test_pointclouds.py 43.4 KB
Newer Older
1
2
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

3
import itertools
4
import random
5
6
import unittest

7
8
import numpy as np
import torch
9
from common_testing import TestCaseMixin
10
from pytorch3d.structures import utils as struct_utils
11
from pytorch3d.structures.pointclouds import Pointclouds
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26


class TestPointclouds(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        np.random.seed(42)
        torch.manual_seed(42)

    @staticmethod
    def init_cloud(
        num_clouds: int = 3,
        max_points: int = 100,
        channels: int = 4,
        lists_to_tensors: bool = False,
        with_normals: bool = True,
        with_features: bool = True,
27
        min_points: int = 0,
28
        requires_grad: bool = False,
29
30
31
32
33
34
35
36
37
38
39
40
41
42
    ):
        """
        Function to generate a Pointclouds object of N meshes with
        random number of points.

        Args:
            num_clouds: Number of clouds to generate.
            channels: Number of features.
            max_points: Max number of points per cloud.
            lists_to_tensors: Determines whether the generated clouds should be
                              constructed from lists (=False) or
                              tensors (=True) of points/normals/features.
            with_normals: bool whether to include normals
            with_features: bool whether to include features
43
            min_points: Min number of points per cloud
44
45
46
47
48

        Returns:
            Pointclouds object.
        """
        device = torch.device("cuda:0")
49
        p = torch.randint(low=min_points, high=max_points, size=(num_clouds,))
50
51
52
53
        if lists_to_tensors:
            p.fill_(p[0])

        points_list = [
54
55
56
57
            torch.rand(
                (i, 3), device=device, dtype=torch.float32, requires_grad=requires_grad
            )
            for i in p
58
59
60
61
        ]
        normals_list, features_list = None, None
        if with_normals:
            normals_list = [
62
63
64
65
66
67
68
                torch.rand(
                    (i, 3),
                    device=device,
                    dtype=torch.float32,
                    requires_grad=requires_grad,
                )
                for i in p
69
70
71
            ]
        if with_features:
            features_list = [
72
73
74
75
76
77
78
                torch.rand(
                    (i, channels),
                    device=device,
                    dtype=torch.float32,
                    requires_grad=requires_grad,
                )
                for i in p
79
80
81
82
83
84
85
86
87
            ]

        if lists_to_tensors:
            points_list = torch.stack(points_list)
            if with_normals:
                normals_list = torch.stack(normals_list)
            if with_features:
                features_list = torch.stack(features_list)

88
        return Pointclouds(points_list, normals=normals_list, features=features_list)
89
90
91
92
93
94
95
96
97
98

    def test_simple(self):
        device = torch.device("cuda:0")
        points = [
            torch.tensor(
                [[0.1, 0.3, 0.5], [0.5, 0.2, 0.1], [0.6, 0.8, 0.7]],
                dtype=torch.float32,
                device=device,
            ),
            torch.tensor(
99
                [[0.1, 0.3, 0.3], [0.6, 0.7, 0.8], [0.2, 0.3, 0.4], [0.1, 0.5, 0.3]],
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
                dtype=torch.float32,
                device=device,
            ),
            torch.tensor(
                [
                    [0.7, 0.3, 0.6],
                    [0.2, 0.4, 0.8],
                    [0.9, 0.5, 0.2],
                    [0.2, 0.3, 0.4],
                    [0.9, 0.3, 0.8],
                ],
                dtype=torch.float32,
                device=device,
            ),
        ]
        clouds = Pointclouds(points)

        self.assertClose(
            (clouds.packed_to_cloud_idx()).cpu(),
            torch.tensor([0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2]),
        )
        self.assertClose(
            clouds.cloud_to_packed_first_idx().cpu(), torch.tensor([0, 3, 7])
        )
124
        self.assertClose(clouds.num_points_per_cloud().cpu(), torch.tensor([3, 4, 5]))
125
126
127
128
129
        self.assertClose(
            clouds.padded_to_packed_idx().cpu(),
            torch.tensor([0, 1, 2, 5, 6, 7, 8, 10, 11, 12, 13, 14]),
        )

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
    def test_init_error(self):
        # Check if correct errors are raised when verts/faces are on
        # different devices

        clouds = self.init_cloud(10, 100, 5)
        points_list = clouds.points_list()  # all tensors on cuda:0
        points_list = [
            p.to("cpu") if random.uniform(0, 1) > 0.5 else p for p in points_list
        ]
        features_list = clouds.features_list()
        normals_list = clouds.normals_list()

        with self.assertRaises(ValueError) as cm:
            Pointclouds(
                points=points_list, features=features_list, normals=normals_list
            )
            self.assertTrue("same device" in cm.msg)

        points_list = clouds.points_list()
        features_list = [
            f.to("cpu") if random.uniform(0, 1) > 0.2 else f for f in features_list
        ]
        with self.assertRaises(ValueError) as cm:
            Pointclouds(
                points=points_list, features=features_list, normals=normals_list
            )
            self.assertTrue("same device" in cm.msg)

        points_padded = clouds.points_padded()  # on cuda:0
        features_padded = clouds.features_padded().to("cpu")
        normals_padded = clouds.normals_padded()

        with self.assertRaises(ValueError) as cm:
            Pointclouds(
                points=points_padded, features=features_padded, normals=normals_padded
            )
            self.assertTrue("same device" in cm.msg)

