test_pointclouds.py 39.3 KB
Newer Older
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.


import unittest

6
7
import numpy as np
import torch
8
from common_testing import TestCaseMixin
9
from pytorch3d.structures import utils as struct_utils
10
from pytorch3d.structures.pointclouds import Pointclouds
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25


class TestPointclouds(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        np.random.seed(42)
        torch.manual_seed(42)

    @staticmethod
    def init_cloud(
        num_clouds: int = 3,
        max_points: int = 100,
        channels: int = 4,
        lists_to_tensors: bool = False,
        with_normals: bool = True,
        with_features: bool = True,
26
        min_points: int = 0,
27
28
29
30
31
32
33
34
35
36
37
38
39
40
    ):
        """
        Function to generate a Pointclouds object of N meshes with
        random number of points.

        Args:
            num_clouds: Number of clouds to generate.
            channels: Number of features.
            max_points: Max number of points per cloud.
            lists_to_tensors: Determines whether the generated clouds should be
                              constructed from lists (=False) or
                              tensors (=True) of points/normals/features.
            with_normals: bool whether to include normals
            with_features: bool whether to include features
41
            min_points: Min number of points per cloud
42
43
44
45
46

        Returns:
            Pointclouds object.
        """
        device = torch.device("cuda:0")
47
        p = torch.randint(low=min_points, high=max_points, size=(num_clouds,))
48
49
50
51
52
53
54
55
56
        if lists_to_tensors:
            p.fill_(p[0])

        points_list = [
            torch.rand((i, 3), device=device, dtype=torch.float32) for i in p
        ]
        normals_list, features_list = None, None
        if with_normals:
            normals_list = [
57
                torch.rand((i, 3), device=device, dtype=torch.float32) for i in p
58
59
60
            ]
        if with_features:
            features_list = [
61
                torch.rand((i, channels), device=device, dtype=torch.float32) for i in p
62
63
64
65
66
67
68
69
70
            ]

        if lists_to_tensors:
            points_list = torch.stack(points_list)
            if with_normals:
                normals_list = torch.stack(normals_list)
            if with_features:
                features_list = torch.stack(features_list)

71
        return Pointclouds(points_list, normals=normals_list, features=features_list)
72
73
74
75
76
77
78
79
80
81

    def test_simple(self):
        device = torch.device("cuda:0")
        points = [
            torch.tensor(
                [[0.1, 0.3, 0.5], [0.5, 0.2, 0.1], [0.6, 0.8, 0.7]],
                dtype=torch.float32,
                device=device,
            ),
            torch.tensor(
82
                [[0.1, 0.3, 0.3], [0.6, 0.7, 0.8], [0.2, 0.3, 0.4], [0.1, 0.5, 0.3]],
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
                dtype=torch.float32,
                device=device,
            ),
            torch.tensor(
                [
                    [0.7, 0.3, 0.6],
                    [0.2, 0.4, 0.8],
                    [0.9, 0.5, 0.2],
                    [0.2, 0.3, 0.4],
                    [0.9, 0.3, 0.8],
                ],
                dtype=torch.float32,
                device=device,
            ),
        ]
        clouds = Pointclouds(points)

        self.assertClose(
            (clouds.packed_to_cloud_idx()).cpu(),
            torch.tensor([0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2]),
        )
        self.assertClose(
            clouds.cloud_to_packed_first_idx().cpu(), torch.tensor([0, 3, 7])
        )
107
        self.assertClose(clouds.num_points_per_cloud().cpu(), torch.tensor([3, 4, 5]))
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
        self.assertClose(
            clouds.padded_to_packed_idx().cpu(),
            torch.tensor([0, 1, 2, 5, 6, 7, 8, 10, 11, 12, 13, 14]),
        )

    def test_all_constructions(self):
        public_getters = [
            "points_list",
            "points_packed",
            "packed_to_cloud_idx",
            "cloud_to_packed_first_idx",
            "num_points_per_cloud",
            "points_padded",
            "padded_to_packed_idx",
        ]
123
        public_normals_getters = ["normals_list", "normals_packed", "normals_padded"]
124
125
126
127
128
129
130
131
132
133
134
135
136
        public_features_getters = [
            "features_list",
            "features_packed",
            "features_padded",
        ]

