test_pointclouds.py 45.4 KB
Newer Older
Patrick Labatut's avatar
Patrick Labatut committed
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
6

7
import itertools
8
import random
9
10
import unittest

11
12
import numpy as np
import torch
13
from common_testing import TestCaseMixin
14
from pytorch3d.structures import utils as struct_utils
15
from pytorch3d.structures.pointclouds import Pointclouds
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30


class TestPointclouds(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        np.random.seed(42)
        torch.manual_seed(42)

    @staticmethod
    def init_cloud(
        num_clouds: int = 3,
        max_points: int = 100,
        channels: int = 4,
        lists_to_tensors: bool = False,
        with_normals: bool = True,
        with_features: bool = True,
31
        min_points: int = 0,
32
        requires_grad: bool = False,
33
34
35
36
37
38
39
40
41
42
43
44
45
46
    ):
        """
        Function to generate a Pointclouds object of N meshes with
        random number of points.

        Args:
            num_clouds: Number of clouds to generate.
            channels: Number of features.
            max_points: Max number of points per cloud.
            lists_to_tensors: Determines whether the generated clouds should be
                              constructed from lists (=False) or
                              tensors (=True) of points/normals/features.
            with_normals: bool whether to include normals
            with_features: bool whether to include features
47
            min_points: Min number of points per cloud
48
49
50
51
52

        Returns:
            Pointclouds object.
        """
        device = torch.device("cuda:0")
53
        p = torch.randint(low=min_points, high=max_points, size=(num_clouds,))
54
55
56
57
        if lists_to_tensors:
            p.fill_(p[0])

        points_list = [
58
59
60
61
            torch.rand(
                (i, 3), device=device, dtype=torch.float32, requires_grad=requires_grad
            )
            for i in p
62
63
64
65
        ]
        normals_list, features_list = None, None
        if with_normals:
            normals_list = [
66
67
68
69
70
71
72
                torch.rand(
                    (i, 3),
                    device=device,
                    dtype=torch.float32,
                    requires_grad=requires_grad,
                )
                for i in p
73
74
75
            ]
        if with_features:
            features_list = [
76
77
78
79
80
81
82
                torch.rand(
                    (i, channels),
                    device=device,
                    dtype=torch.float32,
                    requires_grad=requires_grad,
                )
                for i in p
83
84
85
86
87
88
89
90
91
            ]

        if lists_to_tensors:
            points_list = torch.stack(points_list)
            if with_normals:
                normals_list = torch.stack(normals_list)
            if with_features:
                features_list = torch.stack(features_list)

92
        return Pointclouds(points_list, normals=normals_list, features=features_list)
93
94
95
96
97
98
99
100
101
102

    def test_simple(self):
        device = torch.device("cuda:0")
        points = [
            torch.tensor(
                [[0.1, 0.3, 0.5], [0.5, 0.2, 0.1], [0.6, 0.8, 0.7]],
                dtype=torch.float32,
                device=device,
            ),
            torch.tensor(
103
                [[0.1, 0.3, 0.3], [0.6, 0.7, 0.8], [0.2, 0.3, 0.4], [0.1, 0.5, 0.3]],
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
                dtype=torch.float32,
                device=device,
            ),
            torch.tensor(
                [
                    [0.7, 0.3, 0.6],
                    [0.2, 0.4, 0.8],
                    [0.9, 0.5, 0.2],
                    [0.2, 0.3, 0.4],
                    [0.9, 0.3, 0.8],
                ],
                dtype=torch.float32,
                device=device,
            ),
        ]
        clouds = Pointclouds(points)

        self.assertClose(
            (clouds.packed_to_cloud_idx()).cpu(),
            torch.tensor([0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2]),
        )
        self.assertClose(
            clouds.cloud_to_packed_first_idx().cpu(), torch.tensor([0, 3, 7])
        )
128
        self.assertClose(clouds.num_points_per_cloud().cpu(), torch.tensor([3, 4, 5]))
129
130
131
132
133
        self.assertClose(
            clouds.padded_to_packed_idx().cpu(),
            torch.tensor([0, 1, 2, 5, 6, 7, 8, 10, 11, 12, 13, 14]),
        )

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    def test_init_error(self):
        # Check if correct errors are raised when verts/faces are on
        # different devices

        clouds = self.init_cloud(10, 100, 5)
        points_list = clouds.points_list()  # all tensors on cuda:0
        points_list = [
            p.to("cpu") if random.uniform(0, 1) > 0.5 else p for p in points_list
        ]
        features_list = clouds.features_list()
        normals_list = clouds.normals_list()

        with self.assertRaises(ValueError) as cm:
            Pointclouds(
                points=points_list, features=features_list, normals=normals_list
            )
            self.assertTrue("same device" in cm.msg)

        points_list = clouds.points_list()
        features_list = [
            f.to("cpu") if random.uniform(0, 1) > 0.2 else f for f in features_list
        ]
        with self.assertRaises(ValueError) as cm:
            Pointclouds(
                points=points_list, features=features_list, normals=normals_list
            )
            self.assertTrue("same device" in cm.msg)

        points_padded = clouds.points_padded()  # on cuda:0
        features_padded = clouds.features_padded().to("cpu")
        normals_padded = clouds.normals_padded()

        with self.assertRaises(ValueError) as cm:
            Pointclouds(
                points=points_padded, features=features_padded, normals=normals_padded
            )
            self.assertTrue("same device" in cm.msg)