168
169
170
171
172
173
174
175
176
177
    def test_all_constructions(self):
        public_getters = [
            "points_list",
            "points_packed",
            "packed_to_cloud_idx",
            "cloud_to_packed_first_idx",
            "num_points_per_cloud",
            "points_padded",
            "padded_to_packed_idx",
        ]
178
        public_normals_getters = ["normals_list", "normals_packed", "normals_padded"]
179
180
181
182
183
184
185
186
187
188
189
190
191
        public_features_getters = [
            "features_list",
            "features_packed",
            "features_padded",
        ]

        lengths = [3, 4, 2]
        max_len = max(lengths)
        C = 4

        points_data = [torch.zeros((max_len, 3)).uniform_() for i in lengths]
        normals_data = [torch.zeros((max_len, 3)).uniform_() for i in lengths]
        features_data = [torch.zeros((max_len, C)).uniform_() for i in lengths]
192
        for length, p, n, f in zip(lengths, points_data, normals_data, features_data):
193
194
195
196
197
            p[length:] = 0.0
            n[length:] = 0.0
            f[length:] = 0.0
        points_list = [d[:length] for length, d in zip(lengths, points_data)]
        normals_list = [d[:length] for length, d in zip(lengths, normals_data)]
198
        features_list = [d[:length] for length, d in zip(lengths, features_data)]
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
        points_packed = torch.cat(points_data)
        normals_packed = torch.cat(normals_data)
        features_packed = torch.cat(features_data)
        test_cases_inputs = [
            ("list_0_0", points_list, None, None),
            ("list_1_0", points_list, normals_list, None),
            ("list_0_1", points_list, None, features_list),
            ("list_1_1", points_list, normals_list, features_list),
            ("padded_0_0", points_data, None, None),
            ("padded_1_0", points_data, normals_data, None),
            ("padded_0_1", points_data, None, features_data),
            ("padded_1_1", points_data, normals_data, features_data),
            ("emptylist_emptylist_emptylist", [], [], []),
        ]
        false_cases_inputs = [
214
            ("list_packed", points_list, normals_packed, features_packed, ValueError),
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
            ("packed_0", points_packed, None, None, ValueError),
        ]

        for name, points, normals, features in test_cases_inputs:
            with self.subTest(name=name):
                p = Pointclouds(points, normals, features)
                for method in public_getters:
                    self.assertIsNotNone(getattr(p, method)())
                for method in public_normals_getters:
                    if normals is None or p.isempty():
                        self.assertIsNone(getattr(p, method)())
                for method in public_features_getters:
                    if features is None or p.isempty():
                        self.assertIsNone(getattr(p, method)())

        for name, points, normals, features, error in false_cases_inputs:
            with self.subTest(name=name):
                with self.assertRaises(error):
                    Pointclouds(points, normals, features)

    def test_simple_random_clouds(self):
        # Define the test object either from lists or tensors.
        for with_normals in (False, True):
            for with_features in (False, True):
                for lists_to_tensors in (False, True):
                    N = 10
                    cloud = self.init_cloud(
                        N,
                        lists_to_tensors=lists_to_tensors,
                        with_normals=with_normals,
                        with_features=with_features,
                    )
                    points_list = cloud.points_list()
                    normals_list = cloud.normals_list()
                    features_list = cloud.features_list()

                    # Check batch calculations.
                    points_padded = cloud.points_padded()
                    normals_padded = cloud.normals_padded()
                    features_padded = cloud.features_padded()
                    points_per_cloud = cloud.num_points_per_cloud()

                    if not with_normals:
                        self.assertIsNone(normals_list)
                        self.assertIsNone(normals_padded)
                    if not with_features:
                        self.assertIsNone(features_list)
                        self.assertIsNone(features_padded)
                    for n in range(N):
                        p = points_list[n].shape[0]
265
                        self.assertClose(points_padded[n, :p, :], points_list[n])
266
267
268
                        if with_normals:
                            norms = normals_list[n].shape[0]
                            self.assertEqual(p, norms)
269
                            self.assertClose(normals_padded[n, :p, :], normals_list[n])
270
271
272
273
274
275
276
277
278
                        if with_features:
                            f = features_list[n].shape[0]
                            self.assertEqual(p, f)
                            self.assertClose(
                                features_padded[n, :p, :], features_list[n]
                            )
                        if points_padded.shape[1] > p:
                            self.assertTrue(points_padded[n, p:, :].eq(0).all())
                            if with_features:
279
                                self.assertTrue(features_padded[n, p:, :].eq(0).all())
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
                        self.assertEqual(points_per_cloud[n], p)