        lengths = [3, 4, 2]
        max_len = max(lengths)
        C = 4

        points_data = [torch.zeros((max_len, 3)).uniform_() for i in lengths]
        normals_data = [torch.zeros((max_len, 3)).uniform_() for i in lengths]
        features_data = [torch.zeros((max_len, C)).uniform_() for i in lengths]
137
        for length, p, n, f in zip(lengths, points_data, normals_data, features_data):
138
139
140
141
142
            p[length:] = 0.0
            n[length:] = 0.0
            f[length:] = 0.0
        points_list = [d[:length] for length, d in zip(lengths, points_data)]
        normals_list = [d[:length] for length, d in zip(lengths, normals_data)]
143
        features_list = [d[:length] for length, d in zip(lengths, features_data)]
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
        points_packed = torch.cat(points_data)
        normals_packed = torch.cat(normals_data)
        features_packed = torch.cat(features_data)
        test_cases_inputs = [
            ("list_0_0", points_list, None, None),
            ("list_1_0", points_list, normals_list, None),
            ("list_0_1", points_list, None, features_list),
            ("list_1_1", points_list, normals_list, features_list),
            ("padded_0_0", points_data, None, None),
            ("padded_1_0", points_data, normals_data, None),
            ("padded_0_1", points_data, None, features_data),
            ("padded_1_1", points_data, normals_data, features_data),
            ("emptylist_emptylist_emptylist", [], [], []),
        ]
        false_cases_inputs = [
159
            ("list_packed", points_list, normals_packed, features_packed, ValueError),
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
            ("packed_0", points_packed, None, None, ValueError),
        ]

        for name, points, normals, features in test_cases_inputs:
            with self.subTest(name=name):
                p = Pointclouds(points, normals, features)
                for method in public_getters:
                    self.assertIsNotNone(getattr(p, method)())
                for method in public_normals_getters:
                    if normals is None or p.isempty():
                        self.assertIsNone(getattr(p, method)())
                for method in public_features_getters:
                    if features is None or p.isempty():
                        self.assertIsNone(getattr(p, method)())

        for name, points, normals, features, error in false_cases_inputs:
            with self.subTest(name=name):
                with self.assertRaises(error):
                    Pointclouds(points, normals, features)

    def test_simple_random_clouds(self):
        # Define the test object either from lists or tensors.
        for with_normals in (False, True):
            for with_features in (False, True):
                for lists_to_tensors in (False, True):
                    N = 10
                    cloud = self.init_cloud(
                        N,
                        lists_to_tensors=lists_to_tensors,
                        with_normals=with_normals,
                        with_features=with_features,
                    )
                    points_list = cloud.points_list()
                    normals_list = cloud.normals_list()
                    features_list = cloud.features_list()

                    # Check batch calculations.
                    points_padded = cloud.points_padded()
                    normals_padded = cloud.normals_padded()
                    features_padded = cloud.features_padded()
                    points_per_cloud = cloud.num_points_per_cloud()

                    if not with_normals:
                        self.assertIsNone(normals_list)
                        self.assertIsNone(normals_padded)
                    if not with_features:
                        self.assertIsNone(features_list)
                        self.assertIsNone(features_padded)
                    for n in range(N):
                        p = points_list[n].shape[0]
210
                        self.assertClose(points_padded[n, :p, :], points_list[n])
211
212
213
                        if with_normals:
                            norms = normals_list[n].shape[0]
                            self.assertEqual(p, norms)
214
                            self.assertClose(normals_padded[n, :p, :], normals_list[n])
215
216
217
218
219
220
221
222
223
                        if with_features:
                            f = features_list[n].shape[0]
                            self.assertEqual(p, f)
                            self.assertClose(
                                features_padded[n, :p, :], features_list[n]
                            )
                        if points_padded.shape[1] > p:
                            self.assertTrue(points_padded[n, p:, :].eq(0).all())
                            if with_features:
224
                                self.assertTrue(features_padded[n, p:, :].eq(0).all())
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
                        self.assertEqual(points_per_cloud[n], p)

                    # Check compute packed.
                    points_packed = cloud.points_packed()
                    packed_to_cloud = cloud.packed_to_cloud_idx()
                    cloud_to_packed = cloud.cloud_to_packed_first_idx()
                    normals_packed = cloud.normals_packed()
                    features_packed = cloud.features_packed()
                    if not with_normals:
                        self.assertIsNone(normals_packed)
                    if not with_features:
                        self.assertIsNone(features_packed)

                    cur = 0
                    for n in range(N):
                        p = points_list[n].shape[0]
                        self.assertClose(
                            points_packed[cur : cur + p, :], points_list[n]
                        )
                        if with_normals:
                            self.assertClose(
246
                                normals_packed[cur : cur + p, :], normals_list[n]
247
248
249
                            )
                        if with_features:
                            self.assertClose(
250
                                features_packed[cur : cur + p, :], features_list[n]
251
                            )
252
                        self.assertTrue(packed_to_cloud[cur : cur + p].eq(n).all())
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
                        self.assertTrue(cloud_to_packed[n] == cur)
                        cur += p

