test_cameras.py 48.1 KB
Newer Older
1
# Copyright (c) Meta Platforms, Inc. and affiliates.
Patrick Labatut's avatar
Patrick Labatut committed
2
3
4
5
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
facebook-github-bot's avatar
facebook-github-bot committed
6

7
8
# @licenselint-loose-mode

facebook-github-bot's avatar
facebook-github-bot committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# Some of the code below is adapted from Soft Rasterizer (SoftRas)
#
# Copyright (c) 2017 Hiroharu Kato
# Copyright (c) 2018 Nikos Kolotouros
# Copyright (c) 2019 Shichen Liu
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

import math
David Novotny's avatar
David Novotny committed
34
import typing
facebook-github-bot's avatar
facebook-github-bot committed
35
36
import unittest

37
38
39
import numpy as np
import torch
from common_testing import TestCaseMixin
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
40
from pytorch3d.renderer.camera_utils import join_cameras_as_batch
facebook-github-bot's avatar
facebook-github-bot committed
41
from pytorch3d.renderer.cameras import (
42
    CamerasBase,
Georgia Gkioxari's avatar
Georgia Gkioxari committed
43
44
    FoVOrthographicCameras,
    FoVPerspectiveCameras,
Jeremy Reizenstein's avatar
lint  
Jeremy Reizenstein committed
45
46
    OpenGLOrthographicCameras,
    OpenGLPerspectiveCameras,
Georgia Gkioxari's avatar
Georgia Gkioxari committed
47
48
    OrthographicCameras,
    PerspectiveCameras,
Jeremy Reizenstein's avatar
lint  
Jeremy Reizenstein committed
49
50
    SfMOrthographicCameras,
    SfMPerspectiveCameras,
facebook-github-bot's avatar
facebook-github-bot committed
51
52
53
    camera_position_from_spherical_angles,
    get_world_to_view_transform,
    look_at_rotation,
54
    look_at_view_transform,
facebook-github-bot's avatar
facebook-github-bot committed
55
56
)
from pytorch3d.transforms import Transform3d
David Novotny's avatar
David Novotny committed
57
from pytorch3d.transforms.rotation_conversions import random_rotations
58
from pytorch3d.transforms.so3 import so3_exp_map
facebook-github-bot's avatar
facebook-github-bot committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72


# Naive function adapted from SoftRasterizer for test purposes.
def perspective_project_naive(points, fov=60.0):
    """
    Compute perspective projection from a given viewing angle.
    Args:
        points: (N, V, 3) representing the padded points.
        viewing angle: degrees
    Returns:
        (N, V, 3) tensor of projected points preserving the view space z
        coordinate (no z renormalization)
    """
    device = points.device
73
    halfFov = torch.tensor((fov / 2) / 180 * np.pi, dtype=torch.float32, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    scale = torch.tan(halfFov[None])
    scale = scale[:, None]
    z = points[:, :, 2]
    x = points[:, :, 0] / z / scale
    y = points[:, :, 1] / z / scale
    points = torch.stack((x, y, z), dim=2)
    return points


def sfm_perspective_project_naive(points, fx=1.0, fy=1.0, p0x=0.0, p0y=0.0):
    """
    Compute perspective projection using focal length and principal point.

    Args:
        points: (N, V, 3) representing the padded points.
        fx: world units
        fy: world units
        p0x: pixels
        p0y: pixels
    Returns:
        (N, V, 3) tensor of projected points.
    """
    z = points[:, :, 2]
97
98
    x = (points[:, :, 0] * fx) / z + p0x
    y = (points[:, :, 1] * fy) / z + p0y
facebook-github-bot's avatar
facebook-github-bot committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    points = torch.stack((x, y, 1.0 / z), dim=2)
    return points


# Naive function adapted from SoftRasterizer for test purposes.
def orthographic_project_naive(points, scale_xyz=(1.0, 1.0, 1.0)):
    """
    Compute orthographic projection from a given angle
    Args:
        points: (N, V, 3) representing the padded points.
        scaled: (N, 3) scaling factors for each of xyz directions
    Returns:
        (N, V, 3) tensor of projected points preserving the view space z
        coordinate (no z renormalization).
    """
    if not torch.is_tensor(scale_xyz):
        scale_xyz = torch.tensor(scale_xyz)
    scale_xyz = scale_xyz.view(-1, 3)
    z = points[:, :, 2]
    x = points[:, :, 0] * scale_xyz[:, 0]
    y = points[:, :, 1] * scale_xyz[:, 1]
    points = torch.stack((x, y, z), dim=2)
    return points


Georgia Gkioxari's avatar
Georgia Gkioxari committed
124
125
126
127
128
def ndc_to_screen_points_naive(points, imsize):
    """
    Transforms points from PyTorch3D's NDC space to screen space
    Args:
        points: (N, V, 3) representing padded points
129
        imsize: (N, 2) image size = (height, width)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
130
131
132
    Returns:
        (N, V, 3) tensor of transformed points
    """
133
134
    height, width = imsize.unbind(1)
    width = width.view(-1, 1)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
135
    half_width = width / 2.0
136
    height = height.view(-1, 1)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
137
    half_height = height / 2.0
138
139
140
141

    scale = (
        half_width * (height > width).float() + half_height * (height <= width).float()
    )
Georgia Gkioxari's avatar
Georgia Gkioxari committed
142
143

    x, y, z = points.unbind(2)
144
145
    x = -scale * x + half_width
    y = -scale * y + half_height
Georgia Gkioxari's avatar
Georgia Gkioxari committed
146
147
148
    return torch.stack((x, y, z), dim=2)


David Novotny's avatar
David Novotny committed
149
150
151
152
153
154
155
def init_random_cameras(
    cam_type: typing.Type[CamerasBase], batch_size: int, random_z: bool = False
):
    cam_params = {}
    T = torch.randn(batch_size, 3) * 0.03
    if not random_z:
        T[:, 2] = 4
156
    R = so3_exp_map(torch.randn(batch_size, 3) * 3.0)
David Novotny's avatar
David Novotny committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    cam_params = {"R": R, "T": T}
    if cam_type in (OpenGLPerspectiveCameras, OpenGLOrthographicCameras):
        cam_params["znear"] = torch.rand(batch_size) * 10 + 0.1
        cam_params["zfar"] = torch.rand(batch_size) * 4 + 1 + cam_params["znear"]
        if cam_type == OpenGLPerspectiveCameras:
            cam_params["fov"] = torch.rand(batch_size) * 60 + 30
            cam_params["aspect_ratio"] = torch.rand(batch_size) * 0.5 + 0.5
        else:
            cam_params["top"] = torch.rand(batch_size) * 0.2 + 0.9
            cam_params["bottom"] = -(torch.rand(batch_size)) * 0.2 - 0.9
            cam_params["left"] = -(torch.rand(batch_size)) * 0.2 - 0.9
            cam_params["right"] = torch.rand(batch_size) * 0.2 + 0.9
    elif cam_type in (FoVPerspectiveCameras, FoVOrthographicCameras):
        cam_params["znear"] = torch.rand(batch_size) * 10 + 0.1
        cam_params["zfar"] = torch.rand(batch_size) * 4 + 1 + cam_params["znear"]
        if cam_type == FoVPerspectiveCameras:
            cam_params["fov"] = torch.rand(batch_size) * 60 + 30
            cam_params["aspect_ratio"] = torch.rand(batch_size) * 0.5 + 0.5
        else:
            cam_params["max_y"] = torch.rand(batch_size) * 0.2 + 0.9
            cam_params["min_y"] = -(torch.rand(batch_size)) * 0.2 - 0.9
            cam_params["min_x"] = -(torch.rand(batch_size)) * 0.2 - 0.9
            cam_params["max_x"] = torch.rand(batch_size) * 0.2 + 0.9
    elif cam_type in (
        SfMOrthographicCameras,
        SfMPerspectiveCameras,
        OrthographicCameras,
        PerspectiveCameras,
    ):
        cam_params["focal_length"] = torch.rand(batch_size) * 10 + 0.1
        cam_params["principal_point"] = torch.randn((batch_size, 2))

    else:
        raise ValueError(str(cam_type))
    return cam_type(**cam_params)


Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
194
class TestCameraHelpers(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
195
196
197
198
199
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(42)
        np.random.seed(42)

200
201
202
203
    def test_look_at_view_transform_from_eye_point_tuple(self):
        dist = math.sqrt(2)
        elev = math.pi / 4
        azim = 0.0
Georgia Gkioxari's avatar
Georgia Gkioxari committed
204
        eye = ((0.0, 1.0, 1.0),)
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
        # using passed values for dist, elev, azim
        R, t = look_at_view_transform(dist, elev, azim, degrees=False)
        # using other values for dist, elev, azim - eye overrides
        R_eye, t_eye = look_at_view_transform(dist=3, elev=2, azim=1, eye=eye)
        # using only eye value

        R_eye_only, t_eye_only = look_at_view_transform(eye=eye)
        self.assertTrue(torch.allclose(R, R_eye, atol=2e-7))
        self.assertTrue(torch.allclose(t, t_eye, atol=2e-7))
        self.assertTrue(torch.allclose(R, R_eye_only, atol=2e-7))
        self.assertTrue(torch.allclose(t, t_eye_only, atol=2e-7))

    def test_look_at_view_transform_default_values(self):
        dist = 1.0
        elev = 0.0
        azim = 0.0
        # Using passed values for dist, elev, azim
        R, t = look_at_view_transform(dist, elev, azim)
        # Using default dist=1.0, elev=0.0, azim=0.0
        R_default, t_default = look_at_view_transform()
        # test default = passed = expected
        self.assertTrue(torch.allclose(R, R_default, atol=2e-7))
        self.assertTrue(torch.allclose(t, t_default, atol=2e-7))

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    def test_look_at_view_transform_non_default_at_position(self):
        dist = 1.0
        elev = 0.0
        azim = 0.0
        at = ((1, 1, 1),)
        # Using passed values for dist, elev, azim, at
        R, t = look_at_view_transform(dist, elev, azim, at=at)
        # Using default dist=1.0, elev=0.0, azim=0.0
        R_default, t_default = look_at_view_transform()
        # test default = passed = expected
        # R must be the same, t must be translated by (1,-1,1) with respect to t_default
        t_trans = torch.tensor([1, -1, 1], dtype=torch.float32).view(1, 3)
        self.assertTrue(torch.allclose(R, R_default, atol=2e-7))
        self.assertTrue(torch.allclose(t, t_default + t_trans, atol=2e-7))

facebook-github-bot's avatar
facebook-github-bot committed
244
245
246
247
    def test_camera_position_from_angles_python_scalar(self):
        dist = 2.7
        elev = 90.0
        azim = 0.0
248
249
250
        expected_position = torch.tensor([0.0, 2.7, 0.0], dtype=torch.float32).view(
            1, 3
        )
facebook-github-bot's avatar
facebook-github-bot committed
251
        position = camera_position_from_spherical_angles(dist, elev, azim)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
252
        self.assertClose(position, expected_position, atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
253
254
255
256
257
258
259
260
261
262

    def test_camera_position_from_angles_python_scalar_radians(self):
        dist = 2.7
        elev = math.pi / 2
        azim = 0.0
        expected_position = torch.tensor([0.0, 2.7, 0.0], dtype=torch.float32)
        expected_position = expected_position.view(1, 3)
        position = camera_position_from_spherical_angles(
            dist, elev, azim, degrees=False
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
263
        self.assertClose(position, expected_position, atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
264
265
266
267
268

    def test_camera_position_from_angles_torch_scalars(self):
        dist = torch.tensor(2.7)
        elev = torch.tensor(0.0)
        azim = torch.tensor(90.0)
269
270
271
        expected_position = torch.tensor([2.7, 0.0, 0.0], dtype=torch.float32).view(
            1, 3
        )
facebook-github-bot's avatar
facebook-github-bot committed
272
        position = camera_position_from_spherical_angles(dist, elev, azim)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
273
        self.assertClose(position, expected_position, atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
274
275
276
277
278

    def test_camera_position_from_angles_mixed_scalars(self):
        dist = 2.7
        elev = torch.tensor(0.0)
        azim = 90.0
279
280
281
        expected_position = torch.tensor([2.7, 0.0, 0.0], dtype=torch.float32).view(
            1, 3
        )
facebook-github-bot's avatar
facebook-github-bot committed
282
        position = camera_position_from_spherical_angles(dist, elev, azim)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
283
        self.assertClose(position, expected_position, atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

    def test_camera_position_from_angles_torch_scalar_grads(self):
        dist = torch.tensor(2.7, requires_grad=True)
        elev = torch.tensor(45.0, requires_grad=True)
        azim = torch.tensor(45.0)
        position = camera_position_from_spherical_angles(dist, elev, azim)
        position.sum().backward()
        self.assertTrue(hasattr(elev, "grad"))
        self.assertTrue(hasattr(dist, "grad"))
        elev_grad = elev.grad.clone()
        dist_grad = dist.grad.clone()
        elev = math.pi / 180.0 * elev.detach()
        azim = math.pi / 180.0 * azim
        grad_dist = (
            torch.cos(elev) * torch.sin(azim)
            + torch.sin(elev)
300
            + torch.cos(elev) * torch.cos(azim)
facebook-github-bot's avatar
facebook-github-bot committed
301
302
        )
        grad_elev = (
Nikhila Ravi's avatar
Nikhila Ravi committed
303
            -(torch.sin(elev)) * torch.sin(azim)
facebook-github-bot's avatar
facebook-github-bot committed
304
            + torch.cos(elev)
305
            - torch.sin(elev) * torch.cos(azim)
facebook-github-bot's avatar
facebook-github-bot committed
306
307
        )
        grad_elev = dist * (math.pi / 180.0) * grad_elev
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
308
309
        self.assertClose(elev_grad, grad_elev)
        self.assertClose(dist_grad, grad_dist)
facebook-github-bot's avatar
facebook-github-bot committed
310
311
312
313
314
315
316
317
318

    def test_camera_position_from_angles_vectors(self):
        dist = torch.tensor([2.0, 2.0])
        elev = torch.tensor([0.0, 90.0])
        azim = torch.tensor([90.0, 0.0])
        expected_position = torch.tensor(
            [[2.0, 0.0, 0.0], [0.0, 2.0, 0.0]], dtype=torch.float32
        )
        position = camera_position_from_spherical_angles(dist, elev, azim)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
319
        self.assertClose(position, expected_position, atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
320
321
322
323
324
325