                    # Check compute packed.
                    points_packed = cloud.points_packed()
                    packed_to_cloud = cloud.packed_to_cloud_idx()
                    cloud_to_packed = cloud.cloud_to_packed_first_idx()
                    normals_packed = cloud.normals_packed()
                    features_packed = cloud.features_packed()
                    if not with_normals:
                        self.assertIsNone(normals_packed)
                    if not with_features:
                        self.assertIsNone(features_packed)

                    cur = 0
                    for n in range(N):
                        p = points_list[n].shape[0]
                        self.assertClose(
                            points_packed[cur : cur + p, :], points_list[n]
                        )
                        if with_normals:
                            self.assertClose(
301
                                normals_packed[cur : cur + p, :], normals_list[n]
302
303
304
                            )
                        if with_features:
                            self.assertClose(
305
                                features_packed[cur : cur + p, :], features_list[n]
306
                            )
307
                        self.assertTrue(packed_to_cloud[cur : cur + p].eq(n).all())
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
                        self.assertTrue(cloud_to_packed[n] == cur)
                        cur += p

    def test_allempty(self):
        clouds = Pointclouds([], [])
        self.assertEqual(len(clouds), 0)
        self.assertIsNone(clouds.normals_list())
        self.assertIsNone(clouds.features_list())
        self.assertEqual(clouds.points_padded().shape[0], 0)
        self.assertIsNone(clouds.normals_padded())
        self.assertIsNone(clouds.features_padded())
        self.assertEqual(clouds.points_packed().shape[0], 0)
        self.assertIsNone(clouds.normals_packed())
        self.assertIsNone(clouds.features_packed())

    def test_empty(self):
        N, P, C = 10, 100, 2
        device = torch.device("cuda:0")
        points_list = []
        normals_list = []
        features_list = []
        valid = torch.randint(2, size=(N,), dtype=torch.uint8, device=device)
        for n in range(N):
            if valid[n]:
                p = torch.randint(
                    3, high=P, size=(1,), dtype=torch.int32, device=device
                )[0]
                points = torch.rand((p, 3), dtype=torch.float32, device=device)
                normals = torch.rand((p, 3), dtype=torch.float32, device=device)
337
                features = torch.rand((p, C), dtype=torch.float32, device=device)
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
            else:
                points = torch.tensor([], dtype=torch.float32, device=device)
                normals = torch.tensor([], dtype=torch.float32, device=device)
                features = torch.tensor([], dtype=torch.int64, device=device)
            points_list.append(points)
            normals_list.append(normals)
            features_list.append(features)

        for with_normals in (False, True):
            for with_features in (False, True):
                this_features, this_normals = None, None
                if with_normals:
                    this_normals = normals_list
                if with_features:
                    this_features = features_list
                clouds = Pointclouds(
354
                    points=points_list, normals=this_normals, features=this_features
355
356
357
358
359
360
361
362
363
364
365
366
                )
                points_padded = clouds.points_padded()
                normals_padded = clouds.normals_padded()
                features_padded = clouds.features_padded()
                if not with_normals:
                    self.assertIsNone(normals_padded)
                if not with_features:
                    self.assertIsNone(features_padded)
                points_per_cloud = clouds.num_points_per_cloud()
                for n in range(N):
                    p = len(points_list[n])
                    if p > 0:
367
                        self.assertClose(points_padded[n, :p, :], points_list[n])
368
                        if with_normals:
369
                            self.assertClose(normals_padded[n, :p, :], normals_list[n])
370
371
372
373
374
375
376
                        if with_features:
                            self.assertClose(
                                features_padded[n, :p, :], features_list[n]
                            )
                        if points_padded.shape[1] > p:
                            self.assertTrue(points_padded[n, p:, :].eq(0).all())
                            if with_normals:
377
                                self.assertTrue(normals_padded[n, p:, :].eq(0).all())
378
                            if with_features:
379
                                self.assertTrue(features_padded[n, p:, :].eq(0).all())
380
381
382
383
384
385
386
387
388
389
390
391
                    self.assertTrue(points_per_cloud[n] == p)

    def test_clone_list(self):
        N = 5
        clouds = self.init_cloud(N, 100, 5)
        for force in (False, True):
            if force:
                clouds.points_packed()

            new_clouds = clouds.clone()

            # Check cloned and original objects do not share tensors.
392
393
            self.assertSeparate(new_clouds.points_list()[0], clouds.points_list()[0])
            self.assertSeparate(new_clouds.normals_list()[0], clouds.normals_list()[0])
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
            self.assertSeparate(
                new_clouds.features_list()[0], clouds.features_list()[0]
            )
            for attrib in [
                "points_packed",
                "normals_packed",
                "features_packed",
                "points_padded",
                "normals_padded",
                "features_padded",
            ]:
                self.assertSeparate(
                    getattr(new_clouds, attrib)(), getattr(clouds, attrib)()
                )

            self.assertCloudsEqual(clouds, new_clouds)

    def test_clone_tensor(self):
        N = 5
        clouds = self.init_cloud(N, 100, 5, lists_to_tensors=True)
        for force in (False, True):
            if force:
                clouds.points_packed()

            new_clouds = clouds.clone()