172
173
174
175
176
177
178
179
180
181
    def test_all_constructions(self):
        public_getters = [
            "points_list",
            "points_packed",
            "packed_to_cloud_idx",
            "cloud_to_packed_first_idx",
            "num_points_per_cloud",
            "points_padded",
            "padded_to_packed_idx",
        ]
182
        public_normals_getters = ["normals_list", "normals_packed", "normals_padded"]
183
184
185
186
187
188
189
190
191
192
193
194
195
        public_features_getters = [
            "features_list",
            "features_packed",
            "features_padded",
        ]

        lengths = [3, 4, 2]
        max_len = max(lengths)
        C = 4

        points_data = [torch.zeros((max_len, 3)).uniform_() for i in lengths]
        normals_data = [torch.zeros((max_len, 3)).uniform_() for i in lengths]
        features_data = [torch.zeros((max_len, C)).uniform_() for i in lengths]
196
        for length, p, n, f in zip(lengths, points_data, normals_data, features_data):
197
198
199
200
201
            p[length:] = 0.0
            n[length:] = 0.0
            f[length:] = 0.0
        points_list = [d[:length] for length, d in zip(lengths, points_data)]
        normals_list = [d[:length] for length, d in zip(lengths, normals_data)]
202
        features_list = [d[:length] for length, d in zip(lengths, features_data)]
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        points_packed = torch.cat(points_data)
        normals_packed = torch.cat(normals_data)
        features_packed = torch.cat(features_data)
        test_cases_inputs = [
            ("list_0_0", points_list, None, None),
            ("list_1_0", points_list, normals_list, None),
            ("list_0_1", points_list, None, features_list),
            ("list_1_1", points_list, normals_list, features_list),
            ("padded_0_0", points_data, None, None),
            ("padded_1_0", points_data, normals_data, None),
            ("padded_0_1", points_data, None, features_data),
            ("padded_1_1", points_data, normals_data, features_data),
            ("emptylist_emptylist_emptylist", [], [], []),
        ]
        false_cases_inputs = [
218
            ("list_packed", points_list, normals_packed, features_packed, ValueError),
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
            ("packed_0", points_packed, None, None, ValueError),
        ]

        for name, points, normals, features in test_cases_inputs:
            with self.subTest(name=name):
                p = Pointclouds(points, normals, features)
                for method in public_getters:
                    self.assertIsNotNone(getattr(p, method)())
                for method in public_normals_getters:
                    if normals is None or p.isempty():
                        self.assertIsNone(getattr(p, method)())
                for method in public_features_getters:
                    if features is None or p.isempty():
                        self.assertIsNone(getattr(p, method)())

        for name, points, normals, features, error in false_cases_inputs:
            with self.subTest(name=name):
                with self.assertRaises(error):
                    Pointclouds(points, normals, features)

    def test_simple_random_clouds(self):
        # Define the test object either from lists or tensors.
        for with_normals in (False, True):
            for with_features in (False, True):
                for lists_to_tensors in (False, True):
                    N = 10
                    cloud = self.init_cloud(
                        N,
                        lists_to_tensors=lists_to_tensors,
                        with_normals=with_normals,
                        with_features=with_features,
                    )
                    points_list = cloud.points_list()
                    normals_list = cloud.normals_list()
                    features_list = cloud.features_list()

                    # Check batch calculations.
                    points_padded = cloud.points_padded()
                    normals_padded = cloud.normals_padded()
                    features_padded = cloud.features_padded()
                    points_per_cloud = cloud.num_points_per_cloud()

                    if not with_normals:
                        self.assertIsNone(normals_list)
                        self.assertIsNone(normals_padded)
                    if not with_features:
                        self.assertIsNone(features_list)
                        self.assertIsNone(features_padded)
                    for n in range(N):
                        p = points_list[n].shape[0]
269
                        self.assertClose(points_padded[n, :p, :], points_list[n])
270
271
272
                        if with_normals:
                            norms = normals_list[n].shape[0]
                            self.assertEqual(p, norms)
273
                            self.assertClose(normals_padded[n, :p, :], normals_list[n])
274
275
276
277
278
279
280
281
282
                        if with_features:
                            f = features_list[n].shape[0]
                            self.assertEqual(p, f)
                            self.assertClose(
                                features_padded[n, :p, :], features_list[n]
                            )
                        if points_padded.shape[1] > p:
                            self.assertTrue(points_padded[n, p:, :].eq(0).all())
                            if with_features:
283
                                self.assertTrue(features_padded[n, p:, :].eq(0).all())
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
                        self.assertEqual(points_per_cloud[n], p)