    def test_camera_position_from_angles_vectors_broadcast(self):
        dist = torch.tensor([2.0, 3.0, 5.0])
        elev = torch.tensor([0.0])
        azim = torch.tensor([90.0])
        expected_position = torch.tensor(
326
            [[2.0, 0.0, 0.0], [3.0, 0.0, 0.0], [5.0, 0.0, 0.0]], dtype=torch.float32
facebook-github-bot's avatar
facebook-github-bot committed
327
328
        )
        position = camera_position_from_spherical_angles(dist, elev, azim)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
329
        self.assertClose(position, expected_position, atol=3e-7)
facebook-github-bot's avatar
facebook-github-bot committed
330
331
332
333
334
335

    def test_camera_position_from_angles_vectors_mixed_broadcast(self):
        dist = torch.tensor([2.0, 3.0, 5.0])
        elev = 0.0
        azim = torch.tensor(90.0)
        expected_position = torch.tensor(
336
            [[2.0, 0.0, 0.0], [3.0, 0.0, 0.0], [5.0, 0.0, 0.0]], dtype=torch.float32
facebook-github-bot's avatar
facebook-github-bot committed
337
338
        )
        position = camera_position_from_spherical_angles(dist, elev, azim)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
339
        self.assertClose(position, expected_position, atol=3e-7)
facebook-github-bot's avatar
facebook-github-bot committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356

    def test_camera_position_from_angles_vectors_mixed_broadcast_grads(self):
        dist = torch.tensor([2.0, 3.0, 5.0], requires_grad=True)
        elev = torch.tensor(45.0, requires_grad=True)
        azim = 45.0
        position = camera_position_from_spherical_angles(dist, elev, azim)
        position.sum().backward()
        self.assertTrue(hasattr(elev, "grad"))
        self.assertTrue(hasattr(dist, "grad"))
        elev_grad = elev.grad.clone()
        dist_grad = dist.grad.clone()
        azim = torch.tensor(azim)
        elev = math.pi / 180.0 * elev.detach()
        azim = math.pi / 180.0 * azim
        grad_dist = (
            torch.cos(elev) * torch.sin(azim)
            + torch.sin(elev)
357
            + torch.cos(elev) * torch.cos(azim)
facebook-github-bot's avatar
facebook-github-bot committed
358
359
        )
        grad_elev = (
Nikhila Ravi's avatar
Nikhila Ravi committed
360
            -(torch.sin(elev)) * torch.sin(azim)
facebook-github-bot's avatar
facebook-github-bot committed
361
            + torch.cos(elev)
362
            - torch.sin(elev) * torch.cos(azim)
facebook-github-bot's avatar
facebook-github-bot committed
363
364
        )
        grad_elev = (dist * (math.pi / 180.0) * grad_elev).sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
365
366
        self.assertClose(elev_grad, grad_elev)
        self.assertClose(dist_grad, torch.full([3], grad_dist))
facebook-github-bot's avatar
facebook-github-bot committed
367
368
369
370
371
372
373
374
375
376
377
378

    def test_camera_position_from_angles_vectors_bad_broadcast(self):
        # Batch dim for broadcast must be N or 1
        dist = torch.tensor([2.0, 3.0, 5.0])
        elev = torch.tensor([0.0, 90.0])
        azim = torch.tensor([90.0])
        with self.assertRaises(ValueError):
            camera_position_from_spherical_angles(dist, elev, azim)

    def test_look_at_rotation_python_list(self):
        camera_position = [[0.0, 0.0, -1.0]]  # camera pointing along negative z
        rot_mat = look_at_rotation(camera_position)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
379
        self.assertClose(rot_mat, torch.eye(3)[None], atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

    def test_look_at_rotation_input_fail(self):
        camera_position = [-1.0]  # expected to have xyz positions
        with self.assertRaises(ValueError):
            look_at_rotation(camera_position)

    def test_look_at_rotation_list_broadcast(self):
        # fmt: off
        camera_positions = [[0.0, 0.0, -1.0], [0.0, 0.0, 1.0]]
        rot_mats_expected = torch.tensor(
            [
                [
                    [1.0, 0.0, 0.0],
                    [0.0, 1.0, 0.0],
                    [0.0, 0.0, 1.0]
                ],
                [
                    [-1.0, 0.0,  0.0],  # noqa: E241, E201
                    [ 0.0, 1.0,  0.0],  # noqa: E241, E201
                    [ 0.0, 0.0, -1.0]   # noqa: E241, E201
                ],
            ],
            dtype=torch.float32
        )
        # fmt: on
        rot_mats = look_at_rotation(camera_positions)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
406
        self.assertClose(rot_mats, rot_mats_expected, atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430

    def test_look_at_rotation_tensor_broadcast(self):
        # fmt: off
        camera_positions = torch.tensor([
            [0.0, 0.0, -1.0],
            [0.0, 0.0,  1.0]   # noqa: E241, E201
        ], dtype=torch.float32)
        rot_mats_expected = torch.tensor(
            [
                [
                    [1.0, 0.0, 0.0],
                    [0.0, 1.0, 0.0],
                    [0.0, 0.0, 1.0]
                ],
                [
                    [-1.0, 0.0,  0.0],  # noqa: E241, E201
                    [ 0.0, 1.0,  0.0],  # noqa: E241, E201
                    [ 0.0, 0.0, -1.0]   # noqa: E241, E201
                ],
            ],
            dtype=torch.float32
        )
        # fmt: on
        rot_mats = look_at_rotation(camera_positions)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
431
        self.assertClose(rot_mats, rot_mats_expected, atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
432
433
434
435
436
437

    def test_look_at_rotation_tensor_grad(self):
        camera_position = torch.tensor([[0.0, 0.0, -1.0]], requires_grad=True)
        rot_mat = look_at_rotation(camera_position)
        rot_mat.sum().backward()
        self.assertTrue(hasattr(camera_position, "grad"))
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
438
439
        self.assertClose(
            camera_position.grad, torch.zeros_like(camera_position), atol=2e-7
facebook-github-bot's avatar
facebook-github-bot committed
440
441
442
443
444
445
446
447
        )

    def test_view_transform(self):
        T = torch.tensor([0.0, 0.0, -1.0], requires_grad=True).view(1, -1)
        R = look_at_rotation(T)
        RT = get_world_to_view_transform(R=R, T=T)
        self.assertTrue(isinstance(RT, Transform3d))

Amitav Baruah's avatar
Amitav Baruah committed
448
449
450
451
452
453
454
455
456
457
458
459
460
461
    def test_look_at_view_transform_corner_case(self):
        dist = 2.7
        elev = 90
        azim = 90
        expected_position = torch.tensor([0.0, 2.7, 0.0], dtype=torch.float32).view(
            1, 3
        )
        position = camera_position_from_spherical_angles(dist, elev, azim)
        self.assertClose(position, expected_position, atol=2e-7)
        R, _ = look_at_view_transform(eye=position)
        x_axis = R[:, :, 0]
        expected_x_axis = torch.tensor([0.0, 0.0, -1.0], dtype=torch.float32).view(1, 3)
        self.assertClose(x_axis, expected_x_axis, atol=5e-3)