            # Check cloned and original objects do not share tensors.
421
422
            self.assertSeparate(new_clouds.points_list()[0], clouds.points_list()[0])
            self.assertSeparate(new_clouds.normals_list()[0], clouds.normals_list()[0])
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
            self.assertSeparate(
                new_clouds.features_list()[0], clouds.features_list()[0]
            )
            for attrib in [
                "points_packed",
                "normals_packed",
                "features_packed",
                "points_padded",
                "normals_padded",
                "features_padded",
            ]:
                self.assertSeparate(
                    getattr(new_clouds, attrib)(), getattr(clouds, attrib)()
                )

            self.assertCloudsEqual(clouds, new_clouds)

440
441
442
443
444
445
446
447
448
449
450
451
452
    def test_detach(self):
        N = 5
        for lists_to_tensors in (True, False):
            clouds = self.init_cloud(
                N, 100, 5, lists_to_tensors=lists_to_tensors, requires_grad=True
            )
            for force in (False, True):
                if force:
                    clouds.points_packed()

                new_clouds = clouds.detach()

                for cloud in new_clouds.points_list():
453
                    self.assertFalse(cloud.requires_grad)
454
                for normal in new_clouds.normals_list():
455
                    self.assertFalse(normal.requires_grad)
456
                for feats in new_clouds.features_list():
457
                    self.assertFalse(feats.requires_grad)
458
459
460
461
462
463
464
465
466

                for attrib in [
                    "points_packed",
                    "normals_packed",
                    "features_packed",
                    "points_padded",
                    "normals_padded",
                    "features_padded",
                ]:
467
                    self.assertFalse(getattr(new_clouds, attrib)().requires_grad)
468
469
470

                self.assertCloudsEqual(clouds, new_clouds)

471
472
473
474
475
476
477
    def assertCloudsEqual(self, cloud1, cloud2):
        N = len(cloud1)
        self.assertEqual(N, len(cloud2))

        for i in range(N):
            self.assertClose(cloud1.points_list()[i], cloud2.points_list()[i])
            self.assertClose(cloud1.normals_list()[i], cloud2.normals_list()[i])
478
            self.assertClose(cloud1.features_list()[i], cloud2.features_list()[i])
479
480
481
482
483
484
485
486
487
488
489
490
491
492
        has_normals = cloud1.normals_list() is not None
        self.assertTrue(has_normals == (cloud2.normals_list() is not None))
        has_features = cloud1.features_list() is not None
        self.assertTrue(has_features == (cloud2.features_list() is not None))

        # check padded & packed
        self.assertClose(cloud1.points_padded(), cloud2.points_padded())
        self.assertClose(cloud1.points_packed(), cloud2.points_packed())
        if has_normals:
            self.assertClose(cloud1.normals_padded(), cloud2.normals_padded())
            self.assertClose(cloud1.normals_packed(), cloud2.normals_packed())
        if has_features:
            self.assertClose(cloud1.features_padded(), cloud2.features_padded())
            self.assertClose(cloud1.features_packed(), cloud2.features_packed())
493
        self.assertClose(cloud1.packed_to_cloud_idx(), cloud2.packed_to_cloud_idx())
494
        self.assertClose(
495
            cloud1.cloud_to_packed_first_idx(), cloud2.cloud_to_packed_first_idx()
496
        )
497
498
499
        self.assertClose(cloud1.num_points_per_cloud(), cloud2.num_points_per_cloud())
        self.assertClose(cloud1.packed_to_cloud_idx(), cloud2.packed_to_cloud_idx())
        self.assertClose(cloud1.padded_to_packed_idx(), cloud2.padded_to_packed_idx())
500
501
502
503
504
505
506
        self.assertTrue(all(cloud1.valid == cloud2.valid))
        self.assertTrue(cloud1.equisized == cloud2.equisized)

    def test_offset(self):
        def naive_offset(clouds, offsets_packed):
            new_points_packed = clouds.points_packed() + offsets_packed
            new_points_list = list(
507
                new_points_packed.split(clouds.num_points_per_cloud().tolist(), 0)
508
509
510
511
512
513
514
515
516
517
518
            )
            return Pointclouds(
                points=new_points_list,
                normals=clouds.normals_list(),
                features=clouds.features_list(),
            )

        N = 5
        clouds = self.init_cloud(N, 100, 10)
        all_p = clouds.points_packed().size(0)
        points_per_cloud = clouds.num_points_per_cloud()
519
        for force, deform_shape in itertools.product((0, 1), [(all_p, 3), 3]):
520
521
522
523
524
            if force:
                clouds._compute_packed(refresh=True)
                clouds._compute_padded()
                clouds.padded_to_packed_idx()

525
            deform = torch.rand(deform_shape, dtype=torch.float32, device=clouds.device)
526
527
528
529
530
531
532
            new_clouds_naive = naive_offset(clouds, deform)

            new_clouds = clouds.offset(deform)

            points_cumsum = torch.cumsum(points_per_cloud, 0).tolist()
            points_cumsum.insert(0, 0)
            for i in range(N):
533
534
535
536
537
                item_offset = (
                    deform
                    if deform.ndim == 1
                    else deform[points_cumsum[i] : points_cumsum[i + 1]]
                )
538
539
                self.assertClose(
                    new_clouds.points_list()[i],
540
                    clouds.points_list()[i] + item_offset,
541
542
543
544
545
                )
                self.assertClose(
                    clouds.normals_list()[i], new_clouds_naive.normals_list()[i]
                )
                self.assertClose(
546
                    clouds.features_list()[i], new_clouds_naive.features_list()[i]
547
548
549
550
551
552
                )
            self.assertCloudsEqual(new_clouds, new_clouds_naive)