                    # Check compute packed.
                    points_packed = cloud.points_packed()
                    packed_to_cloud = cloud.packed_to_cloud_idx()
                    cloud_to_packed = cloud.cloud_to_packed_first_idx()
                    normals_packed = cloud.normals_packed()
                    features_packed = cloud.features_packed()
                    if not with_normals:
                        self.assertIsNone(normals_packed)
                    if not with_features:
                        self.assertIsNone(features_packed)

                    cur = 0
                    for n in range(N):
                        p = points_list[n].shape[0]
                        self.assertClose(
                            points_packed[cur : cur + p, :], points_list[n]
                        )
                        if with_normals:
                            self.assertClose(
305
                                normals_packed[cur : cur + p, :], normals_list[n]
306
307
308
                            )
                        if with_features:
                            self.assertClose(
309
                                features_packed[cur : cur + p, :], features_list[n]
310
                            )
311
                        self.assertTrue(packed_to_cloud[cur : cur + p].eq(n).all())
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
                        self.assertTrue(cloud_to_packed[n] == cur)
                        cur += p

    def test_allempty(self):
        clouds = Pointclouds([], [])
        self.assertEqual(len(clouds), 0)
        self.assertIsNone(clouds.normals_list())
        self.assertIsNone(clouds.features_list())
        self.assertEqual(clouds.points_padded().shape[0], 0)
        self.assertIsNone(clouds.normals_padded())
        self.assertIsNone(clouds.features_padded())
        self.assertEqual(clouds.points_packed().shape[0], 0)
        self.assertIsNone(clouds.normals_packed())
        self.assertIsNone(clouds.features_packed())

    def test_empty(self):
        N, P, C = 10, 100, 2
        device = torch.device("cuda:0")
        points_list = []
        normals_list = []
        features_list = []
        valid = torch.randint(2, size=(N,), dtype=torch.uint8, device=device)
        for n in range(N):
            if valid[n]:
                p = torch.randint(
                    3, high=P, size=(1,), dtype=torch.int32, device=device
                )[0]
                points = torch.rand((p, 3), dtype=torch.float32, device=device)
                normals = torch.rand((p, 3), dtype=torch.float32, device=device)
341
                features = torch.rand((p, C), dtype=torch.float32, device=device)
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
            else:
                points = torch.tensor([], dtype=torch.float32, device=device)
                normals = torch.tensor([], dtype=torch.float32, device=device)
                features = torch.tensor([], dtype=torch.int64, device=device)
            points_list.append(points)
            normals_list.append(normals)
            features_list.append(features)

        for with_normals in (False, True):
            for with_features in (False, True):
                this_features, this_normals = None, None
                if with_normals:
                    this_normals = normals_list
                if with_features:
                    this_features = features_list
                clouds = Pointclouds(
358
                    points=points_list, normals=this_normals, features=this_features
359
360
361
362
363
364
365
366
367
368
369
370
                )
                points_padded = clouds.points_padded()
                normals_padded = clouds.normals_padded()
                features_padded = clouds.features_padded()
                if not with_normals:
                    self.assertIsNone(normals_padded)
                if not with_features:
                    self.assertIsNone(features_padded)
                points_per_cloud = clouds.num_points_per_cloud()
                for n in range(N):
                    p = len(points_list[n])
                    if p > 0:
371
                        self.assertClose(points_padded[n, :p, :], points_list[n])
372
                        if with_normals:
373
                            self.assertClose(normals_padded[n, :p, :], normals_list[n])
374
375
376
377
378
379
380
                        if with_features:
                            self.assertClose(
                                features_padded[n, :p, :], features_list[n]
                            )
                        if points_padded.shape[1] > p:
                            self.assertTrue(points_padded[n, p:, :].eq(0).all())
                            if with_normals:
381
                                self.assertTrue(normals_padded[n, p:, :].eq(0).all())
382
                            if with_features:
383
                                self.assertTrue(features_padded[n, p:, :].eq(0).all())
384
385
386
387
388
389
390
391
392
393
394
395
                    self.assertTrue(points_per_cloud[n] == p)

    def test_clone_list(self):
        N = 5
        clouds = self.init_cloud(N, 100, 5)
        for force in (False, True):
            if force:
                clouds.points_packed()

            new_clouds = clouds.clone()

            # Check cloned and original objects do not share tensors.
396
397
            self.assertSeparate(new_clouds.points_list()[0], clouds.points_list()[0])
            self.assertSeparate(new_clouds.normals_list()[0], clouds.normals_list()[0])
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
            self.assertSeparate(
                new_clouds.features_list()[0], clouds.features_list()[0]
            )
            for attrib in [
                "points_packed",
                "normals_packed",
                "features_packed",
                "points_padded",
                "normals_padded",
                "features_padded",
            ]:
                self.assertSeparate(
                    getattr(new_clouds, attrib)(), getattr(clouds, attrib)()
                )

            self.assertCloudsEqual(clouds, new_clouds)

    def test_clone_tensor(self):
        N = 5
        clouds = self.init_cloud(N, 100, 5, lists_to_tensors=True)
        for force in (False, True):
            if force:
                clouds.points_packed()

            new_clouds = clouds.clone()

            # Check cloned and original objects do not share tensors.
425
426
            self.assertSeparate(new_clouds.points_list()[0], clouds.points_list()[0])
            self.assertSeparate(new_clouds.normals_list()[0], clouds.normals_list()[0])
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
            self.assertSeparate(
                new_clouds.features_list()[0], clouds.features_list()[0]
            )
            for attrib in [
                "points_packed",
                "normals_packed",
                "features_packed",
                "points_padded",
                "normals_padded",
                "features_padded",
            ]:
                self.assertSeparate(
                    getattr(new_clouds, attrib)(), getattr(clouds, attrib)()
                )

            self.assertCloudsEqual(clouds, new_clouds)

