test_cameras.py 31 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.


# Some of the code below is adapted from Soft Rasterizer (SoftRas)
#
# Copyright (c) 2017 Hiroharu Kato
# Copyright (c) 2018 Nikos Kolotouros
# Copyright (c) 2019 Shichen Liu
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

import math
import unittest

31
32
33
import numpy as np
import torch
from common_testing import TestCaseMixin
facebook-github-bot's avatar
facebook-github-bot committed
34
from pytorch3d.renderer.cameras import (
35
    CamerasBase,
facebook-github-bot's avatar
facebook-github-bot committed
36
37
38
39
40
41
42
    OpenGLOrthographicCameras,
    OpenGLPerspectiveCameras,
    SfMOrthographicCameras,
    SfMPerspectiveCameras,
    camera_position_from_spherical_angles,
    get_world_to_view_transform,
    look_at_rotation,
43
    look_at_view_transform,
facebook-github-bot's avatar
facebook-github-bot committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
)
from pytorch3d.transforms import Transform3d
from pytorch3d.transforms.so3 import so3_exponential_map


# Naive function adapted from SoftRasterizer for test purposes.
def perspective_project_naive(points, fov=60.0):
    """
    Compute perspective projection from a given viewing angle.
    Args:
        points: (N, V, 3) representing the padded points.
        viewing angle: degrees
    Returns:
        (N, V, 3) tensor of projected points preserving the view space z
        coordinate (no z renormalization)
    """
    device = points.device
61
    halfFov = torch.tensor((fov / 2) / 180 * np.pi, dtype=torch.float32, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    scale = torch.tan(halfFov[None])
    scale = scale[:, None]
    z = points[:, :, 2]
    x = points[:, :, 0] / z / scale
    y = points[:, :, 1] / z / scale
    points = torch.stack((x, y, z), dim=2)
    return points


def sfm_perspective_project_naive(points, fx=1.0, fy=1.0, p0x=0.0, p0y=0.0):
    """
    Compute perspective projection using focal length and principal point.

    Args:
        points: (N, V, 3) representing the padded points.
        fx: world units
        fy: world units
        p0x: pixels
        p0y: pixels
    Returns:
        (N, V, 3) tensor of projected points.
    """
    z = points[:, :, 2]
85
86
    x = (points[:, :, 0] * fx) / z + p0x
    y = (points[:, :, 1] * fy) / z + p0y
facebook-github-bot's avatar
facebook-github-bot committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    points = torch.stack((x, y, 1.0 / z), dim=2)
    return points


# Naive function adapted from SoftRasterizer for test purposes.
def orthographic_project_naive(points, scale_xyz=(1.0, 1.0, 1.0)):
    """
    Compute orthographic projection from a given angle
    Args:
        points: (N, V, 3) representing the padded points.
        scaled: (N, 3) scaling factors for each of xyz directions
    Returns:
        (N, V, 3) tensor of projected points preserving the view space z
        coordinate (no z renormalization).
    """
    if not torch.is_tensor(scale_xyz):
        scale_xyz = torch.tensor(scale_xyz)
    scale_xyz = scale_xyz.view(-1, 3)
    z = points[:, :, 2]
    x = points[:, :, 0] * scale_xyz[:, 0]
    y = points[:, :, 1] * scale_xyz[:, 1]
    points = torch.stack((x, y, z), dim=2)
    return points


Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
112
class TestCameraHelpers(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
113
114
115
116
117
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(42)
        np.random.seed(42)

118
119
120
121
    def test_look_at_view_transform_from_eye_point_tuple(self):
        dist = math.sqrt(2)
        elev = math.pi / 4
        azim = 0.0
Georgia Gkioxari's avatar
Georgia Gkioxari committed
122
        eye = ((0.0, 1.0, 1.0),)
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
        # using passed values for dist, elev, azim
        R, t = look_at_view_transform(dist, elev, azim, degrees=False)
        # using other values for dist, elev, azim - eye overrides
        R_eye, t_eye = look_at_view_transform(dist=3, elev=2, azim=1, eye=eye)
        # using only eye value