    def test_allempty(self):
        clouds = Pointclouds([], [])
        self.assertEqual(len(clouds), 0)
        self.assertIsNone(clouds.normals_list())
        self.assertIsNone(clouds.features_list())
        self.assertEqual(clouds.points_padded().shape[0], 0)
        self.assertIsNone(clouds.normals_padded())
        self.assertIsNone(clouds.features_padded())
        self.assertEqual(clouds.points_packed().shape[0], 0)
        self.assertIsNone(clouds.normals_packed())
        self.assertIsNone(clouds.features_packed())

    def test_empty(self):
        N, P, C = 10, 100, 2
        device = torch.device("cuda:0")
        points_list = []
        normals_list = []
        features_list = []
        valid = torch.randint(2, size=(N,), dtype=torch.uint8, device=device)
        for n in range(N):
            if valid[n]:
                p = torch.randint(
                    3, high=P, size=(1,), dtype=torch.int32, device=device
                )[0]
                points = torch.rand((p, 3), dtype=torch.float32, device=device)
                normals = torch.rand((p, 3), dtype=torch.float32, device=device)
282
                features = torch.rand((p, C), dtype=torch.float32, device=device)
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
            else:
                points = torch.tensor([], dtype=torch.float32, device=device)
                normals = torch.tensor([], dtype=torch.float32, device=device)
                features = torch.tensor([], dtype=torch.int64, device=device)
            points_list.append(points)
            normals_list.append(normals)
            features_list.append(features)

        for with_normals in (False, True):
            for with_features in (False, True):
                this_features, this_normals = None, None
                if with_normals:
                    this_normals = normals_list
                if with_features:
                    this_features = features_list
                clouds = Pointclouds(
299
                    points=points_list, normals=this_normals, features=this_features
300
301
302
303
304
305
306
307
308
309
310
311
                )
                points_padded = clouds.points_padded()
                normals_padded = clouds.normals_padded()
                features_padded = clouds.features_padded()
                if not with_normals:
                    self.assertIsNone(normals_padded)
                if not with_features:
                    self.assertIsNone(features_padded)
                points_per_cloud = clouds.num_points_per_cloud()
                for n in range(N):
                    p = len(points_list[n])
                    if p > 0:
312
                        self.assertClose(points_padded[n, :p, :], points_list[n])
313
                        if with_normals:
314
                            self.assertClose(normals_padded[n, :p, :], normals_list[n])
315
316
317
318
319
320
321
                        if with_features:
                            self.assertClose(
                                features_padded[n, :p, :], features_list[n]
                            )
                        if points_padded.shape[1] > p:
                            self.assertTrue(points_padded[n, p:, :].eq(0).all())
                            if with_normals:
322
                                self.assertTrue(normals_padded[n, p:, :].eq(0).all())
323
                            if with_features:
324
                                self.assertTrue(features_padded[n, p:, :].eq(0).all())
325
326
327
328
329
330
331
332
333
334
335
336
                    self.assertTrue(points_per_cloud[n] == p)

    def test_clone_list(self):
        N = 5
        clouds = self.init_cloud(N, 100, 5)
        for force in (False, True):
            if force:
                clouds.points_packed()

            new_clouds = clouds.clone()

            # Check cloned and original objects do not share tensors.
337
338
            self.assertSeparate(new_clouds.points_list()[0], clouds.points_list()[0])
            self.assertSeparate(new_clouds.normals_list()[0], clouds.normals_list()[0])
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
            self.assertSeparate(
                new_clouds.features_list()[0], clouds.features_list()[0]
            )
            for attrib in [
                "points_packed",
                "normals_packed",
                "features_packed",
                "points_padded",
                "normals_padded",
                "features_padded",
            ]:
                self.assertSeparate(
                    getattr(new_clouds, attrib)(), getattr(clouds, attrib)()
                )

            self.assertCloudsEqual(clouds, new_clouds)

    def test_clone_tensor(self):
        N = 5
        clouds = self.init_cloud(N, 100, 5, lists_to_tensors=True)
        for force in (False, True):
            if force:
                clouds.points_packed()

            new_clouds = clouds.clone()