444
445
446
447
448
449
450
451
452
453
454
455
456
    def test_detach(self):
        N = 5
        for lists_to_tensors in (True, False):
            clouds = self.init_cloud(
                N, 100, 5, lists_to_tensors=lists_to_tensors, requires_grad=True
            )
            for force in (False, True):
                if force:
                    clouds.points_packed()

                new_clouds = clouds.detach()

                for cloud in new_clouds.points_list():
457
                    self.assertFalse(cloud.requires_grad)
458
                for normal in new_clouds.normals_list():
459
                    self.assertFalse(normal.requires_grad)
460
                for feats in new_clouds.features_list():
461
                    self.assertFalse(feats.requires_grad)
462
463
464
465
466
467
468
469
470

                for attrib in [
                    "points_packed",
                    "normals_packed",
                    "features_packed",
                    "points_padded",
                    "normals_padded",
                    "features_padded",
                ]:
471
                    self.assertFalse(getattr(new_clouds, attrib)().requires_grad)
472
473
474

                self.assertCloudsEqual(clouds, new_clouds)

475
476
477
478
479
480
481
    def assertCloudsEqual(self, cloud1, cloud2):
        N = len(cloud1)
        self.assertEqual(N, len(cloud2))

        for i in range(N):
            self.assertClose(cloud1.points_list()[i], cloud2.points_list()[i])
            self.assertClose(cloud1.normals_list()[i], cloud2.normals_list()[i])
482
            self.assertClose(cloud1.features_list()[i], cloud2.features_list()[i])
483
484
485
486
487
488
489
490
491
492
493
494
495
496
        has_normals = cloud1.normals_list() is not None
        self.assertTrue(has_normals == (cloud2.normals_list() is not None))
        has_features = cloud1.features_list() is not None
        self.assertTrue(has_features == (cloud2.features_list() is not None))

        # check padded & packed
        self.assertClose(cloud1.points_padded(), cloud2.points_padded())
        self.assertClose(cloud1.points_packed(), cloud2.points_packed())
        if has_normals:
            self.assertClose(cloud1.normals_padded(), cloud2.normals_padded())
            self.assertClose(cloud1.normals_packed(), cloud2.normals_packed())
        if has_features:
            self.assertClose(cloud1.features_padded(), cloud2.features_padded())
            self.assertClose(cloud1.features_packed(), cloud2.features_packed())
497
        self.assertClose(cloud1.packed_to_cloud_idx(), cloud2.packed_to_cloud_idx())
498
        self.assertClose(
499
            cloud1.cloud_to_packed_first_idx(), cloud2.cloud_to_packed_first_idx()
500
        )
501
502
503
        self.assertClose(cloud1.num_points_per_cloud(), cloud2.num_points_per_cloud())
        self.assertClose(cloud1.packed_to_cloud_idx(), cloud2.packed_to_cloud_idx())
        self.assertClose(cloud1.padded_to_packed_idx(), cloud2.padded_to_packed_idx())
504
505
506
507
508
509
510
        self.assertTrue(all(cloud1.valid == cloud2.valid))
        self.assertTrue(cloud1.equisized == cloud2.equisized)

    def test_offset(self):
        def naive_offset(clouds, offsets_packed):
            new_points_packed = clouds.points_packed() + offsets_packed
            new_points_list = list(
511
                new_points_packed.split(clouds.num_points_per_cloud().tolist(), 0)
512
513
514
515
516
517
518
519
520
521
522
            )
            return Pointclouds(
                points=new_points_list,
                normals=clouds.normals_list(),
                features=clouds.features_list(),
            )

        N = 5
        clouds = self.init_cloud(N, 100, 10)
        all_p = clouds.points_packed().size(0)
        points_per_cloud = clouds.num_points_per_cloud()
523
        for force, deform_shape in itertools.product((0, 1), [(all_p, 3), 3]):
524
525
526
527
528
            if force:
                clouds._compute_packed(refresh=True)
                clouds._compute_padded()
                clouds.padded_to_packed_idx()

529
            deform = torch.rand(deform_shape, dtype=torch.float32, device=clouds.device)
530
531
532
533
534
535
536
            new_clouds_naive = naive_offset(clouds, deform)

            new_clouds = clouds.offset(deform)

            points_cumsum = torch.cumsum(points_per_cloud, 0).tolist()
            points_cumsum.insert(0, 0)
            for i in range(N):
537
538
539
540
541
                item_offset = (
                    deform
                    if deform.ndim == 1
                    else deform[points_cumsum[i] : points_cumsum[i + 1]]
                )
542
543
                self.assertClose(
                    new_clouds.points_list()[i],
544
                    clouds.points_list()[i] + item_offset,
545
546
547
548
549
                )
                self.assertClose(
                    clouds.normals_list()[i], new_clouds_naive.normals_list()[i]
                )
                self.assertClose(
550
                    clouds.features_list()[i], new_clouds_naive.features_list()[i]
551
552
553
554
555
556
                )
            self.assertCloudsEqual(new_clouds, new_clouds_naive)

    def test_scale(self):
        def naive_scale(cloud, scale):
            if not torch.is_tensor(scale):
Georgia Gkioxari's avatar
Georgia Gkioxari committed
557
                scale = torch.full((len(cloud),), scale, device=cloud.device)
558
559
560
561
562
563
564
565
566
            new_points_list = [
                scale[i] * points.clone()
                for (i, points) in enumerate(cloud.points_list())
            ]
            return Pointclouds(
                new_points_list, cloud.normals_list(), cloud.features_list()
            )