        R_eye_only, t_eye_only = look_at_view_transform(eye=eye)
        self.assertTrue(torch.allclose(R, R_eye, atol=2e-7))
        self.assertTrue(torch.allclose(t, t_eye, atol=2e-7))
        self.assertTrue(torch.allclose(R, R_eye_only, atol=2e-7))
        self.assertTrue(torch.allclose(t, t_eye_only, atol=2e-7))

    def test_look_at_view_transform_default_values(self):
        dist = 1.0
        elev = 0.0
        azim = 0.0
        # Using passed values for dist, elev, azim
        R, t = look_at_view_transform(dist, elev, azim)
        # Using default dist=1.0, elev=0.0, azim=0.0
        R_default, t_default = look_at_view_transform()
        # test default = passed = expected
        self.assertTrue(torch.allclose(R, R_default, atol=2e-7))
        self.assertTrue(torch.allclose(t, t_default, atol=2e-7))

facebook-github-bot's avatar
facebook-github-bot committed
147
148
149
150
    def test_camera_position_from_angles_python_scalar(self):
        dist = 2.7
        elev = 90.0
        azim = 0.0
151
152
153
        expected_position = torch.tensor([0.0, 2.7, 0.0], dtype=torch.float32).view(
            1, 3
        )
facebook-github-bot's avatar
facebook-github-bot committed
154
        position = camera_position_from_spherical_angles(dist, elev, azim)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
155
        self.assertClose(position, expected_position, atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
156
157
158
159
160
161
162
163
164
165

    def test_camera_position_from_angles_python_scalar_radians(self):
        dist = 2.7
        elev = math.pi / 2
        azim = 0.0
        expected_position = torch.tensor([0.0, 2.7, 0.0], dtype=torch.float32)
        expected_position = expected_position.view(1, 3)
        position = camera_position_from_spherical_angles(
            dist, elev, azim, degrees=False
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
166
        self.assertClose(position, expected_position, atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
167
168
169
170
171

    def test_camera_position_from_angles_torch_scalars(self):
        dist = torch.tensor(2.7)
        elev = torch.tensor(0.0)
        azim = torch.tensor(90.0)
172
173
174
        expected_position = torch.tensor([2.7, 0.0, 0.0], dtype=torch.float32).view(
            1, 3
        )
facebook-github-bot's avatar
facebook-github-bot committed
175
        position = camera_position_from_spherical_angles(dist, elev, azim)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
176
        self.assertClose(position, expected_position, atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
177
178
179
180
181

    def test_camera_position_from_angles_mixed_scalars(self):
        dist = 2.7
        elev = torch.tensor(0.0)
        azim = 90.0
182
183
184
        expected_position = torch.tensor([2.7, 0.0, 0.0], dtype=torch.float32).view(
            1, 3
        )
facebook-github-bot's avatar
facebook-github-bot committed
185
        position = camera_position_from_spherical_angles(dist, elev, azim)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
186
        self.assertClose(position, expected_position, atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

    def test_camera_position_from_angles_torch_scalar_grads(self):
        dist = torch.tensor(2.7, requires_grad=True)
        elev = torch.tensor(45.0, requires_grad=True)
        azim = torch.tensor(45.0)
        position = camera_position_from_spherical_angles(dist, elev, azim)
        position.sum().backward()
        self.assertTrue(hasattr(elev, "grad"))
        self.assertTrue(hasattr(dist, "grad"))
        elev_grad = elev.grad.clone()
        dist_grad = dist.grad.clone()
        elev = math.pi / 180.0 * elev.detach()
        azim = math.pi / 180.0 * azim
        grad_dist = (
            torch.cos(elev) * torch.sin(azim)
            + torch.sin(elev)
203
            + torch.cos(elev) * torch.cos(azim)
facebook-github-bot's avatar
facebook-github-bot committed
204
205
206
207
        )
        grad_elev = (
            -torch.sin(elev) * torch.sin(azim)
            + torch.cos(elev)
208
            - torch.sin(elev) * torch.cos(azim)
facebook-github-bot's avatar
facebook-github-bot committed
209
210
        )
        grad_elev = dist * (math.pi / 180.0) * grad_elev
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
211
212
        self.assertClose(elev_grad, grad_elev)
        self.assertClose(dist_grad, grad_dist)
facebook-github-bot's avatar
facebook-github-bot committed
213
214
215
216
217
218
219
220
221

    def test_camera_position_from_angles_vectors(self):
        dist = torch.tensor([2.0, 2.0])
        elev = torch.tensor([0.0, 90.0])
        azim = torch.tensor([90.0, 0.0])
        expected_position = torch.tensor(
            [[2.0, 0.0, 0.0], [0.0, 2.0, 0.0]], dtype=torch.float32
        )
        position = camera_position_from_spherical_angles(dist, elev, azim)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
222
        self.assertClose(position, expected_position, atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
223
224
225
226
227
228