            # Check cloned and original objects do not share tensors.
366
367
            self.assertSeparate(new_clouds.points_list()[0], clouds.points_list()[0])
            self.assertSeparate(new_clouds.normals_list()[0], clouds.normals_list()[0])
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
            self.assertSeparate(
                new_clouds.features_list()[0], clouds.features_list()[0]
            )
            for attrib in [
                "points_packed",
                "normals_packed",
                "features_packed",
                "points_padded",
                "normals_padded",
                "features_padded",
            ]:
                self.assertSeparate(
                    getattr(new_clouds, attrib)(), getattr(clouds, attrib)()
                )

            self.assertCloudsEqual(clouds, new_clouds)

    def assertCloudsEqual(self, cloud1, cloud2):
        N = len(cloud1)
        self.assertEqual(N, len(cloud2))

        for i in range(N):
            self.assertClose(cloud1.points_list()[i], cloud2.points_list()[i])
            self.assertClose(cloud1.normals_list()[i], cloud2.normals_list()[i])
392
            self.assertClose(cloud1.features_list()[i], cloud2.features_list()[i])
393
394
395
396
397
398
399
400
401
402
403
404
405
406
        has_normals = cloud1.normals_list() is not None
        self.assertTrue(has_normals == (cloud2.normals_list() is not None))
        has_features = cloud1.features_list() is not None
        self.assertTrue(has_features == (cloud2.features_list() is not None))

        # check padded & packed
        self.assertClose(cloud1.points_padded(), cloud2.points_padded())
        self.assertClose(cloud1.points_packed(), cloud2.points_packed())
        if has_normals:
            self.assertClose(cloud1.normals_padded(), cloud2.normals_padded())
            self.assertClose(cloud1.normals_packed(), cloud2.normals_packed())
        if has_features:
            self.assertClose(cloud1.features_padded(), cloud2.features_padded())
            self.assertClose(cloud1.features_packed(), cloud2.features_packed())
407
        self.assertClose(cloud1.packed_to_cloud_idx(), cloud2.packed_to_cloud_idx())
408
        self.assertClose(
409
            cloud1.cloud_to_packed_first_idx(), cloud2.cloud_to_packed_first_idx()
410
        )
411
412
413
        self.assertClose(cloud1.num_points_per_cloud(), cloud2.num_points_per_cloud())
        self.assertClose(cloud1.packed_to_cloud_idx(), cloud2.packed_to_cloud_idx())
        self.assertClose(cloud1.padded_to_packed_idx(), cloud2.padded_to_packed_idx())
414
415
416
417
418
419
420
        self.assertTrue(all(cloud1.valid == cloud2.valid))
        self.assertTrue(cloud1.equisized == cloud2.equisized)

    def test_offset(self):
        def naive_offset(clouds, offsets_packed):
            new_points_packed = clouds.points_packed() + offsets_packed
            new_points_list = list(
421
                new_points_packed.split(clouds.num_points_per_cloud().tolist(), 0)
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
            )
            return Pointclouds(
                points=new_points_list,
                normals=clouds.normals_list(),
                features=clouds.features_list(),
            )

        N = 5
        clouds = self.init_cloud(N, 100, 10)
        all_p = clouds.points_packed().size(0)
        points_per_cloud = clouds.num_points_per_cloud()
        for force in (False, True):
            if force:
                clouds._compute_packed(refresh=True)
                clouds._compute_padded()
                clouds.padded_to_packed_idx()

439
            deform = torch.rand((all_p, 3), dtype=torch.float32, device=clouds.device)
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
            new_clouds_naive = naive_offset(clouds, deform)

            new_clouds = clouds.offset(deform)

            points_cumsum = torch.cumsum(points_per_cloud, 0).tolist()
            points_cumsum.insert(0, 0)
            for i in range(N):
                self.assertClose(
                    new_clouds.points_list()[i],
                    clouds.points_list()[i]
                    + deform[points_cumsum[i] : points_cumsum[i + 1]],
                )
                self.assertClose(
                    clouds.normals_list()[i], new_clouds_naive.normals_list()[i]
                )
                self.assertClose(
456
                    clouds.features_list()[i], new_clouds_naive.features_list()[i]
457
458
459
460
461
462
                )
            self.assertCloudsEqual(new_clouds, new_clouds_naive)

    def test_scale(self):
        def naive_scale(cloud, scale):
            if not torch.is_tensor(scale):
Georgia Gkioxari's avatar
Georgia Gkioxari committed
463
                scale = torch.full((len(cloud),), scale, device=cloud.device)
464
465
466
467
468
469
470
471
472
            new_points_list = [
                scale[i] * points.clone()
                for (i, points) in enumerate(cloud.points_list())
            ]
            return Pointclouds(
                new_points_list, cloud.normals_list(), cloud.features_list()
            )