        N = 5
Georgia Gkioxari's avatar
Georgia Gkioxari committed
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
        for test in ["tensor", "scalar"]:
            for force in (False, True):
                clouds = self.init_cloud(N, 100, 10)
                if force:
                    clouds._compute_packed(refresh=True)
                    clouds._compute_padded()
                    clouds.padded_to_packed_idx()
                if test == "tensor":
                    scales = torch.rand(N)
                elif test == "scalar":
                    scales = torch.rand(1)[0].item()
                new_clouds_naive = naive_scale(clouds, scales)
                new_clouds = clouds.scale(scales)
                for i in range(N):
                    if test == "tensor":
                        self.assertClose(
                            scales[i] * clouds.points_list()[i],
                            new_clouds.points_list()[i],
                        )
                    else:
                        self.assertClose(
                            scales * clouds.points_list()[i],
                            new_clouds.points_list()[i],
                        )
                    self.assertClose(
                        clouds.normals_list()[i], new_clouds_naive.normals_list()[i]
                    )
                    self.assertClose(
                        clouds.features_list()[i], new_clouds_naive.features_list()[i]
                    )
                self.assertCloudsEqual(new_clouds, new_clouds_naive)
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612

    def test_extend_list(self):
        N = 10
        clouds = self.init_cloud(N, 100, 10)
        for force in (False, True):
            if force:
                # force some computes to happen
                clouds._compute_packed(refresh=True)
                clouds._compute_padded()
                clouds.padded_to_packed_idx()
            new_clouds = clouds.extend(N)
            self.assertEqual(len(clouds) * 10, len(new_clouds))
            for i in range(len(clouds)):
                for n in range(N):
                    self.assertClose(
613
                        clouds.points_list()[i], new_clouds.points_list()[i * N + n]
614
615
                    )
                    self.assertClose(
616
                        clouds.normals_list()[i], new_clouds.normals_list()[i * N + n]
617
618
                    )
                    self.assertClose(
619
                        clouds.features_list()[i], new_clouds.features_list()[i * N + n]
620
                    )
621
                    self.assertTrue(clouds.valid[i] == new_clouds.valid[i * N + n])
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
            self.assertAllSeparate(
                clouds.points_list()
                + new_clouds.points_list()
                + clouds.normals_list()
                + new_clouds.normals_list()
                + clouds.features_list()
                + new_clouds.features_list()
            )
            self.assertIsNone(new_clouds._points_packed)
            self.assertIsNone(new_clouds._normals_packed)
            self.assertIsNone(new_clouds._features_packed)
            self.assertIsNone(new_clouds._points_padded)
            self.assertIsNone(new_clouds._normals_padded)
            self.assertIsNone(new_clouds._features_padded)

        with self.assertRaises(ValueError):
            clouds.extend(N=-1)

640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
    def test_to(self):
        cloud = self.init_cloud(5, 100, 10)  # Using device "cuda:0"

        cuda_device = torch.device("cuda:0")

        converted_cloud = cloud.to("cuda:0")
        self.assertEqual(cuda_device, converted_cloud.device)
        self.assertEqual(cuda_device, cloud.device)
        self.assertIs(cloud, converted_cloud)

        converted_cloud = cloud.to(cuda_device)
        self.assertEqual(cuda_device, converted_cloud.device)
        self.assertEqual(cuda_device, cloud.device)
        self.assertIs(cloud, converted_cloud)

        cpu_device = torch.device("cpu")

        converted_cloud = cloud.to("cpu")
        self.assertEqual(cpu_device, converted_cloud.device)
        self.assertEqual(cuda_device, cloud.device)
        self.assertIsNot(cloud, converted_cloud)

        converted_cloud = cloud.to(cpu_device)
        self.assertEqual(cpu_device, converted_cloud.device)
        self.assertEqual(cuda_device, cloud.device)
        self.assertIsNot(cloud, converted_cloud)

667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
    def test_to_list(self):
        cloud = self.init_cloud(5, 100, 10)
        device = torch.device("cuda:1")

        new_cloud = cloud.to(device)
        self.assertTrue(new_cloud.device == device)
        self.assertTrue(cloud.device == torch.device("cuda:0"))
        for attrib in [
            "points_padded",
            "points_packed",
            "normals_padded",
            "normals_packed",
            "features_padded",
            "features_packed",
            "num_points_per_cloud",
            "cloud_to_packed_first_idx",
            "padded_to_packed_idx",
        ]:
            self.assertClose(
686
                getattr(new_cloud, attrib)().cpu(), getattr(cloud, attrib)().cpu()
687
688
689
690
691
692
693
694
695
            )
        for i in range(len(cloud)):
            self.assertClose(
                cloud.points_list()[i].cpu(), new_cloud.points_list()[i].cpu()
            )
            self.assertClose(
                cloud.normals_list()[i].cpu(), new_cloud.normals_list()[i].cpu()
            )
            self.assertClose(
696
                cloud.features_list()[i].cpu(), new_cloud.features_list()[i].cpu()
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
            )
        self.assertTrue(all(cloud.valid.cpu() == new_cloud.valid.cpu()))
        self.assertTrue(cloud.equisized == new_cloud.equisized)
        self.assertTrue(cloud._N == new_cloud._N)
        self.assertTrue(cloud._P == new_cloud._P)
        self.assertTrue(cloud._C == new_cloud._C)

    def test_to_tensor(self):
        cloud = self.init_cloud(5, 100, 10, lists_to_tensors=True)
        device = torch.device("cuda:1")