    def test_camera_position_from_angles_vectors_broadcast(self):
        dist = torch.tensor([2.0, 3.0, 5.0])
        elev = torch.tensor([0.0])
        azim = torch.tensor([90.0])
        expected_position = torch.tensor(
229
            [[2.0, 0.0, 0.0], [3.0, 0.0, 0.0], [5.0, 0.0, 0.0]], dtype=torch.float32
facebook-github-bot's avatar
facebook-github-bot committed
230
231
        )
        position = camera_position_from_spherical_angles(dist, elev, azim)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
232
        self.assertClose(position, expected_position, atol=3e-7)
facebook-github-bot's avatar
facebook-github-bot committed
233
234
235
236
237
238

    def test_camera_position_from_angles_vectors_mixed_broadcast(self):
        dist = torch.tensor([2.0, 3.0, 5.0])
        elev = 0.0
        azim = torch.tensor(90.0)
        expected_position = torch.tensor(
239
            [[2.0, 0.0, 0.0], [3.0, 0.0, 0.0], [5.0, 0.0, 0.0]], dtype=torch.float32
facebook-github-bot's avatar
facebook-github-bot committed
240
241
        )
        position = camera_position_from_spherical_angles(dist, elev, azim)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
242
        self.assertClose(position, expected_position, atol=3e-7)
facebook-github-bot's avatar
facebook-github-bot committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

    def test_camera_position_from_angles_vectors_mixed_broadcast_grads(self):
        dist = torch.tensor([2.0, 3.0, 5.0], requires_grad=True)
        elev = torch.tensor(45.0, requires_grad=True)
        azim = 45.0
        position = camera_position_from_spherical_angles(dist, elev, azim)
        position.sum().backward()
        self.assertTrue(hasattr(elev, "grad"))
        self.assertTrue(hasattr(dist, "grad"))
        elev_grad = elev.grad.clone()
        dist_grad = dist.grad.clone()
        azim = torch.tensor(azim)
        elev = math.pi / 180.0 * elev.detach()
        azim = math.pi / 180.0 * azim
        grad_dist = (
            torch.cos(elev) * torch.sin(azim)
            + torch.sin(elev)
260
            + torch.cos(elev) * torch.cos(azim)
facebook-github-bot's avatar
facebook-github-bot committed
261
262
263
264
        )
        grad_elev = (
            -torch.sin(elev) * torch.sin(azim)
            + torch.cos(elev)
265
            - torch.sin(elev) * torch.cos(azim)
facebook-github-bot's avatar
facebook-github-bot committed
266
267
        )
        grad_elev = (dist * (math.pi / 180.0) * grad_elev).sum()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
268
269
        self.assertClose(elev_grad, grad_elev)
        self.assertClose(dist_grad, torch.full([3], grad_dist))
facebook-github-bot's avatar
facebook-github-bot committed
270
271
272
273
274
275
276
277
278
279
280
281

    def test_camera_position_from_angles_vectors_bad_broadcast(self):
        # Batch dim for broadcast must be N or 1
        dist = torch.tensor([2.0, 3.0, 5.0])
        elev = torch.tensor([0.0, 90.0])
        azim = torch.tensor([90.0])
        with self.assertRaises(ValueError):
            camera_position_from_spherical_angles(dist, elev, azim)

    def test_look_at_rotation_python_list(self):
        camera_position = [[0.0, 0.0, -1.0]]  # camera pointing along negative z
        rot_mat = look_at_rotation(camera_position)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
282
        self.assertClose(rot_mat, torch.eye(3)[None], atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

    def test_look_at_rotation_input_fail(self):
        camera_position = [-1.0]  # expected to have xyz positions
        with self.assertRaises(ValueError):
            look_at_rotation(camera_position)

    def test_look_at_rotation_list_broadcast(self):
        # fmt: off
        camera_positions = [[0.0, 0.0, -1.0], [0.0, 0.0, 1.0]]
        rot_mats_expected = torch.tensor(
            [
                [
                    [1.0, 0.0, 0.0],
                    [0.0, 1.0, 0.0],
                    [0.0, 0.0, 1.0]
                ],
                [
                    [-1.0, 0.0,  0.0],  # noqa: E241, E201
                    [ 0.0, 1.0,  0.0],  # noqa: E241, E201
                    [ 0.0, 0.0, -1.0]   # noqa: E241, E201
                ],
            ],
            dtype=torch.float32
        )
        # fmt: on
        rot_mats = look_at_rotation(camera_positions)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
309
        self.assertClose(rot_mats, rot_mats_expected, atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