    def test_scale(self):
        def naive_scale(cloud, scale):
            if not torch.is_tensor(scale):
Georgia Gkioxari's avatar
Georgia Gkioxari committed
553
                scale = torch.full((len(cloud),), scale, device=cloud.device)
554
555
556
557
558
559
560
561
562
            new_points_list = [
                scale[i] * points.clone()
                for (i, points) in enumerate(cloud.points_list())
            ]
            return Pointclouds(
                new_points_list, cloud.normals_list(), cloud.features_list()
            )

        N = 5
Georgia Gkioxari's avatar
Georgia Gkioxari committed
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
        for test in ["tensor", "scalar"]:
            for force in (False, True):
                clouds = self.init_cloud(N, 100, 10)
                if force:
                    clouds._compute_packed(refresh=True)
                    clouds._compute_padded()
                    clouds.padded_to_packed_idx()
                if test == "tensor":
                    scales = torch.rand(N)
                elif test == "scalar":
                    scales = torch.rand(1)[0].item()
                new_clouds_naive = naive_scale(clouds, scales)
                new_clouds = clouds.scale(scales)
                for i in range(N):
                    if test == "tensor":
                        self.assertClose(
                            scales[i] * clouds.points_list()[i],
                            new_clouds.points_list()[i],
                        )
                    else:
                        self.assertClose(
                            scales * clouds.points_list()[i],
                            new_clouds.points_list()[i],
                        )
                    self.assertClose(
                        clouds.normals_list()[i], new_clouds_naive.normals_list()[i]
                    )
                    self.assertClose(
                        clouds.features_list()[i], new_clouds_naive.features_list()[i]
                    )
                self.assertCloudsEqual(new_clouds, new_clouds_naive)
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608

    def test_extend_list(self):
        N = 10
        clouds = self.init_cloud(N, 100, 10)
        for force in (False, True):
            if force:
                # force some computes to happen
                clouds._compute_packed(refresh=True)
                clouds._compute_padded()
                clouds.padded_to_packed_idx()
            new_clouds = clouds.extend(N)
            self.assertEqual(len(clouds) * 10, len(new_clouds))
            for i in range(len(clouds)):
                for n in range(N):
                    self.assertClose(
609
                        clouds.points_list()[i], new_clouds.points_list()[i * N + n]
610
611
                    )
                    self.assertClose(
612
                        clouds.normals_list()[i], new_clouds.normals_list()[i * N + n]
613
614
                    )
                    self.assertClose(
615
                        clouds.features_list()[i], new_clouds.features_list()[i * N + n]
616
                    )
617
                    self.assertTrue(clouds.valid[i] == new_clouds.valid[i * N + n])
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
            self.assertAllSeparate(
                clouds.points_list()
                + new_clouds.points_list()
                + clouds.normals_list()
                + new_clouds.normals_list()
                + clouds.features_list()
                + new_clouds.features_list()
            )
            self.assertIsNone(new_clouds._points_packed)
            self.assertIsNone(new_clouds._normals_packed)
            self.assertIsNone(new_clouds._features_packed)
            self.assertIsNone(new_clouds._points_padded)
            self.assertIsNone(new_clouds._normals_padded)
            self.assertIsNone(new_clouds._features_padded)

        with self.assertRaises(ValueError):
            clouds.extend(N=-1)

636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
    def test_to(self):
        cloud = self.init_cloud(5, 100, 10)  # Using device "cuda:0"

        cuda_device = torch.device("cuda:0")

        converted_cloud = cloud.to("cuda:0")
        self.assertEqual(cuda_device, converted_cloud.device)
        self.assertEqual(cuda_device, cloud.device)
        self.assertIs(cloud, converted_cloud)

        converted_cloud = cloud.to(cuda_device)
        self.assertEqual(cuda_device, converted_cloud.device)
        self.assertEqual(cuda_device, cloud.device)
        self.assertIs(cloud, converted_cloud)

        cpu_device = torch.device("cpu")

        converted_cloud = cloud.to("cpu")
        self.assertEqual(cpu_device, converted_cloud.device)
        self.assertEqual(cuda_device, cloud.device)
        self.assertIsNot(cloud, converted_cloud)

        converted_cloud = cloud.to(cpu_device)
        self.assertEqual(cpu_device, converted_cloud.device)
        self.assertEqual(cuda_device, cloud.device)
        self.assertIsNot(cloud, converted_cloud)