        new_cloud = cloud.to(device)
        self.assertTrue(new_cloud.device == device)
        self.assertTrue(cloud.device == torch.device("cuda:0"))
        for attrib in [
            "points_padded",
            "points_packed",
            "normals_padded",
            "normals_packed",
            "features_padded",
            "features_packed",
            "num_points_per_cloud",
            "cloud_to_packed_first_idx",
            "padded_to_packed_idx",
        ]:
            self.assertClose(
723
                getattr(new_cloud, attrib)().cpu(), getattr(cloud, attrib)().cpu()
724
725
726
727
728
729
730
731
732
            )
        for i in range(len(cloud)):
            self.assertClose(
                cloud.points_list()[i].cpu(), new_cloud.points_list()[i].cpu()
            )
            self.assertClose(
                cloud.normals_list()[i].cpu(), new_cloud.normals_list()[i].cpu()
            )
            self.assertClose(
733
                cloud.features_list()[i].cpu(), new_cloud.features_list()[i].cpu()
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
            )
        self.assertTrue(all(cloud.valid.cpu() == new_cloud.valid.cpu()))
        self.assertTrue(cloud.equisized == new_cloud.equisized)
        self.assertTrue(cloud._N == new_cloud._N)
        self.assertTrue(cloud._P == new_cloud._P)
        self.assertTrue(cloud._C == new_cloud._C)

    def test_split(self):
        clouds = self.init_cloud(5, 100, 10)
        split_sizes = [2, 3]
        split_clouds = clouds.split(split_sizes)
        self.assertEqual(len(split_clouds[0]), 2)
        self.assertTrue(
            split_clouds[0].points_list()
            == [clouds.get_cloud(0)[0], clouds.get_cloud(1)[0]]
        )
        self.assertEqual(len(split_clouds[1]), 3)
        self.assertTrue(
            split_clouds[1].points_list()
753
            == [clouds.get_cloud(2)[0], clouds.get_cloud(3)[0], clouds.get_cloud(4)[0]]
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
        )

        split_sizes = [2, 0.3]
        with self.assertRaises(ValueError):
            clouds.split(split_sizes)

    def test_get_cloud(self):
        clouds = self.init_cloud(2, 100, 10)
        for i in range(len(clouds)):
            points, normals, features = clouds.get_cloud(i)
            self.assertClose(points, clouds.points_list()[i])
            self.assertClose(normals, clouds.normals_list()[i])
            self.assertClose(features, clouds.features_list()[i])

        with self.assertRaises(ValueError):
            clouds.get_cloud(5)
        with self.assertRaises(ValueError):
            clouds.get_cloud(0.2)

    def test_get_bounding_boxes(self):
        device = torch.device("cuda:0")
        points_list = []
        for size in [10]:
            points = torch.rand((size, 3), dtype=torch.float32, device=device)
            points_list.append(points)

        mins = torch.min(points, dim=0)[0]
        maxs = torch.max(points, dim=0)[0]
        bboxes_gt = torch.stack([mins, maxs], dim=1).unsqueeze(0)
        clouds = Pointclouds(points_list)
        bboxes = clouds.get_bounding_boxes()
        self.assertClose(bboxes_gt, bboxes)

    def test_padded_to_packed_idx(self):
        device = torch.device("cuda:0")
        points_list = []
        npoints = [10, 20, 30]
        for p in npoints:
            points = torch.rand((p, 3), dtype=torch.float32, device=device)
            points_list.append(points)

        clouds = Pointclouds(points_list)

        padded_to_packed_idx = clouds.padded_to_packed_idx()
        points_packed = clouds.points_packed()
        points_padded = clouds.points_padded()
        points_padded_flat = points_padded.view(-1, 3)

802
        self.assertClose(points_padded_flat[padded_to_packed_idx], points_packed)
803
804
805
806
807
808
809
810
811
812
813

        idx = padded_to_packed_idx.view(-1, 1).expand(-1, 3)
        self.assertClose(points_padded_flat.gather(0, idx), points_packed)

    def test_getitem(self):
        device = torch.device("cuda:0")
        clouds = self.init_cloud(3, 10, 100)

        def check_equal(selected, indices):
            for selectedIdx, index in indices:
                self.assertClose(
814
                    selected.points_list()[selectedIdx], clouds.points_list()[index]
815
816
                )
                self.assertClose(
817
                    selected.normals_list()[selectedIdx], clouds.normals_list()[index]
818
819
                )
                self.assertClose(
820
                    selected.features_list()[selectedIdx], clouds.features_list()[index]
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
                )

        # int index
        index = 1
        clouds_selected = clouds[index]
        self.assertEqual(len(clouds_selected), 1)
        check_equal(clouds_selected, [(0, 1)])

        # list index
        index = [1, 2]
        clouds_selected = clouds[index]
        self.assertEqual(len(clouds_selected), len(index))
        check_equal(clouds_selected, enumerate(index))

        # slice index
        index = slice(0, 2, 1)
        clouds_selected = clouds[index]
        self.assertEqual(len(clouds_selected), 2)
        check_equal(clouds_selected, [(0, 0), (1, 1)])

        # bool tensor
        index = torch.tensor([1, 0, 1], dtype=torch.bool, device=device)
        clouds_selected = clouds[index]
        self.assertEqual(len(clouds_selected), index.sum())
        check_equal(clouds_selected, [(0, 0), (1, 2)])