    def test_look_at_rotation_tensor_broadcast(self):
        # fmt: off
        camera_positions = torch.tensor([
            [0.0, 0.0, -1.0],
            [0.0, 0.0,  1.0]   # noqa: E241, E201
        ], dtype=torch.float32)
        rot_mats_expected = torch.tensor(
            [
                [
                    [1.0, 0.0, 0.0],
                    [0.0, 1.0, 0.0],
                    [0.0, 0.0, 1.0]
                ],
                [
                    [-1.0, 0.0,  0.0],  # noqa: E241, E201
                    [ 0.0, 1.0,  0.0],  # noqa: E241, E201
                    [ 0.0, 0.0, -1.0]   # noqa: E241, E201
                ],
            ],
            dtype=torch.float32
        )
        # fmt: on
        rot_mats = look_at_rotation(camera_positions)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
334
        self.assertClose(rot_mats, rot_mats_expected, atol=2e-7)
facebook-github-bot's avatar
facebook-github-bot committed
335
336
337
338
339
340

    def test_look_at_rotation_tensor_grad(self):
        camera_position = torch.tensor([[0.0, 0.0, -1.0]], requires_grad=True)
        rot_mat = look_at_rotation(camera_position)
        rot_mat.sum().backward()
        self.assertTrue(hasattr(camera_position, "grad"))
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
341
342
        self.assertClose(
            camera_position.grad, torch.zeros_like(camera_position), atol=2e-7
facebook-github-bot's avatar
facebook-github-bot committed
343
344
345
346
347
348
349
350
        )

    def test_view_transform(self):
        T = torch.tensor([0.0, 0.0, -1.0], requires_grad=True).view(1, -1)
        R = look_at_rotation(T)
        RT = get_world_to_view_transform(R=R, T=T)
        self.assertTrue(isinstance(RT, Transform3d))

351
352

class TestCamerasCommon(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
353
354
355
356
357
358
359
360
361
362
363
364
    def test_view_transform_class_method(self):
        T = torch.tensor([0.0, 0.0, -1.0], requires_grad=True).view(1, -1)
        R = look_at_rotation(T)
        RT = get_world_to_view_transform(R=R, T=T)
        for cam_type in (
            OpenGLPerspectiveCameras,
            OpenGLOrthographicCameras,
            SfMOrthographicCameras,
            SfMPerspectiveCameras,
        ):
            cam = cam_type(R=R, T=T)
            RT_class = cam.get_world_to_view_transform()
365
            self.assertTrue(torch.allclose(RT.get_matrix(), RT_class.get_matrix()))
facebook-github-bot's avatar
facebook-github-bot committed
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

        self.assertTrue(isinstance(RT, Transform3d))

    def test_get_camera_center(self, batch_size=10):
        T = torch.randn(batch_size, 3)
        R = so3_exponential_map(torch.randn(batch_size, 3) * 3.0)
        for cam_type in (
            OpenGLPerspectiveCameras,
            OpenGLOrthographicCameras,
            SfMOrthographicCameras,
            SfMPerspectiveCameras,
        ):
            cam = cam_type(R=R, T=T)
            C = cam.get_camera_center()
            C_ = -torch.bmm(R, T[:, :, None])[:, :, 0]
            self.assertTrue(torch.allclose(C, C_, atol=1e-05))

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
    @staticmethod
    def init_random_cameras(cam_type: CamerasBase, batch_size: int):
        cam_params = {}
        T = torch.randn(batch_size, 3) * 0.03
        T[:, 2] = 4
        R = so3_exponential_map(torch.randn(batch_size, 3) * 3.0)
        cam_params = {"R": R, "T": T}
        if cam_type in (OpenGLPerspectiveCameras, OpenGLOrthographicCameras):
            cam_params["znear"] = torch.rand(batch_size) * 10 + 0.1
            cam_params["zfar"] = torch.rand(batch_size) * 4 + 1 + cam_params["znear"]
            if cam_type == OpenGLPerspectiveCameras:
                cam_params["fov"] = torch.rand(batch_size) * 60 + 30
                cam_params["aspect_ratio"] = torch.rand(batch_size) * 0.5 + 0.5
            else:
                cam_params["top"] = torch.rand(batch_size) * 0.2 + 0.9
                cam_params["bottom"] = -torch.rand(batch_size) * 0.2 - 0.9
                cam_params["left"] = -torch.rand(batch_size) * 0.2 - 0.9
                cam_params["right"] = torch.rand(batch_size) * 0.2 + 0.9
        elif cam_type in (SfMOrthographicCameras, SfMPerspectiveCameras):
            cam_params["focal_length"] = torch.rand(batch_size) * 10 + 0.1
            cam_params["principal_point"] = torch.randn((batch_size, 2))
        else:
            raise ValueError(str(cam_type))
        return cam_type(**cam_params)