663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
    def test_to_list(self):
        cloud = self.init_cloud(5, 100, 10)
        device = torch.device("cuda:1")

        new_cloud = cloud.to(device)
        self.assertTrue(new_cloud.device == device)
        self.assertTrue(cloud.device == torch.device("cuda:0"))
        for attrib in [
            "points_padded",
            "points_packed",
            "normals_padded",
            "normals_packed",
            "features_padded",
            "features_packed",
            "num_points_per_cloud",
            "cloud_to_packed_first_idx",
            "padded_to_packed_idx",
        ]:
            self.assertClose(
682
                getattr(new_cloud, attrib)().cpu(), getattr(cloud, attrib)().cpu()
683
684
685
686
687
688
689
690
691
            )
        for i in range(len(cloud)):
            self.assertClose(
                cloud.points_list()[i].cpu(), new_cloud.points_list()[i].cpu()
            )
            self.assertClose(
                cloud.normals_list()[i].cpu(), new_cloud.normals_list()[i].cpu()
            )
            self.assertClose(
692
                cloud.features_list()[i].cpu(), new_cloud.features_list()[i].cpu()
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
            )
        self.assertTrue(all(cloud.valid.cpu() == new_cloud.valid.cpu()))
        self.assertTrue(cloud.equisized == new_cloud.equisized)
        self.assertTrue(cloud._N == new_cloud._N)
        self.assertTrue(cloud._P == new_cloud._P)
        self.assertTrue(cloud._C == new_cloud._C)

    def test_to_tensor(self):
        cloud = self.init_cloud(5, 100, 10, lists_to_tensors=True)
        device = torch.device("cuda:1")

        new_cloud = cloud.to(device)
        self.assertTrue(new_cloud.device == device)
        self.assertTrue(cloud.device == torch.device("cuda:0"))
        for attrib in [
            "points_padded",
            "points_packed",
            "normals_padded",
            "normals_packed",
            "features_padded",
            "features_packed",
            "num_points_per_cloud",
            "cloud_to_packed_first_idx",
            "padded_to_packed_idx",
        ]:
            self.assertClose(
719
                getattr(new_cloud, attrib)().cpu(), getattr(cloud, attrib)().cpu()
720
721
722
723
724
725
726
727
728
            )
        for i in range(len(cloud)):
            self.assertClose(
                cloud.points_list()[i].cpu(), new_cloud.points_list()[i].cpu()
            )
            self.assertClose(
                cloud.normals_list()[i].cpu(), new_cloud.normals_list()[i].cpu()
            )
            self.assertClose(
729
                cloud.features_list()[i].cpu(), new_cloud.features_list()[i].cpu()
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
            )
        self.assertTrue(all(cloud.valid.cpu() == new_cloud.valid.cpu()))
        self.assertTrue(cloud.equisized == new_cloud.equisized)
        self.assertTrue(cloud._N == new_cloud._N)
        self.assertTrue(cloud._P == new_cloud._P)
        self.assertTrue(cloud._C == new_cloud._C)

    def test_split(self):
        clouds = self.init_cloud(5, 100, 10)
        split_sizes = [2, 3]
        split_clouds = clouds.split(split_sizes)
        self.assertEqual(len(split_clouds[0]), 2)
        self.assertTrue(
            split_clouds[0].points_list()
            == [clouds.get_cloud(0)[0], clouds.get_cloud(1)[0]]
        )
        self.assertEqual(len(split_clouds[1]), 3)
        self.assertTrue(
            split_clouds[1].points_list()
749
            == [clouds.get_cloud(2)[0], clouds.get_cloud(3)[0], clouds.get_cloud(4)[0]]
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
        )

        split_sizes = [2, 0.3]
        with self.assertRaises(ValueError):
            clouds.split(split_sizes)

    def test_get_cloud(self):
        clouds = self.init_cloud(2, 100, 10)
        for i in range(len(clouds)):
            points, normals, features = clouds.get_cloud(i)
            self.assertClose(points, clouds.points_list()[i])
            self.assertClose(normals, clouds.normals_list()[i])
            self.assertClose(features, clouds.features_list()[i])

        with self.assertRaises(ValueError):
            clouds.get_cloud(5)
        with self.assertRaises(ValueError):
            clouds.get_cloud(0.2)

    def test_get_bounding_boxes(self):
        device = torch.device("cuda:0")
        points_list = []
        for size in [10]:
            points = torch.rand((size, 3), dtype=torch.float32, device=device)
            points_list.append(points)

        mins = torch.min(points, dim=0)[0]
        maxs = torch.max(points, dim=0)[0]
        bboxes_gt = torch.stack([mins, maxs], dim=1).unsqueeze(0)
        clouds = Pointclouds(points_list)
        bboxes = clouds.get_bounding_boxes()
        self.assertClose(bboxes_gt, bboxes)

    def test_padded_to_packed_idx(self):
        device = torch.device("cuda:0")
        points_list = []
        npoints = [10, 20, 30]
        for p in npoints:
            points = torch.rand((p, 3), dtype=torch.float32, device=device)
            points_list.append(points)

        clouds = Pointclouds(points_list)

        padded_to_packed_idx = clouds.padded_to_packed_idx()
        points_packed = clouds.points_packed()
        points_padded = clouds.points_padded()
        points_padded_flat = points_padded.view(-1, 3)