        # int tensor
        index = torch.tensor([1, 2], dtype=torch.int64, device=device)
        clouds_selected = clouds[index]
        self.assertEqual(len(clouds_selected), index.numel())
        check_equal(clouds_selected, enumerate(index.tolist()))

        # invalid index
        index = torch.tensor([1, 0, 1], dtype=torch.float32, device=device)
        with self.assertRaises(IndexError):
            clouds_selected = clouds[index]
        index = 1.2
        with self.assertRaises(IndexError):
            clouds_selected = clouds[index]

    def test_update_padded(self):
        N, P, C = 5, 100, 4
        for with_normfeat in (True, False):
            for with_new_normfeat in (True, False):
                clouds = self.init_cloud(
866
                    N, P, C, with_normals=with_normfeat, with_features=with_normfeat
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
                )

                num_points_per_cloud = clouds.num_points_per_cloud()

                # initialize new points, normals, features
                new_points = torch.rand(
                    clouds.points_padded().shape, device=clouds.device
                )
                new_points_list = [
                    new_points[i, : num_points_per_cloud[i]] for i in range(N)
                ]
                new_normals, new_normals_list = None, None
                new_features, new_features_list = None, None
                if with_new_normfeat:
                    new_normals = torch.rand(
                        clouds.points_padded().shape, device=clouds.device
                    )
                    new_normals_list = [
885
                        new_normals[i, : num_points_per_cloud[i]] for i in range(N)
886
887
888
889
890
891
892
893
                    ]
                    feat_shape = [
                        clouds.points_padded().shape[0],
                        clouds.points_padded().shape[1],
                        C,
                    ]
                    new_features = torch.rand(feat_shape, device=clouds.device)
                    new_features_list = [
894
                        new_features[i, : num_points_per_cloud[i]] for i in range(N)
895
896
897
                    ]

                # update
898
                new_clouds = clouds.update_padded(new_points, new_normals, new_features)
899
900
901
902
903
904
905
                self.assertIsNone(new_clouds._points_list)
                self.assertIsNone(new_clouds._points_packed)

                self.assertEqual(new_clouds.equisized, clouds.equisized)
                self.assertTrue(all(new_clouds.valid == clouds.valid))

                self.assertClose(new_clouds.points_padded(), new_points)
906
                self.assertClose(new_clouds.points_packed(), torch.cat(new_points_list))
907
                for i in range(N):
908
                    self.assertClose(new_clouds.points_list()[i], new_points_list[i])
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923

                if with_new_normfeat:
                    for i in range(N):
                        self.assertClose(
                            new_clouds.normals_list()[i], new_normals_list[i]
                        )
                        self.assertClose(
                            new_clouds.features_list()[i], new_features_list[i]
                        )
                    self.assertClose(new_clouds.normals_padded(), new_normals)
                    self.assertClose(
                        new_clouds.normals_packed(), torch.cat(new_normals_list)
                    )
                    self.assertClose(new_clouds.features_padded(), new_features)
                    self.assertClose(
924
                        new_clouds.features_packed(), torch.cat(new_features_list)
925
926
927
928
929
                    )
                else:
                    if with_normfeat:
                        for i in range(N):
                            self.assertClose(
930
                                new_clouds.normals_list()[i], clouds.normals_list()[i]
931
932
                            )
                            self.assertClose(
933
                                new_clouds.features_list()[i], clouds.features_list()[i]
934
935
                            )
                            self.assertNotSeparate(
936
                                new_clouds.normals_list()[i], clouds.normals_list()[i]
937
938
                            )
                            self.assertNotSeparate(
939
                                new_clouds.features_list()[i], clouds.features_list()[i]
940
941
942
943
944
945
946
947
948
                            )

                        self.assertClose(
                            new_clouds.normals_padded(), clouds.normals_padded()
                        )
                        self.assertClose(
                            new_clouds.normals_packed(), clouds.normals_packed()
                        )
                        self.assertClose(
949
                            new_clouds.features_padded(), clouds.features_padded()
950
951
                        )
                        self.assertClose(
952
                            new_clouds.features_packed(), clouds.features_packed()
953
954
955
956
957
                        )
                        self.assertNotSeparate(
                            new_clouds.normals_padded(), clouds.normals_padded()
                        )
                        self.assertNotSeparate(
958
                            new_clouds.features_padded(), clouds.features_padded()
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
                        )
                    else:
                        self.assertIsNone(new_clouds.normals_list())
                        self.assertIsNone(new_clouds.features_list())
                        self.assertIsNone(new_clouds.normals_padded())
                        self.assertIsNone(new_clouds.features_padded())
                        self.assertIsNone(new_clouds.normals_packed())
                        self.assertIsNone(new_clouds.features_packed())

                for attrib in [
                    "num_points_per_cloud",
                    "cloud_to_packed_first_idx",
                    "padded_to_packed_idx",
                ]:
                    self.assertClose(
                        getattr(new_clouds, attrib)(), getattr(clouds, attrib)()
                    )

Georgia Gkioxari's avatar
Georgia Gkioxari committed
977
978
    def test_inside_box(self):
        def inside_box_naive(cloud, box_min, box_max):
979
980
981
            return ((cloud >= box_min.view(1, 3)) * (cloud <= box_max.view(1, 3))).all(
                dim=-1
            )
Georgia Gkioxari's avatar
Georgia Gkioxari committed
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998