    def test_unproject_points(self, batch_size=50, num_points=100):
        """
        Checks that an unprojection of a randomly projected point cloud
        stays the same.
        """

        for cam_type in (
            SfMOrthographicCameras,
            OpenGLPerspectiveCameras,
            OpenGLOrthographicCameras,
            SfMPerspectiveCameras,
        ):
            # init the cameras
            cameras = TestCamerasCommon.init_random_cameras(cam_type, batch_size)
            # xyz - the ground truth point cloud
            xyz = torch.randn(batch_size, num_points, 3) * 0.3
            # xyz in camera coordinates
            xyz_cam = cameras.get_world_to_view_transform().transform_points(xyz)
            # depth = z-component of xyz_cam
            depth = xyz_cam[:, :, 2:]
            # project xyz
            xyz_proj = cameras.transform_points(xyz)
            xy, cam_depth = xyz_proj.split(2, dim=2)
            # input to the unprojection function
            xy_depth = torch.cat((xy, depth), dim=2)

            for to_world in (False, True):
                if to_world:
                    matching_xyz = xyz
                else:
                    matching_xyz = xyz_cam

                # if we have OpenGL cameras
                # test for scaled_depth_input=True/False
                if cam_type in (OpenGLPerspectiveCameras, OpenGLOrthographicCameras):
                    for scaled_depth_input in (True, False):
                        if scaled_depth_input:
                            xy_depth_ = xyz_proj
                        else:
                            xy_depth_ = xy_depth
                        xyz_unproj = cameras.unproject_points(
                            xy_depth_,
                            world_coordinates=to_world,
                            scaled_depth_input=scaled_depth_input,
                        )
                        self.assertTrue(
                            torch.allclose(xyz_unproj, matching_xyz, atol=1e-4)
                        )
                else:
                    xyz_unproj = cameras.unproject_points(
                        xy_depth, world_coordinates=to_world
                    )
                    self.assertTrue(torch.allclose(xyz_unproj, matching_xyz, atol=1e-4))

    def test_clone(self, batch_size: int = 10):
        """
        Checks the clone function of the cameras.
        """
        for cam_type in (
            SfMOrthographicCameras,
            OpenGLPerspectiveCameras,
            OpenGLOrthographicCameras,
            SfMPerspectiveCameras,
        ):
            cameras = TestCamerasCommon.init_random_cameras(cam_type, batch_size)
            cameras = cameras.to(torch.device("cpu"))
            cameras_clone = cameras.clone()

            for var in cameras.__dict__.keys():
                val = getattr(cameras, var)
                val_clone = getattr(cameras_clone, var)
                if torch.is_tensor(val):
                    self.assertClose(val, val_clone)
                    self.assertSeparate(val, val_clone)
                else:
                    self.assertTrue(val == val_clone)

facebook-github-bot's avatar
facebook-github-bot committed
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499

class TestPerspectiveProjection(TestCaseMixin, unittest.TestCase):
    def test_perspective(self):
        far = 10.0
        near = 1.0
        cameras = OpenGLPerspectiveCameras(znear=near, zfar=far, fov=60.0)
        P = cameras.get_projection_transform()
        # vertices are at the far clipping plane so z gets mapped to 1.
        vertices = torch.tensor([1, 2, far], dtype=torch.float32)
        projected_verts = torch.tensor(
            [np.sqrt(3) / far, 2 * np.sqrt(3) / far, 1.0], dtype=torch.float32
        )
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
        v2 = perspective_project_naive(vertices, fov=60.0)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
500
501
502
        self.assertClose(v1[..., :2], v2[..., :2])
        self.assertClose(far * v1[..., 2], v2[..., 2])
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
503
504
505
506
507
508
509
510