462
463

class TestCamerasCommon(TestCaseMixin, unittest.TestCase):
464
465
466
467
468
469
470
471
472
473
474
475
476
477
    def test_K(self, batch_size=10):
        T = torch.randn(batch_size, 3)
        R = random_rotations(batch_size)
        K = torch.randn(batch_size, 4, 4)
        for cam_type in (
            FoVOrthographicCameras,
            FoVPerspectiveCameras,
            OrthographicCameras,
            PerspectiveCameras,
        ):
            cam = cam_type(R=R, T=T, K=K)
            cam.get_projection_transform()
            # Just checking that we don't crash or anything

facebook-github-bot's avatar
facebook-github-bot committed
478
479
480
481
482
483
484
485
486
    def test_view_transform_class_method(self):
        T = torch.tensor([0.0, 0.0, -1.0], requires_grad=True).view(1, -1)
        R = look_at_rotation(T)
        RT = get_world_to_view_transform(R=R, T=T)
        for cam_type in (
            OpenGLPerspectiveCameras,
            OpenGLOrthographicCameras,
            SfMOrthographicCameras,
            SfMPerspectiveCameras,
Georgia Gkioxari's avatar
Georgia Gkioxari committed
487
488
489
490
            FoVOrthographicCameras,
            FoVPerspectiveCameras,
            OrthographicCameras,
            PerspectiveCameras,
facebook-github-bot's avatar
facebook-github-bot committed
491
492
493
        ):
            cam = cam_type(R=R, T=T)
            RT_class = cam.get_world_to_view_transform()
494
            self.assertTrue(torch.allclose(RT.get_matrix(), RT_class.get_matrix()))
facebook-github-bot's avatar
facebook-github-bot committed
495
496
497
498
499

        self.assertTrue(isinstance(RT, Transform3d))

    def test_get_camera_center(self, batch_size=10):
        T = torch.randn(batch_size, 3)
David Novotny's avatar
David Novotny committed
500
        R = random_rotations(batch_size)
facebook-github-bot's avatar
facebook-github-bot committed
501
502
503
504
505
        for cam_type in (
            OpenGLPerspectiveCameras,
            OpenGLOrthographicCameras,
            SfMOrthographicCameras,
            SfMPerspectiveCameras,
Georgia Gkioxari's avatar
Georgia Gkioxari committed
506
507
508
509
            FoVOrthographicCameras,
            FoVPerspectiveCameras,
            OrthographicCameras,
            PerspectiveCameras,
facebook-github-bot's avatar
facebook-github-bot committed
510
511
512
513
514
515
        ):
            cam = cam_type(R=R, T=T)
            C = cam.get_camera_center()
            C_ = -torch.bmm(R, T[:, :, None])[:, :, 0]
            self.assertTrue(torch.allclose(C, C_, atol=1e-05))

Georgia Gkioxari's avatar
Georgia Gkioxari committed
516
517
518
519
    @staticmethod
    def init_equiv_cameras_ndc_screen(cam_type: CamerasBase, batch_size: int):
        T = torch.randn(batch_size, 3) * 0.03
        T[:, 2] = 4
520
        R = so3_exp_map(torch.randn(batch_size, 3) * 3.0)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
521
522
523
        screen_cam_params = {"R": R, "T": T}
        ndc_cam_params = {"R": R, "T": T}
        if cam_type in (OrthographicCameras, PerspectiveCameras):
524
525
526
            fcl = torch.rand((batch_size, 2)) * 3.0 + 0.1
            prc = torch.randn((batch_size, 2)) * 0.2
            # (height, width)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
527
            image_size = torch.randint(low=2, high=64, size=(batch_size, 2))
528
            # scale
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
529
            scale = (image_size.min(dim=1, keepdim=True).values) / 2.0
530
531
532
533
534

            ndc_cam_params["focal_length"] = fcl
            ndc_cam_params["principal_point"] = prc
            ndc_cam_params["image_size"] = image_size

Georgia Gkioxari's avatar
Georgia Gkioxari committed
535
            screen_cam_params["image_size"] = image_size
536
            screen_cam_params["focal_length"] = fcl * scale
Georgia Gkioxari's avatar
Georgia Gkioxari committed
537
            screen_cam_params["principal_point"] = (
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
538
                image_size[:, [1, 0]]
539
540
            ) / 2.0 - prc * scale
            screen_cam_params["in_ndc"] = False
Georgia Gkioxari's avatar
Georgia Gkioxari committed
541
542
543
544
        else:
            raise ValueError(str(cam_type))
        return cam_type(**ndc_cam_params), cam_type(**screen_cam_params)

545
546
547
548
549
550
551
552
553
554
555
    def test_unproject_points(self, batch_size=50, num_points=100):
        """
        Checks that an unprojection of a randomly projected point cloud
        stays the same.
        """

        for cam_type in (
            SfMOrthographicCameras,
            OpenGLPerspectiveCameras,
            OpenGLOrthographicCameras,
            SfMPerspectiveCameras,
Georgia Gkioxari's avatar
Georgia Gkioxari committed
556
557
558
559
            FoVOrthographicCameras,
            FoVPerspectiveCameras,
            OrthographicCameras,
            PerspectiveCameras,
560
561
        ):
            # init the cameras
David Novotny's avatar
David Novotny committed
562
            cameras = init_random_cameras(cam_type, batch_size)
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
            # xyz - the ground truth point cloud
            xyz = torch.randn(batch_size, num_points, 3) * 0.3
            # xyz in camera coordinates
            xyz_cam = cameras.get_world_to_view_transform().transform_points(xyz)
            # depth = z-component of xyz_cam
            depth = xyz_cam[:, :, 2:]
            # project xyz
            xyz_proj = cameras.transform_points(xyz)
            xy, cam_depth = xyz_proj.split(2, dim=2)
            # input to the unprojection function
            xy_depth = torch.cat((xy, depth), dim=2)

            for to_world in (False, True):
                if to_world:
                    matching_xyz = xyz
                else:
                    matching_xyz = xyz_cam

Georgia Gkioxari's avatar
Georgia Gkioxari committed
581
                # if we have FoV (= OpenGL) cameras
582
                # test for scaled_depth_input=True/False
Georgia Gkioxari's avatar
Georgia Gkioxari committed
583
584
585
586
587
588
                if cam_type in (
                    OpenGLPerspectiveCameras,
                    OpenGLOrthographicCameras,
                    FoVPerspectiveCameras,
                    FoVOrthographicCameras,
                ):
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
                    for scaled_depth_input in (True, False):
                        if scaled_depth_input:
                            xy_depth_ = xyz_proj
                        else:
                            xy_depth_ = xy_depth
                        xyz_unproj = cameras.unproject_points(
                            xy_depth_,
                            world_coordinates=to_world,
                            scaled_depth_input=scaled_depth_input,
                        )
                        self.assertTrue(
                            torch.allclose(xyz_unproj, matching_xyz, atol=1e-4)
                        )
                else:
                    xyz_unproj = cameras.unproject_points(
                        xy_depth, world_coordinates=to_world
                    )
                    self.assertTrue(torch.allclose(xyz_unproj, matching_xyz, atol=1e-4))

Georgia Gkioxari's avatar
Georgia Gkioxari committed
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
    def test_project_points_screen(self, batch_size=50, num_points=100):
        """
        Checks that an unprojection of a randomly projected point cloud
        stays the same.
        """

        for cam_type in (
            OpenGLOrthographicCameras,
            OpenGLPerspectiveCameras,
            SfMOrthographicCameras,
            SfMPerspectiveCameras,
            FoVOrthographicCameras,
            FoVPerspectiveCameras,
            OrthographicCameras,
            PerspectiveCameras,
        ):