798
        self.assertClose(points_padded_flat[padded_to_packed_idx], points_packed)
799
800
801
802
803
804
805
806
807
808
809

        idx = padded_to_packed_idx.view(-1, 1).expand(-1, 3)
        self.assertClose(points_padded_flat.gather(0, idx), points_packed)

    def test_getitem(self):
        device = torch.device("cuda:0")
        clouds = self.init_cloud(3, 10, 100)

        def check_equal(selected, indices):
            for selectedIdx, index in indices:
                self.assertClose(
810
                    selected.points_list()[selectedIdx], clouds.points_list()[index]
811
812
                )
                self.assertClose(
813
                    selected.normals_list()[selectedIdx], clouds.normals_list()[index]
814
815
                )
                self.assertClose(
816
                    selected.features_list()[selectedIdx], clouds.features_list()[index]
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
                )

        # int index
        index = 1
        clouds_selected = clouds[index]
        self.assertEqual(len(clouds_selected), 1)
        check_equal(clouds_selected, [(0, 1)])

        # list index
        index = [1, 2]
        clouds_selected = clouds[index]
        self.assertEqual(len(clouds_selected), len(index))
        check_equal(clouds_selected, enumerate(index))

        # slice index
        index = slice(0, 2, 1)
        clouds_selected = clouds[index]
        self.assertEqual(len(clouds_selected), 2)
        check_equal(clouds_selected, [(0, 0), (1, 1)])

        # bool tensor
        index = torch.tensor([1, 0, 1], dtype=torch.bool, device=device)
        clouds_selected = clouds[index]
        self.assertEqual(len(clouds_selected), index.sum())
        check_equal(clouds_selected, [(0, 0), (1, 2)])

        # int tensor
        index = torch.tensor([1, 2], dtype=torch.int64, device=device)
        clouds_selected = clouds[index]
        self.assertEqual(len(clouds_selected), index.numel())
        check_equal(clouds_selected, enumerate(index.tolist()))

        # invalid index
        index = torch.tensor([1, 0, 1], dtype=torch.float32, device=device)
        with self.assertRaises(IndexError):
            clouds_selected = clouds[index]
        index = 1.2
        with self.assertRaises(IndexError):
            clouds_selected = clouds[index]

    def test_update_padded(self):
        N, P, C = 5, 100, 4
        for with_normfeat in (True, False):
            for with_new_normfeat in (True, False):
                clouds = self.init_cloud(
862
                    N, P, C, with_normals=with_normfeat, with_features=with_normfeat
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
                )

                num_points_per_cloud = clouds.num_points_per_cloud()

                # initialize new points, normals, features
                new_points = torch.rand(
                    clouds.points_padded().shape, device=clouds.device
                )
                new_points_list = [
                    new_points[i, : num_points_per_cloud[i]] for i in range(N)
                ]
                new_normals, new_normals_list = None, None
                new_features, new_features_list = None, None
                if with_new_normfeat:
                    new_normals = torch.rand(
                        clouds.points_padded().shape, device=clouds.device
                    )
                    new_normals_list = [
881
                        new_normals[i, : num_points_per_cloud[i]] for i in range(N)
882
883
884
885
886
887
888
889
                    ]
                    feat_shape = [
                        clouds.points_padded().shape[0],
                        clouds.points_padded().shape[1],
                        C,
                    ]
                    new_features = torch.rand(feat_shape, device=clouds.device)
                    new_features_list = [
890
                        new_features[i, : num_points_per_cloud[i]] for i in range(N)
891
892
893
                    ]

                # update
894
                new_clouds = clouds.update_padded(new_points, new_normals, new_features)
895
896
897
898
899
900
901
                self.assertIsNone(new_clouds._points_list)
                self.assertIsNone(new_clouds._points_packed)

                self.assertEqual(new_clouds.equisized, clouds.equisized)
                self.assertTrue(all(new_clouds.valid == clouds.valid))

                self.assertClose(new_clouds.points_padded(), new_points)
902
                self.assertClose(new_clouds.points_packed(), torch.cat(new_points_list))
903
                for i in range(N):
904
                    self.assertClose(new_clouds.points_list()[i], new_points_list[i])
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919

                if with_new_normfeat:
                    for i in range(N):
                        self.assertClose(
                            new_clouds.normals_list()[i], new_normals_list[i]
                        )
                        self.assertClose(
                            new_clouds.features_list()[i], new_features_list[i]
                        )
                    self.assertClose(new_clouds.normals_padded(), new_normals)
                    self.assertClose(
                        new_clouds.normals_packed(), torch.cat(new_normals_list)
                    )
                    self.assertClose(new_clouds.features_padded(), new_features)
                    self.assertClose(
920
                        new_clouds.features_packed(), torch.cat(new_features_list)
921
922
923
924
925
                    )
                else:
                    if with_normfeat:
                        for i in range(N):
                            self.assertClose(
926
                                new_clouds.normals_list()[i], clouds.normals_list()[i]
927
928
                            )
                            self.assertClose(
929
                                new_clouds.features_list()[i], clouds.features_list()[i]
930
931
                            )
                            self.assertNotSeparate(
932
                                new_clouds.normals_list()[i], clouds.normals_list()[i]
933
934
                            )
                            self.assertNotSeparate(
935
                                new_clouds.features_list()[i], clouds.features_list()[i]
936
937
938
939
940
941
942
943
944
                            )