        # vertices are at the near clipping plane so z gets mapped to 0.0.
        vertices[..., 2] = near
        projected_verts = torch.tensor(
            [np.sqrt(3) / near, 2 * np.sqrt(3) / near, 0.0], dtype=torch.float32
        )
        v1 = P.transform_points(vertices)
        v2 = perspective_project_naive(vertices, fov=60.0)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
511
512
        self.assertClose(v1[..., :2], v2[..., :2])
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
513
514
515
516
517
518
519
520
521
522
523
524

    def test_perspective_kwargs(self):
        cameras = OpenGLPerspectiveCameras(znear=5.0, zfar=100.0, fov=0.0)
        # Override defaults by passing in values to get_projection_transform
        far = 10.0
        P = cameras.get_projection_transform(znear=1.0, zfar=far, fov=60.0)
        vertices = torch.tensor([1, 2, far], dtype=torch.float32)
        projected_verts = torch.tensor(
            [np.sqrt(3) / far, 2 * np.sqrt(3) / far, 1.0], dtype=torch.float32
        )
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
525
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545

    def test_perspective_mixed_inputs_broadcast(self):
        far = torch.tensor([10.0, 20.0], dtype=torch.float32)
        near = 1.0
        fov = torch.tensor(60.0)
        cameras = OpenGLPerspectiveCameras(znear=near, zfar=far, fov=fov)
        P = cameras.get_projection_transform()
        vertices = torch.tensor([1, 2, 10], dtype=torch.float32)
        z1 = 1.0  # vertices at far clipping plane so z = 1.0
        z2 = (20.0 / (20.0 - 1.0) * 10.0 + -(20.0) / (20.0 - 1.0)) / 10.0
        projected_verts = torch.tensor(
            [
                [np.sqrt(3) / 10.0, 2 * np.sqrt(3) / 10.0, z1],
                [np.sqrt(3) / 10.0, 2 * np.sqrt(3) / 10.0, z2],
            ],
            dtype=torch.float32,
        )
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
        v2 = perspective_project_naive(vertices, fov=60.0)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
546
547
        self.assertClose(v1[..., :2], torch.cat([v2, v2])[..., :2])
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

    def test_perspective_mixed_inputs_grad(self):
        far = torch.tensor([10.0])
        near = 1.0
        fov = torch.tensor(60.0, requires_grad=True)
        cameras = OpenGLPerspectiveCameras(znear=near, zfar=far, fov=fov)
        P = cameras.get_projection_transform()
        vertices = torch.tensor([1, 2, 10], dtype=torch.float32)
        vertices_batch = vertices[None, None, :]
        v1 = P.transform_points(vertices_batch).squeeze()
        v1.sum().backward()
        self.assertTrue(hasattr(fov, "grad"))
        fov_grad = fov.grad.clone()
        half_fov_rad = (math.pi / 180.0) * fov.detach() / 2.0
        grad_cotan = -(1.0 / (torch.sin(half_fov_rad) ** 2.0) * 1 / 2.0)
        grad_fov = (math.pi / 180.0) * grad_cotan
        grad_fov = (vertices[0] + vertices[1]) * grad_fov / 10.0
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
565
        self.assertClose(fov_grad, grad_fov)
facebook-github-bot's avatar
facebook-github-bot committed
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592

    def test_camera_class_init(self):
        device = torch.device("cuda:0")
        cam = OpenGLPerspectiveCameras(znear=10.0, zfar=(100.0, 200.0))

        # Check broadcasting
        self.assertTrue(cam.znear.shape == (2,))
        self.assertTrue(cam.zfar.shape == (2,))

        # update znear element 1
        cam[1].znear = 20.0
        self.assertTrue(cam.znear[1] == 20.0)

        # Get item and get value
        c0 = cam[0]
        self.assertTrue(c0.zfar == 100.0)

        # Test to
        new_cam = cam.to(device=device)
        self.assertTrue(new_cam.device == device)

    def test_get_full_transform(self):
        cam = OpenGLPerspectiveCameras()
        T = torch.tensor([0.0, 0.0, 1.0]).view(1, -1)
        R = look_at_rotation(T)
        P = cam.get_full_projection_transform(R=R, T=T)
        self.assertTrue(isinstance(P, Transform3d))
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
593
594
        self.assertClose(cam.R, R)
        self.assertClose(cam.T, T)
facebook-github-bot's avatar
facebook-github-bot committed
595
596
597
598
599
600
601
602
603
604
605
606
607