            # init the cameras
David Novotny's avatar
David Novotny committed
626
            cameras = init_random_cameras(cam_type, batch_size)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
627
            # xyz - the ground truth point cloud
628
629
630
            xy = torch.randn(batch_size, num_points, 2) * 2.0 - 1.0
            z = torch.randn(batch_size, num_points, 1) * 3.0 + 1.0
            xyz = torch.cat((xy, z), dim=2)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
631
            # image size
632
            image_size = torch.randint(low=32, high=64, size=(batch_size, 2))
Georgia Gkioxari's avatar
Georgia Gkioxari committed
633
            # project points
634
635
636
637
            xyz_project_ndc = cameras.transform_points_ndc(xyz)
            xyz_project_screen = cameras.transform_points_screen(
                xyz, image_size=image_size
            )
Georgia Gkioxari's avatar
Georgia Gkioxari committed
638
639
640
641
            # naive
            xyz_project_screen_naive = ndc_to_screen_points_naive(
                xyz_project_ndc, image_size
            )
642
            # we set atol to 1e-4, remember that screen points are in [0, W]x[0, H] space
643
            self.assertClose(xyz_project_screen, xyz_project_screen_naive, atol=1e-4)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
644
645
646
647
648
649
650
651
652
653
654
655

    def test_equiv_project_points(self, batch_size=50, num_points=100):
        """
        Checks that NDC and screen cameras project points to ndc correctly.
        Applies only to OrthographicCameras and PerspectiveCameras.
        """
        for cam_type in (OrthographicCameras, PerspectiveCameras):
            # init the cameras
            (
                ndc_cameras,
                screen_cameras,
            ) = TestCamerasCommon.init_equiv_cameras_ndc_screen(cam_type, batch_size)
656
657
658
659
            # xyz - the ground truth point cloud in Py3D space
            xy = torch.randn(batch_size, num_points, 2) * 0.3
            z = torch.rand(batch_size, num_points, 1) + 3.0 + 0.1
            xyz = torch.cat((xy, z), dim=2)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
660
            # project points
661
662
663
664
            xyz_ndc = ndc_cameras.transform_points_ndc(xyz)
            xyz_screen = screen_cameras.transform_points_ndc(xyz)
            # check correctness
            self.assertClose(xyz_ndc, xyz_screen, atol=1e-5)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
665

666
667
668
669
670
671
672
673
674
    def test_clone(self, batch_size: int = 10):
        """
        Checks the clone function of the cameras.
        """
        for cam_type in (
            SfMOrthographicCameras,
            OpenGLPerspectiveCameras,
            OpenGLOrthographicCameras,
            SfMPerspectiveCameras,
Georgia Gkioxari's avatar
Georgia Gkioxari committed
675
676
677
678
            FoVOrthographicCameras,
            FoVPerspectiveCameras,
            OrthographicCameras,
            PerspectiveCameras,
679
        ):
David Novotny's avatar
David Novotny committed
680
            cameras = init_random_cameras(cam_type, batch_size)
681
682
683
684
685
686
687
688
689
690
691
692
            cameras = cameras.to(torch.device("cpu"))
            cameras_clone = cameras.clone()

            for var in cameras.__dict__.keys():
                val = getattr(cameras, var)
                val_clone = getattr(cameras_clone, var)
                if torch.is_tensor(val):
                    self.assertClose(val, val_clone)
                    self.assertSeparate(val, val_clone)
                else:
                    self.assertTrue(val == val_clone)

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
    def test_join_cameras_as_batch_errors(self):
        cam0 = PerspectiveCameras(device="cuda:0")
        cam1 = OrthographicCameras(device="cuda:0")

        # Cameras not of the same type
        with self.assertRaisesRegex(ValueError, "same type"):
            join_cameras_as_batch([cam0, cam1])

        cam2 = OrthographicCameras(device="cpu")
        # Cameras not on the same device
        with self.assertRaisesRegex(ValueError, "same device"):
            join_cameras_as_batch([cam1, cam2])

        cam3 = OrthographicCameras(in_ndc=False, device="cuda:0")
        # Different coordinate systems -- all should be in ndc or in screen
        with self.assertRaisesRegex(
            ValueError, "Attribute _in_ndc is not constant across inputs"
        ):
            join_cameras_as_batch([cam1, cam3])

    def join_cameras_as_batch_fov(self, camera_cls):
        R0 = torch.randn((6, 3, 3))
        R1 = torch.randn((3, 3, 3))
        cam0 = camera_cls(znear=10.0, zfar=100.0, R=R0, device="cuda:0")
        cam1 = camera_cls(znear=10.0, zfar=200.0, R=R1, device="cuda:0")

        cam_batch = join_cameras_as_batch([cam0, cam1])

        self.assertEqual(cam_batch._N, cam0._N + cam1._N)
        self.assertEqual(cam_batch.device, cam0.device)
        self.assertClose(cam_batch.R, torch.cat((R0, R1), dim=0).to(device="cuda:0"))

    def join_cameras_as_batch(self, camera_cls):
        R0 = torch.randn((6, 3, 3))
        R1 = torch.randn((3, 3, 3))
        p0 = torch.randn((6, 2, 1))
        p1 = torch.randn((3, 2, 1))
        f0 = 5.0
        f1 = torch.randn(3, 2)
        f2 = torch.randn(3, 1)
        cam0 = camera_cls(
            R=R0,
            focal_length=f0,
            principal_point=p0,
        )
        cam1 = camera_cls(
            R=R1,
            focal_length=f0,
            principal_point=p1,
        )
        cam2 = camera_cls(
            R=R1,
            focal_length=f1,
            principal_point=p1,
        )
        cam3 = camera_cls(
            R=R1,
            focal_length=f2,
            principal_point=p1,
        )
        cam_batch = join_cameras_as_batch([cam0, cam1])

        self.assertEqual(cam_batch._N, cam0._N + cam1._N)
        self.assertEqual(cam_batch.device, cam0.device)
        self.assertClose(cam_batch.R, torch.cat((R0, R1), dim=0))
        self.assertClose(cam_batch.principal_point, torch.cat((p0, p1), dim=0))
        self.assertEqual(cam_batch._in_ndc, cam0._in_ndc)

        # Test one broadcasted value and one fixed value
        # Focal length as (N,) in one camera and (N, 2) in the other
        cam_batch = join_cameras_as_batch([cam0, cam2])
        self.assertEqual(cam_batch._N, cam0._N + cam2._N)
        self.assertClose(cam_batch.R, torch.cat((R0, R1), dim=0))
        self.assertClose(
            cam_batch.focal_length,
            torch.cat([torch.tensor([[f0, f0]]).expand(6, -1), f1], dim=0),
        )

        # Focal length as (N, 1) in one camera and (N, 2) in the other
        cam_batch = join_cameras_as_batch([cam2, cam3])
        self.assertClose(
            cam_batch.focal_length,
            torch.cat([f1, f2.expand(-1, 2)], dim=0),
        )

    def test_join_batch_perspective(self):
        self.join_cameras_as_batch_fov(FoVPerspectiveCameras)
        self.join_cameras_as_batch(PerspectiveCameras)

    def test_join_batch_orthographic(self):
        self.join_cameras_as_batch_fov(FoVOrthographicCameras)
        self.join_cameras_as_batch(OrthographicCameras)

facebook-github-bot's avatar
facebook-github-bot committed
786

Georgia Gkioxari's avatar
Georgia Gkioxari committed
787
788
789
790
791
792
############################################################
#                FoVPerspective Camera                     #
############################################################


class TestFoVPerspectiveProjection(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
793
794
795
    def test_perspective(self):
        far = 10.0
        near = 1.0
Georgia Gkioxari's avatar
Georgia Gkioxari committed
796
        cameras = FoVPerspectiveCameras(znear=near, zfar=far, fov=60.0)
facebook-github-bot's avatar
facebook-github-bot committed
797
798
799
800
801
802
803
804
805
        P = cameras.get_projection_transform()
        # vertices are at the far clipping plane so z gets mapped to 1.
        vertices = torch.tensor([1, 2, far], dtype=torch.float32)
        projected_verts = torch.tensor(
            [np.sqrt(3) / far, 2 * np.sqrt(3) / far, 1.0], dtype=torch.float32
        )
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
        v2 = perspective_project_naive(vertices, fov=60.0)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
806
807
808
        self.assertClose(v1[..., :2], v2[..., :2])
        self.assertClose(far * v1[..., 2], v2[..., 2])
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
809
810
811
812
813
814
815
816

