
816
        cameras = FoVOrthographicCameras(znear=near, zfar=far)
facebook-github-bot's avatar
facebook-github-bot committed
817
818
819
820
821
822
823
        P = cameras.get_projection_transform()

        vertices = torch.tensor([1, 2, far], dtype=torch.float32)
        projected_verts = torch.tensor([1, 2, 1], dtype=torch.float32)
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
824
825
        self.assertClose(v1[..., :2], v2[..., :2])
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
826
827
828
829
830

        vertices[..., 2] = near
        projected_verts[2] = 0.0
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
831
832
        self.assertClose(v1[..., :2], v2[..., :2])
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
833
834
835
836
837
838
839
840

    def test_orthographic_scaled(self):
        vertices = torch.tensor([1, 2, 0.5], dtype=torch.float32)
        vertices = vertices[None, None, :]
        scale = torch.tensor([[2.0, 0.5, 20]])
        # applying the scale puts the z coordinate at the far clipping plane
        # so the z is mapped to 1.0
        projected_verts = torch.tensor([2, 1, 1], dtype=torch.float32)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
841
        cameras = FoVOrthographicCameras(znear=1.0, zfar=10.0, scale_xyz=scale)
facebook-github-bot's avatar
facebook-github-bot committed
842
843
844
        P = cameras.get_projection_transform()
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(vertices, scale)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
845
846
        self.assertClose(v1[..., :2], v2[..., :2])
        self.assertClose(v1, projected_verts[None, None])
facebook-github-bot's avatar
facebook-github-bot committed
847
848

    def test_orthographic_kwargs(self):
Georgia Gkioxari's avatar
Georgia Gkioxari committed
849
        cameras = FoVOrthographicCameras(znear=5.0, zfar=100.0)
facebook-github-bot's avatar
facebook-github-bot committed
850
851
852
853
854
855
        far = 10.0
        P = cameras.get_projection_transform(znear=1.0, zfar=far)
        vertices = torch.tensor([1, 2, far], dtype=torch.float32)
        projected_verts = torch.tensor([1, 2, 1], dtype=torch.float32)
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
856
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
857
858
859
860

    def test_orthographic_mixed_inputs_broadcast(self):
        far = torch.tensor([10.0, 20.0])
        near = 1.0
Georgia Gkioxari's avatar
Georgia Gkioxari committed
861
        cameras = FoVOrthographicCameras(znear=near, zfar=far)
facebook-github-bot's avatar
facebook-github-bot committed
862
863
        P = cameras.get_projection_transform()
        vertices = torch.tensor([1.0, 2.0, 10.0], dtype=torch.float32)
Nikhila Ravi's avatar
Nikhila Ravi committed
864
        z2 = 1.0 / (20.0 - 1.0) * 10.0 + -1.0 / (20.0 - 1.0)
facebook-github-bot's avatar
facebook-github-bot committed
865
866
867
868
869
870
        projected_verts = torch.tensor(
            [[1.0, 2.0, 1.0], [1.0, 2.0, z2]], dtype=torch.float32
        )
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
871
872
        self.assertClose(v1[..., :2], torch.cat([v2, v2])[..., :2])
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
873
874
875
876
877

    def test_orthographic_mixed_inputs_grad(self):
        far = torch.tensor([10.0])
        near = 1.0
        scale = torch.tensor([[1.0, 1.0, 1.0]], requires_grad=True)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
878
        cameras = FoVOrthographicCameras(znear=near, zfar=far, scale_xyz=scale)
facebook-github-bot's avatar
facebook-github-bot committed
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
        P = cameras.get_projection_transform()
        vertices = torch.tensor([1.0, 2.0, 10.0], dtype=torch.float32)
        vertices_batch = vertices[None, None, :]
        v1 = P.transform_points(vertices_batch)
        v1.sum().backward()
        self.assertTrue(hasattr(scale, "grad"))
        scale_grad = scale.grad.clone()
        grad_scale = torch.tensor(
            [
                [
                    vertices[0] * P._matrix[:, 0, 0],
                    vertices[1] * P._matrix[:, 1, 1],
                    vertices[2] * P._matrix[:, 2, 2],
                ]
            ]
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
895
        self.assertClose(scale_grad, grad_scale)
facebook-github-bot's avatar
facebook-github-bot committed
896

897
898
899
900
901
    def test_perspective_type(self):
        cam = FoVOrthographicCameras(znear=1.0, zfar=10.0)
        self.assertFalse(cam.is_perspective())
        self.assertEquals(cam.get_znear(), 1.0)

facebook-github-bot's avatar
facebook-github-bot committed
902

Georgia Gkioxari's avatar
Georgia Gkioxari committed
903
904
905
906
907
908
############################################################
#                Orthographic Camera                       #
############################################################


class TestOrthographicProjection(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
909
    def test_orthographic(self):
Georgia Gkioxari's avatar
Georgia Gkioxari committed
910
        cameras = OrthographicCameras()
facebook-github-bot's avatar
facebook-github-bot committed
911
912
913
914
915
916
917
        P = cameras.get_projection_transform()