        N, P, C = 5, 100, 4

        clouds = self.init_cloud(N, P, C, with_normals=False, with_features=False)
        device = clouds.device

        # box of shape Nx2x3
        box_min = torch.rand((N, 1, 3), device=device)
        box_max = box_min + torch.rand((N, 1, 3), device=device)
        box = torch.cat([box_min, box_max], dim=1)

        within_box = clouds.inside_box(box)

        within_box_naive = []
        for i, cloud in enumerate(clouds.points_list()):
            within_box_naive.append(inside_box_naive(cloud, box[i, 0], box[i, 1]))
        within_box_naive = torch.cat(within_box_naive, 0)
999
        self.assertClose(within_box, within_box_naive)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009

        # box of shape 2x3
        box2 = box[0, :]

        within_box2 = clouds.inside_box(box2)

        within_box_naive2 = []
        for cloud in clouds.points_list():
            within_box_naive2.append(inside_box_naive(cloud, box2[0], box2[1]))
        within_box_naive2 = torch.cat(within_box_naive2, 0)
1010
        self.assertClose(within_box2, within_box_naive2)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
1011
1012
1013
1014
1015

        # box of shape 1x2x3
        box3 = box2.expand(1, 2, 3)

        within_box3 = clouds.inside_box(box3)
1016
        self.assertClose(within_box2, within_box3)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032

        # invalid box
        invalid_box = torch.cat(
            [box_min, box_min - torch.rand((N, 1, 3), device=device)], dim=1
        )
        with self.assertRaisesRegex(ValueError, "Input box is invalid"):
            clouds.inside_box(invalid_box)

        # invalid box shapes
        invalid_box = box[0].expand(2, 2, 3)
        with self.assertRaisesRegex(ValueError, "Input box dimension is"):
            clouds.inside_box(invalid_box)
        invalid_box = torch.rand((5, 8, 9, 3), device=device)
        with self.assertRaisesRegex(ValueError, "Input box must be of shape"):
            clouds.inside_box(invalid_box)

1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
    def test_estimate_normals(self):
        for with_normals in (True, False):
            for run_padded in (True, False):
                for run_packed in (True, False):

                    clouds = TestPointclouds.init_cloud(
                        3,
                        100,
                        with_normals=with_normals,
                        with_features=False,
                        min_points=60,
                    )
                    nums = clouds.num_points_per_cloud()
                    if run_padded:
                        clouds.points_padded()
                    if run_packed:
                        clouds.points_packed()

                    normals_est_padded = clouds.estimate_normals(assign_to_self=True)
                    normals_est_list = struct_utils.padded_to_list(
                        normals_est_padded, nums.tolist()
                    )
                    self.assertClose(clouds.normals_padded(), normals_est_padded)
                    for i in range(len(clouds)):
                        self.assertClose(clouds.normals_list()[i], normals_est_list[i])
                    self.assertClose(
                        clouds.normals_packed(), torch.cat(normals_est_list, dim=0)
                    )

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
    def test_subsample(self):
        lengths = [4, 5, 13, 3]
        points = [torch.rand(length, 3) for length in lengths]
        features = [torch.rand(length, 5) for length in lengths]
        normals = [torch.rand(length, 3) for length in lengths]

        pcl1 = Pointclouds(points=points).cuda()
        self.assertIs(pcl1, pcl1.subsample(13))
        self.assertIs(pcl1, pcl1.subsample([6, 13, 13, 13]))

        lengths_max_4 = torch.tensor([4, 4, 4, 3]).cuda()
        for with_normals, with_features in itertools.product([True, False], repeat=2):
            with self.subTest(f"{with_normals} {with_features}"):
                pcl = Pointclouds(
                    points=points,
                    normals=normals if with_normals else None,
                    features=features if with_features else None,
                )
                pcl_copy = pcl.subsample(max_points=4)
                for length, points_ in zip(lengths_max_4, pcl_copy.points_list()):
                    self.assertEqual(points_.shape, (length, 3))
                if with_normals:
                    for length, normals_ in zip(lengths_max_4, pcl_copy.normals_list()):
                        self.assertEqual(normals_.shape, (length, 3))
                else:
                    self.assertIsNone(pcl_copy.normals_list())
                if with_features:
                    for length, features_ in zip(
                        lengths_max_4, pcl_copy.features_list()
                    ):
                        self.assertEqual(features_.shape, (length, 5))
                else:
                    self.assertIsNone(pcl_copy.features_list())

        pcl2 = Pointclouds(points=points)
        pcl_copy2 = pcl2.subsample(lengths_max_4)
        for length, points_ in zip(lengths_max_4, pcl_copy2.points_list()):
            self.assertEqual(points_.shape, (length, 3))

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
    @staticmethod
    def compute_packed_with_init(
        num_clouds: int = 10, max_p: int = 100, features: int = 300
    ):
        clouds = TestPointclouds.init_cloud(num_clouds, max_p, features)
        torch.cuda.synchronize()

        def compute_packed():
            clouds._compute_packed(refresh=True)
            torch.cuda.synchronize()

        return compute_packed

    @staticmethod
    def compute_padded_with_init(
        num_clouds: int = 10, max_p: int = 100, features: int = 300
    ):
        clouds = TestPointclouds.init_cloud(num_clouds, max_p, features)
        torch.cuda.synchronize()

        def compute_padded():
            clouds._compute_padded(refresh=True)
            torch.cuda.synchronize()

        return compute_padded