        N = 5
Georgia Gkioxari's avatar
Georgia Gkioxari committed
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
        for test in ["tensor", "scalar"]:
            for force in (False, True):
                clouds = self.init_cloud(N, 100, 10)
                if force:
                    clouds._compute_packed(refresh=True)
                    clouds._compute_padded()
                    clouds.padded_to_packed_idx()
                if test == "tensor":
                    scales = torch.rand(N)
                elif test == "scalar":
                    scales = torch.rand(1)[0].item()
                new_clouds_naive = naive_scale(clouds, scales)
                new_clouds = clouds.scale(scales)
                for i in range(N):
                    if test == "tensor":
                        self.assertClose(
                            scales[i] * clouds.points_list()[i],
                            new_clouds.points_list()[i],
                        )
                    else:
                        self.assertClose(
                            scales * clouds.points_list()[i],
                            new_clouds.points_list()[i],
                        )
                    self.assertClose(
                        clouds.normals_list()[i], new_clouds_naive.normals_list()[i]
                    )
                    self.assertClose(
                        clouds.features_list()[i], new_clouds_naive.features_list()[i]
                    )
                self.assertCloudsEqual(new_clouds, new_clouds_naive)
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518

    def test_extend_list(self):
        N = 10
        clouds = self.init_cloud(N, 100, 10)
        for force in (False, True):
            if force:
                # force some computes to happen
                clouds._compute_packed(refresh=True)
                clouds._compute_padded()
                clouds.padded_to_packed_idx()
            new_clouds = clouds.extend(N)
            self.assertEqual(len(clouds) * 10, len(new_clouds))
            for i in range(len(clouds)):
                for n in range(N):
                    self.assertClose(
519
                        clouds.points_list()[i], new_clouds.points_list()[i * N + n]
520
521
                    )
                    self.assertClose(
522
                        clouds.normals_list()[i], new_clouds.normals_list()[i * N + n]
523
524
                    )
                    self.assertClose(
525
                        clouds.features_list()[i], new_clouds.features_list()[i * N + n]
526
                    )
527
                    self.assertTrue(clouds.valid[i] == new_clouds.valid[i * N + n])
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
            self.assertAllSeparate(
                clouds.points_list()
                + new_clouds.points_list()
                + clouds.normals_list()
                + new_clouds.normals_list()
                + clouds.features_list()
                + new_clouds.features_list()
            )
            self.assertIsNone(new_clouds._points_packed)
            self.assertIsNone(new_clouds._normals_packed)
            self.assertIsNone(new_clouds._features_packed)
            self.assertIsNone(new_clouds._points_padded)
            self.assertIsNone(new_clouds._normals_padded)
            self.assertIsNone(new_clouds._features_padded)

        with self.assertRaises(ValueError):
            clouds.extend(N=-1)

    def test_to_list(self):
        cloud = self.init_cloud(5, 100, 10)
        device = torch.device("cuda:1")

        new_cloud = cloud.to(device)
        self.assertTrue(new_cloud.device == device)
        self.assertTrue(cloud.device == torch.device("cuda:0"))
        for attrib in [
            "points_padded",
            "points_packed",
            "normals_padded",
            "normals_packed",
            "features_padded",
            "features_packed",
            "num_points_per_cloud",
            "cloud_to_packed_first_idx",
            "padded_to_packed_idx",
        ]:
            self.assertClose(
565
                getattr(new_cloud, attrib)().cpu(), getattr(cloud, attrib)().cpu()
566
567
568
569
570
571
572
573
574
            )
        for i in range(len(cloud)):
            self.assertClose(
                cloud.points_list()[i].cpu(), new_cloud.points_list()[i].cpu()
            )
            self.assertClose(
                cloud.normals_list()[i].cpu(), new_cloud.normals_list()[i].cpu()
            )
            self.assertClose(
575
                cloud.features_list()[i].cpu(), new_cloud.features_list()[i].cpu()
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
            )
        self.assertTrue(all(cloud.valid.cpu() == new_cloud.valid.cpu()))
        self.assertTrue(cloud.equisized == new_cloud.equisized)
        self.assertTrue(cloud._N == new_cloud._N)
        self.assertTrue(cloud._P == new_cloud._P)
        self.assertTrue(cloud._C == new_cloud._C)

    def test_to_tensor(self):
        cloud = self.init_cloud(5, 100, 10, lists_to_tensors=True)
        device = torch.device("cuda:1")