        # vertices are at the near clipping plane so z gets mapped to 0.0.
        vertices[..., 2] = near
        projected_verts = torch.tensor(
            [np.sqrt(3) / near, 2 * np.sqrt(3) / near, 0.0], dtype=torch.float32
        )
        v1 = P.transform_points(vertices)
        v2 = perspective_project_naive(vertices, fov=60.0)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
817
818
        self.assertClose(v1[..., :2], v2[..., :2])
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
819
820

    def test_perspective_kwargs(self):
Georgia Gkioxari's avatar
Georgia Gkioxari committed
821
        cameras = FoVPerspectiveCameras(znear=5.0, zfar=100.0, fov=0.0)
facebook-github-bot's avatar
facebook-github-bot committed
822
823
824
825
826
827
828
829
830
        # Override defaults by passing in values to get_projection_transform
        far = 10.0
        P = cameras.get_projection_transform(znear=1.0, zfar=far, fov=60.0)
        vertices = torch.tensor([1, 2, far], dtype=torch.float32)
        projected_verts = torch.tensor(
            [np.sqrt(3) / far, 2 * np.sqrt(3) / far, 1.0], dtype=torch.float32
        )
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
831
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
832
833
834
835
836

    def test_perspective_mixed_inputs_broadcast(self):
        far = torch.tensor([10.0, 20.0], dtype=torch.float32)
        near = 1.0
        fov = torch.tensor(60.0)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
837
        cameras = FoVPerspectiveCameras(znear=near, zfar=far, fov=fov)
facebook-github-bot's avatar
facebook-github-bot committed
838
839
840
        P = cameras.get_projection_transform()
        vertices = torch.tensor([1, 2, 10], dtype=torch.float32)
        z1 = 1.0  # vertices at far clipping plane so z = 1.0
Nikhila Ravi's avatar
Nikhila Ravi committed
841
        z2 = (20.0 / (20.0 - 1.0) * 10.0 + -20.0 / (20.0 - 1.0)) / 10.0
facebook-github-bot's avatar
facebook-github-bot committed
842
843
844
845
846
847
848
849
850
851
        projected_verts = torch.tensor(
            [
                [np.sqrt(3) / 10.0, 2 * np.sqrt(3) / 10.0, z1],
                [np.sqrt(3) / 10.0, 2 * np.sqrt(3) / 10.0, z2],
            ],
            dtype=torch.float32,
        )
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
        v2 = perspective_project_naive(vertices, fov=60.0)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
852
853
        self.assertClose(v1[..., :2], torch.cat([v2, v2])[..., :2])
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
854
855
856
857
858

    def test_perspective_mixed_inputs_grad(self):
        far = torch.tensor([10.0])
        near = 1.0
        fov = torch.tensor(60.0, requires_grad=True)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
859
        cameras = FoVPerspectiveCameras(znear=near, zfar=far, fov=fov)
facebook-github-bot's avatar
facebook-github-bot committed
860
861
862
863
864
865
866
867
868
869
870
        P = cameras.get_projection_transform()
        vertices = torch.tensor([1, 2, 10], dtype=torch.float32)
        vertices_batch = vertices[None, None, :]
        v1 = P.transform_points(vertices_batch).squeeze()
        v1.sum().backward()
        self.assertTrue(hasattr(fov, "grad"))
        fov_grad = fov.grad.clone()
        half_fov_rad = (math.pi / 180.0) * fov.detach() / 2.0
        grad_cotan = -(1.0 / (torch.sin(half_fov_rad) ** 2.0) * 1 / 2.0)
        grad_fov = (math.pi / 180.0) * grad_cotan
        grad_fov = (vertices[0] + vertices[1]) * grad_fov / 10.0
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
871
        self.assertClose(fov_grad, grad_fov)
facebook-github-bot's avatar
facebook-github-bot committed
872
873
874

    def test_camera_class_init(self):
        device = torch.device("cuda:0")
Georgia Gkioxari's avatar
Georgia Gkioxari committed
875
        cam = FoVPerspectiveCameras(znear=10.0, zfar=(100.0, 200.0))
facebook-github-bot's avatar
facebook-github-bot committed
876
877
878
879
880
881
882
883
884

        # Check broadcasting
        self.assertTrue(cam.znear.shape == (2,))
        self.assertTrue(cam.zfar.shape == (2,))

        # Test to
        new_cam = cam.to(device=device)
        self.assertTrue(new_cam.device == device)

885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
    def test_getitem(self):
        R_matrix = torch.randn((6, 3, 3))
        cam = FoVPerspectiveCameras(znear=10.0, zfar=100.0, R=R_matrix)

        # Check get item returns an instance of the same class
        # with all the same keys
        c0 = cam[0]
        self.assertTrue(isinstance(c0, FoVPerspectiveCameras))
        self.assertEqual(cam.__dict__.keys(), c0.__dict__.keys())

        # Check all fields correct in get item with int index
        self.assertEqual(len(c0), 1)
        self.assertClose(c0.zfar, torch.tensor([100.0]))
        self.assertClose(c0.znear, torch.tensor([10.0]))
        self.assertClose(c0.R, R_matrix[0:1, ...])
        self.assertEqual(c0.device, torch.device("cpu"))

        # Check list(int) index
        c012 = cam[[0, 1, 2]]
        self.assertEqual(len(c012), 3)
        self.assertClose(c012.zfar, torch.tensor([100.0] * 3))
        self.assertClose(c012.znear, torch.tensor([10.0] * 3))
        self.assertClose(c012.R, R_matrix[0:3, ...])

        # Check torch.LongTensor index
        index = torch.tensor([1, 3, 5], dtype=torch.int64)
        c135 = cam[index]
        self.assertEqual(len(c135), 3)
        self.assertClose(c135.zfar, torch.tensor([100.0] * 3))
        self.assertClose(c135.znear, torch.tensor([10.0] * 3))
        self.assertClose(c135.R, R_matrix[[1, 3, 5], ...])