    def test_transform_points(self):
        # Check transform_points methods works with default settings for
        # RT and P
        far = 10.0
        cam = OpenGLPerspectiveCameras(znear=1.0, zfar=far, fov=60.0)
        points = torch.tensor([1, 2, far], dtype=torch.float32)
        points = points.view(1, 1, 3).expand(5, 10, -1)
        projected_points = torch.tensor(
            [np.sqrt(3) / far, 2 * np.sqrt(3) / far, 1.0], dtype=torch.float32
        )
        projected_points = projected_points.view(1, 1, 3).expand(5, 10, -1)
        new_points = cam.transform_points(points)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
608
        self.assertClose(new_points, projected_points)
facebook-github-bot's avatar
facebook-github-bot committed
609
610
611
612
613
614
615
616
617
618
619
620
621
622


class TestOpenGLOrthographicProjection(TestCaseMixin, unittest.TestCase):
    def test_orthographic(self):
        far = 10.0
        near = 1.0
        cameras = OpenGLOrthographicCameras(znear=near, zfar=far)
        P = cameras.get_projection_transform()

        vertices = torch.tensor([1, 2, far], dtype=torch.float32)
        projected_verts = torch.tensor([1, 2, 1], dtype=torch.float32)
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
623
624
        self.assertClose(v1[..., :2], v2[..., :2])
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
625
626
627
628
629

        vertices[..., 2] = near
        projected_verts[2] = 0.0
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
630
631
        self.assertClose(v1[..., :2], v2[..., :2])
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
632
633
634
635
636
637
638
639

    def test_orthographic_scaled(self):
        vertices = torch.tensor([1, 2, 0.5], dtype=torch.float32)
        vertices = vertices[None, None, :]
        scale = torch.tensor([[2.0, 0.5, 20]])
        # applying the scale puts the z coordinate at the far clipping plane
        # so the z is mapped to 1.0
        projected_verts = torch.tensor([2, 1, 1], dtype=torch.float32)
640
        cameras = OpenGLOrthographicCameras(znear=1.0, zfar=10.0, scale_xyz=scale)
facebook-github-bot's avatar
facebook-github-bot committed
641
642
643
        P = cameras.get_projection_transform()
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(vertices, scale)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
644
645
        self.assertClose(v1[..., :2], v2[..., :2])
        self.assertClose(v1, projected_verts[None, None])
facebook-github-bot's avatar
facebook-github-bot committed
646
647
648
649
650
651
652
653
654

    def test_orthographic_kwargs(self):
        cameras = OpenGLOrthographicCameras(znear=5.0, zfar=100.0)
        far = 10.0
        P = cameras.get_projection_transform(znear=1.0, zfar=far)
        vertices = torch.tensor([1, 2, far], dtype=torch.float32)
        projected_verts = torch.tensor([1, 2, 1], dtype=torch.float32)
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
655
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
656
657
658
659
660
661
662
663
664
665
666
667
668
669

    def test_orthographic_mixed_inputs_broadcast(self):
        far = torch.tensor([10.0, 20.0])
        near = 1.0
        cameras = OpenGLOrthographicCameras(znear=near, zfar=far)
        P = cameras.get_projection_transform()
        vertices = torch.tensor([1.0, 2.0, 10.0], dtype=torch.float32)
        z2 = 1.0 / (20.0 - 1.0) * 10.0 + -(1.0) / (20.0 - 1.0)
        projected_verts = torch.tensor(
            [[1.0, 2.0, 1.0], [1.0, 2.0, z2]], dtype=torch.float32
        )
        vertices = vertices[None, None, :]
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
670
671
        self.assertClose(v1[..., :2], torch.cat([v2, v2])[..., :2])
        self.assertClose(v1.squeeze(), projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
672
673
674
675
676