        new_cloud = cloud.to(device)
        self.assertTrue(new_cloud.device == device)
        self.assertTrue(cloud.device == torch.device("cuda:0"))
        for attrib in [
            "points_padded",
            "points_packed",
            "normals_padded",
            "normals_packed",
            "features_padded",
            "features_packed",
            "num_points_per_cloud",
            "cloud_to_packed_first_idx",
            "padded_to_packed_idx",
        ]:
            self.assertClose(
602
                getattr(new_cloud, attrib)().cpu(), getattr(cloud, attrib)().cpu()
603
604
605
606
607
608
609
610
611
            )
        for i in range(len(cloud)):
            self.assertClose(
                cloud.points_list()[i].cpu(), new_cloud.points_list()[i].cpu()
            )
            self.assertClose(
                cloud.normals_list()[i].cpu(), new_cloud.normals_list()[i].cpu()
            )
            self.assertClose(
612
                cloud.features_list()[i].cpu(), new_cloud.features_list()[i].cpu()
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
            )
        self.assertTrue(all(cloud.valid.cpu() == new_cloud.valid.cpu()))
        self.assertTrue(cloud.equisized == new_cloud.equisized)
        self.assertTrue(cloud._N == new_cloud._N)
        self.assertTrue(cloud._P == new_cloud._P)
        self.assertTrue(cloud._C == new_cloud._C)

    def test_split(self):
        clouds = self.init_cloud(5, 100, 10)
        split_sizes = [2, 3]
        split_clouds = clouds.split(split_sizes)
        self.assertEqual(len(split_clouds[0]), 2)
        self.assertTrue(
            split_clouds[0].points_list()
            == [clouds.get_cloud(0)[0], clouds.get_cloud(1)[0]]
        )
        self.assertEqual(len(split_clouds[1]), 3)
        self.assertTrue(
            split_clouds[1].points_list()
632
            == [clouds.get_cloud(2)[0], clouds.get_cloud(3)[0], clouds.get_cloud(4)[0]]
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
        )

        split_sizes = [2, 0.3]
        with self.assertRaises(ValueError):
            clouds.split(split_sizes)

    def test_get_cloud(self):
        clouds = self.init_cloud(2, 100, 10)
        for i in range(len(clouds)):
            points, normals, features = clouds.get_cloud(i)
            self.assertClose(points, clouds.points_list()[i])
            self.assertClose(normals, clouds.normals_list()[i])
            self.assertClose(features, clouds.features_list()[i])

        with self.assertRaises(ValueError):
            clouds.get_cloud(5)
        with self.assertRaises(ValueError):
            clouds.get_cloud(0.2)

    def test_get_bounding_boxes(self):
        device = torch.device("cuda:0")
        points_list = []
        for size in [10]:
            points = torch.rand((size, 3), dtype=torch.float32, device=device)
            points_list.append(points)

        mins = torch.min(points, dim=0)[0]
        maxs = torch.max(points, dim=0)[0]
        bboxes_gt = torch.stack([mins, maxs], dim=1).unsqueeze(0)
        clouds = Pointclouds(points_list)
        bboxes = clouds.get_bounding_boxes()
        self.assertClose(bboxes_gt, bboxes)

    def test_padded_to_packed_idx(self):
        device = torch.device("cuda:0")
        points_list = []
        npoints = [10, 20, 30]
        for p in npoints:
            points = torch.rand((p, 3), dtype=torch.float32, device=device)
            points_list.append(points)

        clouds = Pointclouds(points_list)

        padded_to_packed_idx = clouds.padded_to_packed_idx()
        points_packed = clouds.points_packed()
        points_padded = clouds.points_padded()
        points_padded_flat = points_padded.view(-1, 3)

681
        self.assertClose(points_padded_flat[padded_to_packed_idx], points_packed)
682
683
684
685
686
687
688
689
690
691
692

        idx = padded_to_packed_idx.view(-1, 1).expand(-1, 3)
        self.assertClose(points_padded_flat.gather(0, idx), points_packed)

    def test_getitem(self):
        device = torch.device("cuda:0")
        clouds = self.init_cloud(3, 10, 100)

        def check_equal(selected, indices):
            for selectedIdx, index in indices:
                self.assertClose(
693
                    selected.points_list()[selectedIdx], clouds.points_list()[index]
694
695
                )
                self.assertClose(
696
                    selected.normals_list()[selectedIdx], clouds.normals_list()[index]
697
698
                )
                self.assertClose(
699
                    selected.features_list()[selectedIdx], clouds.features_list()[index]
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
                )

        # int index
        index = 1
        clouds_selected = clouds[index]
        self.assertEqual(len(clouds_selected), 1)
        check_equal(clouds_selected, [(0, 1)])