        # Check errors with get item
        with self.assertRaisesRegex(ValueError, "out of bounds"):
            cam[6]

        with self.assertRaisesRegex(ValueError, "Invalid index type"):
            cam[slice(0, 1)]

        with self.assertRaisesRegex(ValueError, "Invalid index type"):
            index = torch.tensor([1, 3, 5], dtype=torch.float32)
            cam[index]

facebook-github-bot's avatar
facebook-github-bot committed
928
    def test_get_full_transform(self):
Georgia Gkioxari's avatar
Georgia Gkioxari committed
929
        cam = FoVPerspectiveCameras()
facebook-github-bot's avatar
facebook-github-bot committed
930
931
932
933
        T = torch.tensor([0.0, 0.0, 1.0]).view(1, -1)
        R = look_at_rotation(T)
        P = cam.get_full_projection_transform(R=R, T=T)
        self.assertTrue(isinstance(P, Transform3d))
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
934
935
        self.assertClose(cam.R, R)
        self.assertClose(cam.T, T)
facebook-github-bot's avatar
facebook-github-bot committed
936
937
938
939
940

    def test_transform_points(self):
        # Check transform_points methods works with default settings for
        # RT and P
        far = 10.0
Georgia Gkioxari's avatar
Georgia Gkioxari committed
941
        cam = FoVPerspectiveCameras(znear=1.0, zfar=far, fov=60.0)
facebook-github-bot's avatar
facebook-github-bot committed
942
943
944
945
946
947
948
        points = torch.tensor([1, 2, far], dtype=torch.float32)
        points = points.view(1, 1, 3).expand(5, 10, -1)
        projected_points = torch.tensor(
            [np.sqrt(3) / far, 2 * np.sqrt(3) / far, 1.0], dtype=torch.float32
        )
        projected_points = projected_points.view(1, 1, 3).expand(5, 10, -1)
        new_points = cam.transform_points(points)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
949
        self.assertClose(new_points, projected_points)
facebook-github-bot's avatar
facebook-github-bot committed
950

951
952
953
    def test_perspective_type(self):
        cam = FoVPerspectiveCameras(znear=1.0, zfar=10.0, fov=60.0)
        self.assertTrue(cam.is_perspective())
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
954
        self.assertEqual(cam.get_znear(), 1.0)
955

facebook-github-bot's avatar
facebook-github-bot committed
956

Georgia Gkioxari's avatar
Georgia Gkioxari committed
957
958
959
960
961
962
############################################################
#                FoVOrthographic Camera                    #
############################################################


class TestFoVOrthographicProjection(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
963
964
965
    def test_orthographic(self):
        far = 10.0
        near = 1.0
Georgia Gkioxari's avatar
Georgia Gkioxari committed
966
        cameras = FoVOrthographicCameras(znear=near, zfar=far)
facebook-github-bot's avatar
facebook-github-bot committed
967
968
969
970
971
972
973
        P = cameras.get_projection_transform()

        vertices = torch.tensor([1, 2, far], dtype=torch.float32)
        projected_verts = torch.tensor([1, 2, 1], dtype=torch.float32)
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
974
975
        self.assertClose(v1[..., :2], v2[..., :2])
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
976
977
978
979
980

        vertices[..., 2] = near
        projected_verts[2] = 0.0
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
981
982
        self.assertClose(v1[..., :2], v2[..., :2])
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
983
984
985
986
987
988
989
990

    def test_orthographic_scaled(self):
        vertices = torch.tensor([1, 2, 0.5], dtype=torch.float32)
        vertices = vertices[None, None, :]
        scale = torch.tensor([[2.0, 0.5, 20]])
        # applying the scale puts the z coordinate at the far clipping plane
        # so the z is mapped to 1.0
        projected_verts = torch.tensor([2, 1, 1], dtype=torch.float32)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
991
        cameras = FoVOrthographicCameras(znear=1.0, zfar=10.0, scale_xyz=scale)
facebook-github-bot's avatar
facebook-github-bot committed
992
993
994
        P = cameras.get_projection_transform()
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(vertices, scale)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
995
996
        self.assertClose(v1[..., :2], v2[..., :2])
        self.assertClose(v1, projected_verts[None, None])
facebook-github-bot's avatar
facebook-github-bot committed
997
998

    def test_orthographic_kwargs(self):
Georgia Gkioxari's avatar
Georgia Gkioxari committed
999
        cameras = FoVOrthographicCameras(znear=5.0, zfar=100.0)
facebook-github-bot's avatar
facebook-github-bot committed
1000
1001
1002
1003
1004
1005
        far = 10.0
        P = cameras.get_projection_transform(znear=1.0, zfar=far)
        vertices = torch.tensor([1, 2, far], dtype=torch.float32)
        projected_verts = torch.tensor([1, 2, 1], dtype=torch.float32)
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1006
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
1007
1008
1009
1010

    def test_orthographic_mixed_inputs_broadcast(self):
        far = torch.tensor([10.0, 20.0])
        near = 1.0
Georgia Gkioxari's avatar
Georgia Gkioxari committed
1011
        cameras = FoVOrthographicCameras(znear=near, zfar=far)
facebook-github-bot's avatar
facebook-github-bot committed
1012
1013
        P = cameras.get_projection_transform()
        vertices = torch.tensor([1.0, 2.0, 10.0], dtype=torch.float32)
Nikhila Ravi's avatar
Nikhila Ravi committed
1014
        z2 = 1.0 / (20.0 - 1.0) * 10.0 + -1.0 / (20.0 - 1.0)
facebook-github-bot's avatar
facebook-github-bot committed
1015
1016
1017
1018
1019
1020
        projected_verts = torch.tensor(
            [[1.0, 2.0, 1.0], [1.0, 2.0, z2]], dtype=torch.float32
        )
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1021
1022
        self.assertClose(v1[..., :2], torch.cat([v2, v2])[..., :2])
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
1023
1024
1025
1026
1027

    def test_orthographic_mixed_inputs_grad(self):
        far = torch.tensor([10.0])
        near = 1.0
        scale = torch.tensor([[1.0, 1.0, 1.0]], requires_grad=True)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
1028
        cameras = FoVOrthographicCameras(znear=near, zfar=far, scale_xyz=scale)
facebook-github-bot's avatar
facebook-github-bot committed
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
        P = cameras.get_projection_transform()
        vertices = torch.tensor([1.0, 2.0, 10.0], dtype=torch.float32)
        vertices_batch = vertices[None, None, :]
        v1 = P.transform_points(vertices_batch)
        v1.sum().backward()
        self.assertTrue(hasattr(scale, "grad"))
        scale_grad = scale.grad.clone()
        grad_scale = torch.tensor(
            [
                [
                    vertices[0] * P._matrix[:, 0, 0],
                    vertices[1] * P._matrix[:, 1, 1],
                    vertices[2] * P._matrix[:, 2, 2],
                ]
            ]
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1045
        self.assertClose(scale_grad, grad_scale)
facebook-github-bot's avatar
facebook-github-bot committed
1046

1047
1048
1049
    def test_perspective_type(self):
        cam = FoVOrthographicCameras(znear=1.0, zfar=10.0)
        self.assertFalse(cam.is_perspective())
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1050
        self.assertEqual(cam.get_znear(), 1.0)
1051

1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
    def test_getitem(self):
        R_matrix = torch.randn((6, 3, 3))
        scale = torch.tensor([[1.0, 1.0, 1.0]], requires_grad=True)
        cam = FoVOrthographicCameras(
            znear=10.0, zfar=100.0, R=R_matrix, scale_xyz=scale
        )

        # Check get item returns an instance of the same class
        # with all the same keys
        c0 = cam[0]
        self.assertTrue(isinstance(c0, FoVOrthographicCameras))
        self.assertEqual(cam.__dict__.keys(), c0.__dict__.keys())

        # Check torch.LongTensor index
        index = torch.tensor([1, 3, 5], dtype=torch.int64)
        c135 = cam[index]
        self.assertEqual(len(c135), 3)
        self.assertClose(c135.zfar, torch.tensor([100.0] * 3))
        self.assertClose(c135.znear, torch.tensor([10.0] * 3))
        self.assertClose(c135.min_x, torch.tensor([-1.0] * 3))
        self.assertClose(c135.max_x, torch.tensor([1.0] * 3))
        self.assertClose(c135.R, R_matrix[[1, 3, 5], ...])
        self.assertClose(c135.scale_xyz, scale.expand(3, -1))

facebook-github-bot's avatar
facebook-github-bot committed
1076

Georgia Gkioxari's avatar
Georgia Gkioxari committed
1077
1078
1079
1080
1081
1082
############################################################
#                Orthographic Camera                       #
############################################################


class TestOrthographicProjection(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
1083
    def test_orthographic(self):
Georgia Gkioxari's avatar
Georgia Gkioxari committed
1084
        cameras = OrthographicCameras()
facebook-github-bot's avatar
facebook-github-bot committed
1085
1086
1087
1088
1089
1090
1091
        P = cameras.get_projection_transform()