        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        projected_verts = vertices.clone()
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(vertices)

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
918
919
        self.assertClose(v1[..., :2], v2[..., :2])
        self.assertClose(v1, projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
920
921
922
923
924

    def test_orthographic_scaled(self):
        focal_length_x = 10.0
        focal_length_y = 15.0

Georgia Gkioxari's avatar
Georgia Gkioxari committed
925
        cameras = OrthographicCameras(focal_length=((focal_length_x, focal_length_y),))
facebook-github-bot's avatar
facebook-github-bot committed
926
927
928
929
930
931
932
933
934
935
936
        P = cameras.get_projection_transform()

        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        projected_verts = vertices.clone()
        projected_verts[:, :, 0] *= focal_length_x
        projected_verts[:, :, 1] *= focal_length_y
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(
            vertices, scale_xyz=(focal_length_x, focal_length_y, 1.0)
        )
        v3 = cameras.transform_points(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
937
938
939
        self.assertClose(v1[..., :2], v2[..., :2])
        self.assertClose(v3[..., :2], v2[..., :2])
        self.assertClose(v1, projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
940
941

    def test_orthographic_kwargs(self):
Georgia Gkioxari's avatar
Georgia Gkioxari committed
942
        cameras = OrthographicCameras(focal_length=5.0, principal_point=((2.5, 2.5),))
facebook-github-bot's avatar
facebook-github-bot committed
943
944
945
946
947
948
949
950
951
        P = cameras.get_projection_transform(
            focal_length=2.0, principal_point=((2.5, 3.5),)
        )
        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        projected_verts = vertices.clone()
        projected_verts[:, :, :2] *= 2.0
        projected_verts[:, :, 0] += 2.5
        projected_verts[:, :, 1] += 3.5
        v1 = P.transform_points(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
952
        self.assertClose(v1, projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
953

954
955
956
957
958
    def test_perspective_type(self):
        cam = OrthographicCameras(focal_length=5.0, principal_point=((2.5, 2.5),))
        self.assertFalse(cam.is_perspective())
        self.assertEquals(cam.get_znear(), None)

facebook-github-bot's avatar
facebook-github-bot committed
959

Georgia Gkioxari's avatar
Georgia Gkioxari committed
960
961
962
963
964
965
############################################################
#                Perspective Camera                        #
############################################################


class TestPerspectiveProjection(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
966
    def test_perspective(self):
Georgia Gkioxari's avatar
Georgia Gkioxari committed
967
        cameras = PerspectiveCameras()
facebook-github-bot's avatar
facebook-github-bot committed
968
969
970
971
972
        P = cameras.get_projection_transform()

        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        v1 = P.transform_points(vertices)
        v2 = sfm_perspective_project_naive(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
973
        self.assertClose(v1, v2)
facebook-github-bot's avatar
facebook-github-bot committed
974
975
976
977
978
979
980

    def test_perspective_scaled(self):
        focal_length_x = 10.0
        focal_length_y = 15.0
        p0x = 15.0
        p0y = 30.0

Georgia Gkioxari's avatar
Georgia Gkioxari committed
981
        cameras = PerspectiveCameras(
facebook-github-bot's avatar
facebook-github-bot committed
982
983
984
985
986
987
988
989
990
991
992
            focal_length=((focal_length_x, focal_length_y),),
            principal_point=((p0x, p0y),),
        )
        P = cameras.get_projection_transform()

        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        v1 = P.transform_points(vertices)
        v2 = sfm_perspective_project_naive(
            vertices, fx=focal_length_x, fy=focal_length_y, p0x=p0x, p0y=p0y
        )
        v3 = cameras.transform_points(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
993
994
        self.assertClose(v1, v2)
        self.assertClose(v3[..., :2], v2[..., :2])
facebook-github-bot's avatar
facebook-github-bot committed
995
996

    def test_perspective_kwargs(self):
Georgia Gkioxari's avatar
Georgia Gkioxari committed
997
        cameras = PerspectiveCameras(focal_length=5.0, principal_point=((2.5, 2.5),))
facebook-github-bot's avatar
facebook-github-bot committed
998
999
1000
1001
1002
        P = cameras.get_projection_transform(
            focal_length=2.0, principal_point=((2.5, 3.5),)
        )
        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        v1 = P.transform_points(vertices)
1003
        v2 = sfm_perspective_project_naive(vertices, fx=2.0, fy=2.0, p0x=2.5, p0y=3.5)
1004
        self.assertClose(v1, v2, atol=1e-6)
1005
1006
1007
1008
1009

    def test_perspective_type(self):
        cam = PerspectiveCameras(focal_length=5.0, principal_point=((2.5, 2.5),))
        self.assertTrue(cam.is_perspective())
        self.assertEquals(cam.get_znear(), None)