    def test_orthographic_mixed_inputs_grad(self):
        far = torch.tensor([10.0])
        near = 1.0
        scale = torch.tensor([[1.0, 1.0, 1.0]], requires_grad=True)
677
        cameras = OpenGLOrthographicCameras(znear=near, zfar=far, scale_xyz=scale)
facebook-github-bot's avatar
facebook-github-bot committed
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
        P = cameras.get_projection_transform()
        vertices = torch.tensor([1.0, 2.0, 10.0], dtype=torch.float32)
        vertices_batch = vertices[None, None, :]
        v1 = P.transform_points(vertices_batch)
        v1.sum().backward()
        self.assertTrue(hasattr(scale, "grad"))
        scale_grad = scale.grad.clone()
        grad_scale = torch.tensor(
            [
                [
                    vertices[0] * P._matrix[:, 0, 0],
                    vertices[1] * P._matrix[:, 1, 1],
                    vertices[2] * P._matrix[:, 2, 2],
                ]
            ]
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
694
        self.assertClose(scale_grad, grad_scale)
facebook-github-bot's avatar
facebook-github-bot committed
695
696
697
698
699
700
701
702
703
704
705
706


class TestSfMOrthographicProjection(TestCaseMixin, unittest.TestCase):
    def test_orthographic(self):
        cameras = SfMOrthographicCameras()
        P = cameras.get_projection_transform()

        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        projected_verts = vertices.clone()
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(vertices)

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
707
708
        self.assertClose(v1[..., :2], v2[..., :2])
        self.assertClose(v1, projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727

    def test_orthographic_scaled(self):
        focal_length_x = 10.0
        focal_length_y = 15.0

        cameras = SfMOrthographicCameras(
            focal_length=((focal_length_x, focal_length_y),)
        )
        P = cameras.get_projection_transform()

        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        projected_verts = vertices.clone()
        projected_verts[:, :, 0] *= focal_length_x
        projected_verts[:, :, 1] *= focal_length_y
        v1 = P.transform_points(vertices)
        v2 = orthographic_project_naive(
            vertices, scale_xyz=(focal_length_x, focal_length_y, 1.0)
        )
        v3 = cameras.transform_points(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
728
729
730
        self.assertClose(v1[..., :2], v2[..., :2])
        self.assertClose(v3[..., :2], v2[..., :2])
        self.assertClose(v1, projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
731
732
733
734
735
736
737
738
739
740
741
742
743
744

    def test_orthographic_kwargs(self):
        cameras = SfMOrthographicCameras(
            focal_length=5.0, principal_point=((2.5, 2.5),)
        )
        P = cameras.get_projection_transform(
            focal_length=2.0, principal_point=((2.5, 3.5),)
        )
        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        projected_verts = vertices.clone()
        projected_verts[:, :, :2] *= 2.0
        projected_verts[:, :, 0] += 2.5
        projected_verts[:, :, 1] += 3.5
        v1 = P.transform_points(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
745
        self.assertClose(v1, projected_verts)
facebook-github-bot's avatar
facebook-github-bot committed
746
747
748
749
750
751
752
753
754
755


class TestSfMPerspectiveProjection(TestCaseMixin, unittest.TestCase):
    def test_perspective(self):
        cameras = SfMPerspectiveCameras()
        P = cameras.get_projection_transform()

        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        v1 = P.transform_points(vertices)
        v2 = sfm_perspective_project_naive(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
756
        self.assertClose(v1, v2)
facebook-github-bot's avatar
facebook-github-bot committed
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775

    def test_perspective_scaled(self):
        focal_length_x = 10.0
        focal_length_y = 15.0
        p0x = 15.0
        p0y = 30.0

        cameras = SfMPerspectiveCameras(
            focal_length=((focal_length_x, focal_length_y),),
            principal_point=((p0x, p0y),),
        )
        P = cameras.get_projection_transform()

        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        v1 = P.transform_points(vertices)
        v2 = sfm_perspective_project_naive(
            vertices, fx=focal_length_x, fy=focal_length_y, p0x=p0x, p0y=p0y
        )
        v3 = cameras.transform_points(vertices)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
776
777
        self.assertClose(v1, v2)
        self.assertClose(v3[..., :2], v2[..., :2])
facebook-github-bot's avatar
facebook-github-bot committed
778
779

    def test_perspective_kwargs(self):
780
        cameras = SfMPerspectiveCameras(focal_length=5.0, principal_point=((2.5, 2.5),))
facebook-github-bot's avatar
facebook-github-bot committed
781
782
783
784
785
        P = cameras.get_projection_transform(
            focal_length=2.0, principal_point=((2.5, 3.5),)
        )
        vertices = torch.randn([3, 4, 3], dtype=torch.float32)
        v1 = P.transform_points(vertices)
786
        v2 = sfm_perspective_project_naive(vertices, fx=2.0, fy=2.0, p0x=2.5, p0y=3.5)
787
        self.assertClose(v1, v2, atol=1e-6)