                        self.assertClose(
                            new_clouds.normals_padded(), clouds.normals_padded()
                        )
                        self.assertClose(
                            new_clouds.normals_packed(), clouds.normals_packed()
                        )
                        self.assertClose(
945
                            new_clouds.features_padded(), clouds.features_padded()
946
947
                        )
                        self.assertClose(
948
                            new_clouds.features_packed(), clouds.features_packed()
949
950
951
952
953
                        )
                        self.assertNotSeparate(
                            new_clouds.normals_padded(), clouds.normals_padded()
                        )
                        self.assertNotSeparate(
954
                            new_clouds.features_padded(), clouds.features_padded()
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
                        )
                    else:
                        self.assertIsNone(new_clouds.normals_list())
                        self.assertIsNone(new_clouds.features_list())
                        self.assertIsNone(new_clouds.normals_padded())
                        self.assertIsNone(new_clouds.features_padded())
                        self.assertIsNone(new_clouds.normals_packed())
                        self.assertIsNone(new_clouds.features_packed())

                for attrib in [
                    "num_points_per_cloud",
                    "cloud_to_packed_first_idx",
                    "padded_to_packed_idx",
                ]:
                    self.assertClose(
                        getattr(new_clouds, attrib)(), getattr(clouds, attrib)()
                    )

Georgia Gkioxari's avatar
Georgia Gkioxari committed
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
    def test_inside_box(self):
        def inside_box_naive(cloud, box_min, box_max):
            return (cloud >= box_min.view(1, 3)) * (cloud <= box_max.view(1, 3))

        N, P, C = 5, 100, 4

        clouds = self.init_cloud(N, P, C, with_normals=False, with_features=False)
        device = clouds.device

        # box of shape Nx2x3
        box_min = torch.rand((N, 1, 3), device=device)
        box_max = box_min + torch.rand((N, 1, 3), device=device)
        box = torch.cat([box_min, box_max], dim=1)

        within_box = clouds.inside_box(box)

        within_box_naive = []
        for i, cloud in enumerate(clouds.points_list()):
            within_box_naive.append(inside_box_naive(cloud, box[i, 0], box[i, 1]))
        within_box_naive = torch.cat(within_box_naive, 0)
        self.assertTrue(within_box.eq(within_box_naive).all())

        # box of shape 2x3
        box2 = box[0, :]

        within_box2 = clouds.inside_box(box2)

        within_box_naive2 = []
        for cloud in clouds.points_list():
            within_box_naive2.append(inside_box_naive(cloud, box2[0], box2[1]))
        within_box_naive2 = torch.cat(within_box_naive2, 0)
        self.assertTrue(within_box2.eq(within_box_naive2).all())

        # box of shape 1x2x3
        box3 = box2.expand(1, 2, 3)

        within_box3 = clouds.inside_box(box3)
        self.assertTrue(within_box2.eq(within_box3).all())

        # invalid box
        invalid_box = torch.cat(
            [box_min, box_min - torch.rand((N, 1, 3), device=device)], dim=1
        )
        with self.assertRaisesRegex(ValueError, "Input box is invalid"):
            clouds.inside_box(invalid_box)

        # invalid box shapes
        invalid_box = box[0].expand(2, 2, 3)
        with self.assertRaisesRegex(ValueError, "Input box dimension is"):
            clouds.inside_box(invalid_box)
        invalid_box = torch.rand((5, 8, 9, 3), device=device)
        with self.assertRaisesRegex(ValueError, "Input box must be of shape"):
            clouds.inside_box(invalid_box)

1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
    def test_estimate_normals(self):
        for with_normals in (True, False):
            for run_padded in (True, False):
                for run_packed in (True, False):

                    clouds = TestPointclouds.init_cloud(
                        3,
                        100,
                        with_normals=with_normals,
                        with_features=False,
                        min_points=60,
                    )
                    nums = clouds.num_points_per_cloud()
                    if run_padded:
                        clouds.points_padded()
                    if run_packed:
                        clouds.points_packed()

                    normals_est_padded = clouds.estimate_normals(assign_to_self=True)
                    normals_est_list = struct_utils.padded_to_list(
                        normals_est_padded, nums.tolist()
                    )
                    self.assertClose(clouds.normals_padded(), normals_est_padded)
                    for i in range(len(clouds)):
                        self.assertClose(clouds.normals_list()[i], normals_est_list[i])
                    self.assertClose(
                        clouds.normals_packed(), torch.cat(normals_est_list, dim=0)
                    )

1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
    @staticmethod
    def compute_packed_with_init(
        num_clouds: int = 10, max_p: int = 100, features: int = 300
    ):
        clouds = TestPointclouds.init_cloud(num_clouds, max_p, features)
        torch.cuda.synchronize()

        def compute_packed():
            clouds._compute_packed(refresh=True)
            torch.cuda.synchronize()

        return compute_packed

    @staticmethod
    def compute_padded_with_init(
        num_clouds: int = 10, max_p: int = 100, features: int = 300
    ):
        clouds = TestPointclouds.init_cloud(num_clouds, max_p, features)
        torch.cuda.synchronize()

        def compute_padded():
            clouds._compute_padded(refresh=True)
            torch.cuda.synchronize()

        return compute_padded