        # list index
        index = [1, 2]
        clouds_selected = clouds[index]
        self.assertEqual(len(clouds_selected), len(index))
        check_equal(clouds_selected, enumerate(index))

        # slice index
        index = slice(0, 2, 1)
        clouds_selected = clouds[index]
        self.assertEqual(len(clouds_selected), 2)
        check_equal(clouds_selected, [(0, 0), (1, 1)])

        # bool tensor
        index = torch.tensor([1, 0, 1], dtype=torch.bool, device=device)
        clouds_selected = clouds[index]
        self.assertEqual(len(clouds_selected), index.sum())
        check_equal(clouds_selected, [(0, 0), (1, 2)])

        # int tensor
        index = torch.tensor([1, 2], dtype=torch.int64, device=device)
        clouds_selected = clouds[index]
        self.assertEqual(len(clouds_selected), index.numel())
        check_equal(clouds_selected, enumerate(index.tolist()))

        # invalid index
        index = torch.tensor([1, 0, 1], dtype=torch.float32, device=device)
        with self.assertRaises(IndexError):
            clouds_selected = clouds[index]
        index = 1.2
        with self.assertRaises(IndexError):
            clouds_selected = clouds[index]

    def test_update_padded(self):
        N, P, C = 5, 100, 4
        for with_normfeat in (True, False):
            for with_new_normfeat in (True, False):
                clouds = self.init_cloud(
745
                    N, P, C, with_normals=with_normfeat, with_features=with_normfeat
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
                )

                num_points_per_cloud = clouds.num_points_per_cloud()

                # initialize new points, normals, features
                new_points = torch.rand(
                    clouds.points_padded().shape, device=clouds.device
                )
                new_points_list = [
                    new_points[i, : num_points_per_cloud[i]] for i in range(N)
                ]
                new_normals, new_normals_list = None, None
                new_features, new_features_list = None, None
                if with_new_normfeat:
                    new_normals = torch.rand(
                        clouds.points_padded().shape, device=clouds.device
                    )
                    new_normals_list = [
764
                        new_normals[i, : num_points_per_cloud[i]] for i in range(N)
765
766
767
768
769
770
771
772
                    ]
                    feat_shape = [
                        clouds.points_padded().shape[0],
                        clouds.points_padded().shape[1],
                        C,
                    ]
                    new_features = torch.rand(feat_shape, device=clouds.device)
                    new_features_list = [
773
                        new_features[i, : num_points_per_cloud[i]] for i in range(N)
774
775
776
                    ]

                # update
777
                new_clouds = clouds.update_padded(new_points, new_normals, new_features)
778
779
780
781
782
783
784
                self.assertIsNone(new_clouds._points_list)
                self.assertIsNone(new_clouds._points_packed)

                self.assertEqual(new_clouds.equisized, clouds.equisized)
                self.assertTrue(all(new_clouds.valid == clouds.valid))

                self.assertClose(new_clouds.points_padded(), new_points)
785
                self.assertClose(new_clouds.points_packed(), torch.cat(new_points_list))
786
                for i in range(N):
787
                    self.assertClose(new_clouds.points_list()[i], new_points_list[i])
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802

                if with_new_normfeat:
                    for i in range(N):
                        self.assertClose(
                            new_clouds.normals_list()[i], new_normals_list[i]
                        )
                        self.assertClose(
                            new_clouds.features_list()[i], new_features_list[i]
                        )
                    self.assertClose(new_clouds.normals_padded(), new_normals)
                    self.assertClose(
                        new_clouds.normals_packed(), torch.cat(new_normals_list)
                    )
                    self.assertClose(new_clouds.features_padded(), new_features)
                    self.assertClose(
803
                        new_clouds.features_packed(), torch.cat(new_features_list)
804
805
806
807
808
                    )
                else:
                    if with_normfeat:
                        for i in range(N):
                            self.assertClose(
809
                                new_clouds.normals_list()[i], clouds.normals_list()[i]
810
811
                            )
                            self.assertClose(
812
                                new_clouds.features_list()[i], clouds.features_list()[i]
813
814
                            )
                            self.assertNotSeparate(
815
                                new_clouds.normals_list()[i], clouds.normals_list()[i]
816
817
                            )
                            self.assertNotSeparate(
818
                                new_clouds.features_list()[i], clouds.features_list()[i]
819
820
821
822
823
824
825
826
827
                            )