        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        projected_verts = vertices.clone()
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(vertices)

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1092
1093
        self.assertClose(v1[..., :2], v2[..., :2])
        self.assertClose(v1, projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
1094
1095
1096
1097
1098

    def test_orthographic_scaled(self):
        focal_length_x = 10.0
        focal_length_y = 15.0

Georgia Gkioxari's avatar
Georgia Gkioxari committed
1099
        cameras = OrthographicCameras(focal_length=((focal_length_x, focal_length_y),))
facebook-github-bot's avatar
facebook-github-bot committed
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
        P = cameras.get_projection_transform()

        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        projected_verts = vertices.clone()
        projected_verts[:, :, 0] *= focal_length_x
        projected_verts[:, :, 1] *= focal_length_y
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(
            vertices, scale_xyz=(focal_length_x, focal_length_y, 1.0)
        )
        v3 = cameras.transform_points(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1111
1112
1113
        self.assertClose(v1[..., :2], v2[..., :2])
        self.assertClose(v3[..., :2], v2[..., :2])
        self.assertClose(v1, projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
1114
1115

    def test_orthographic_kwargs(self):
Georgia Gkioxari's avatar
Georgia Gkioxari committed
1116
        cameras = OrthographicCameras(focal_length=5.0, principal_point=((2.5, 2.5),))
facebook-github-bot's avatar
facebook-github-bot committed
1117
1118
1119
1120
1121
1122
1123
1124
1125
        P = cameras.get_projection_transform(
            focal_length=2.0, principal_point=((2.5, 3.5),)
        )
        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        projected_verts = vertices.clone()
        projected_verts[:, :, :2] *= 2.0
        projected_verts[:, :, 0] += 2.5
        projected_verts[:, :, 1] += 3.5
        v1 = P.transform_points(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1126
        self.assertClose(v1, projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
1127

1128
1129
1130
    def test_perspective_type(self):
        cam = OrthographicCameras(focal_length=5.0, principal_point=((2.5, 2.5),))
        self.assertFalse(cam.is_perspective())
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1131
        self.assertIsNone(cam.get_znear())
1132

1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
    def test_getitem(self):
        R_matrix = torch.randn((6, 3, 3))
        principal_point = torch.randn((6, 2, 1))
        focal_length = 5.0
        cam = OrthographicCameras(
            R=R_matrix,
            focal_length=focal_length,
            principal_point=principal_point,
        )

        # Check get item returns an instance of the same class
        # with all the same keys
        c0 = cam[0]
        self.assertTrue(isinstance(c0, OrthographicCameras))
        self.assertEqual(cam.__dict__.keys(), c0.__dict__.keys())

        # Check torch.LongTensor index
        index = torch.tensor([1, 3, 5], dtype=torch.int64)
        c135 = cam[index]
        self.assertEqual(len(c135), 3)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1153
        self.assertClose(c135.focal_length, torch.tensor([[5.0, 5.0]] * 3))
1154
1155
1156
        self.assertClose(c135.R, R_matrix[[1, 3, 5], ...])
        self.assertClose(c135.principal_point, principal_point[[1, 3, 5], ...])

facebook-github-bot's avatar
facebook-github-bot committed
1157

Georgia Gkioxari's avatar
Georgia Gkioxari committed
1158
1159
1160
1161
1162
1163
############################################################
#                Perspective Camera                        #
############################################################


class TestPerspectiveProjection(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
1164
    def test_perspective(self):
Georgia Gkioxari's avatar
Georgia Gkioxari committed
1165
        cameras = PerspectiveCameras()
facebook-github-bot's avatar
facebook-github-bot committed
1166
1167
1168
1169
1170
        P = cameras.get_projection_transform()

        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        v1 = P.transform_points(vertices)
        v2 = sfm_perspective_project_naive(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1171
        self.assertClose(v1, v2)
facebook-github-bot's avatar
facebook-github-bot committed
1172
1173
1174
1175
1176
1177
1178

    def test_perspective_scaled(self):
        focal_length_x = 10.0
        focal_length_y = 15.0
        p0x = 15.0
        p0y = 30.0

Georgia Gkioxari's avatar
Georgia Gkioxari committed
1179
        cameras = PerspectiveCameras(
facebook-github-bot's avatar
facebook-github-bot committed
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
            focal_length=((focal_length_x, focal_length_y),),
            principal_point=((p0x, p0y),),
        )
        P = cameras.get_projection_transform()

        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        v1 = P.transform_points(vertices)
        v2 = sfm_perspective_project_naive(
            vertices, fx=focal_length_x, fy=focal_length_y, p0x=p0x, p0y=p0y
        )
        v3 = cameras.transform_points(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1191
1192
        self.assertClose(v1, v2)
        self.assertClose(v3[..., :2], v2[..., :2])
facebook-github-bot's avatar
facebook-github-bot committed
1193
1194

    def test_perspective_kwargs(self):
Georgia Gkioxari's avatar
Georgia Gkioxari committed
1195
        cameras = PerspectiveCameras(focal_length=5.0, principal_point=((2.5, 2.5),))
facebook-github-bot's avatar
facebook-github-bot committed
1196
1197
1198
1199
1200
        P = cameras.get_projection_transform(
            focal_length=2.0, principal_point=((2.5, 3.5),)
        )
        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        v1 = P.transform_points(vertices)
1201
        v2 = sfm_perspective_project_naive(vertices, fx=2.0, fy=2.0, p0x=2.5, p0y=3.5)
1202
        self.assertClose(v1, v2, atol=1e-6)
1203
1204
1205
1206

    def test_perspective_type(self):
        cam = PerspectiveCameras(focal_length=5.0, principal_point=((2.5, 2.5),))
        self.assertTrue(cam.is_perspective())
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1207
        self.assertIsNone(cam.get_znear())
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228

    def test_getitem(self):
        R_matrix = torch.randn((6, 3, 3))
        principal_point = torch.randn((6, 2, 1))
        focal_length = 5.0
        cam = PerspectiveCameras(
            R=R_matrix,
            focal_length=focal_length,
            principal_point=principal_point,
        )

        # Check get item returns an instance of the same class
        # with all the same keys
        c0 = cam[0]
        self.assertTrue(isinstance(c0, PerspectiveCameras))
        self.assertEqual(cam.__dict__.keys(), c0.__dict__.keys())

        # Check torch.LongTensor index
        index = torch.tensor([1, 3, 5], dtype=torch.int64)
        c135 = cam[index]
        self.assertEqual(len(c135), 3)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1229
        self.assertClose(c135.focal_length, torch.tensor([[5.0, 5.0]] * 3))
1230
1231
1232
1233
1234
        self.assertClose(c135.R, R_matrix[[1, 3, 5], ...])
        self.assertClose(c135.principal_point, principal_point[[1, 3, 5], ...])

        # Check in_ndc is handled correctly
        self.assertEqual(cam._in_ndc, c0._in_ndc)