                        self.assertClose(
                            new_clouds.normals_padded(), clouds.normals_padded()
                        )
                        self.assertClose(
                            new_clouds.normals_packed(), clouds.normals_packed()
                        )
                        self.assertClose(
828
                            new_clouds.features_padded(), clouds.features_padded()
829
830
                        )
                        self.assertClose(
831
                            new_clouds.features_packed(), clouds.features_packed()
832
833
834
835
836
                        )
                        self.assertNotSeparate(
                            new_clouds.normals_padded(), clouds.normals_padded()
                        )
                        self.assertNotSeparate(
837
                            new_clouds.features_padded(), clouds.features_padded()
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
                        )
                    else:
                        self.assertIsNone(new_clouds.normals_list())
                        self.assertIsNone(new_clouds.features_list())
                        self.assertIsNone(new_clouds.normals_padded())
                        self.assertIsNone(new_clouds.features_padded())
                        self.assertIsNone(new_clouds.normals_packed())
                        self.assertIsNone(new_clouds.features_packed())

                for attrib in [
                    "num_points_per_cloud",
                    "cloud_to_packed_first_idx",
                    "padded_to_packed_idx",
                ]:
                    self.assertClose(
                        getattr(new_clouds, attrib)(), getattr(clouds, attrib)()
                    )

Georgia Gkioxari's avatar
Georgia Gkioxari committed
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
    def test_inside_box(self):
        def inside_box_naive(cloud, box_min, box_max):
            return (cloud >= box_min.view(1, 3)) * (cloud <= box_max.view(1, 3))

        N, P, C = 5, 100, 4

        clouds = self.init_cloud(N, P, C, with_normals=False, with_features=False)
        device = clouds.device

        # box of shape Nx2x3
        box_min = torch.rand((N, 1, 3), device=device)
        box_max = box_min + torch.rand((N, 1, 3), device=device)
        box = torch.cat([box_min, box_max], dim=1)

        within_box = clouds.inside_box(box)

        within_box_naive = []
        for i, cloud in enumerate(clouds.points_list()):
            within_box_naive.append(inside_box_naive(cloud, box[i, 0], box[i, 1]))
        within_box_naive = torch.cat(within_box_naive, 0)
        self.assertTrue(within_box.eq(within_box_naive).all())

        # box of shape 2x3
        box2 = box[0, :]

        within_box2 = clouds.inside_box(box2)

        within_box_naive2 = []
        for cloud in clouds.points_list():
            within_box_naive2.append(inside_box_naive(cloud, box2[0], box2[1]))
        within_box_naive2 = torch.cat(within_box_naive2, 0)
        self.assertTrue(within_box2.eq(within_box_naive2).all())

        # box of shape 1x2x3
        box3 = box2.expand(1, 2, 3)

        within_box3 = clouds.inside_box(box3)
        self.assertTrue(within_box2.eq(within_box3).all())

        # invalid box
        invalid_box = torch.cat(
            [box_min, box_min - torch.rand((N, 1, 3), device=device)], dim=1
        )
        with self.assertRaisesRegex(ValueError, "Input box is invalid"):
            clouds.inside_box(invalid_box)

        # invalid box shapes
        invalid_box = box[0].expand(2, 2, 3)
        with self.assertRaisesRegex(ValueError, "Input box dimension is"):
            clouds.inside_box(invalid_box)
        invalid_box = torch.rand((5, 8, 9, 3), device=device)
        with self.assertRaisesRegex(ValueError, "Input box must be of shape"):
            clouds.inside_box(invalid_box)

910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
    def test_estimate_normals(self):
        for with_normals in (True, False):
            for run_padded in (True, False):
                for run_packed in (True, False):

                    clouds = TestPointclouds.init_cloud(
                        3,
                        100,
                        with_normals=with_normals,
                        with_features=False,
                        min_points=60,
                    )
                    nums = clouds.num_points_per_cloud()
                    if run_padded:
                        clouds.points_padded()
                    if run_packed:
                        clouds.points_packed()

                    normals_est_padded = clouds.estimate_normals(assign_to_self=True)
                    normals_est_list = struct_utils.padded_to_list(
                        normals_est_padded, nums.tolist()
                    )
                    self.assertClose(clouds.normals_padded(), normals_est_padded)
                    for i in range(len(clouds)):
                        self.assertClose(clouds.normals_list()[i], normals_est_list[i])
                    self.assertClose(
                        clouds.normals_packed(), torch.cat(normals_est_list, dim=0)
                    )

939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
    @staticmethod
    def compute_packed_with_init(
        num_clouds: int = 10, max_p: int = 100, features: int = 300
    ):
        clouds = TestPointclouds.init_cloud(num_clouds, max_p, features)
        torch.cuda.synchronize()

        def compute_packed():
            clouds._compute_packed(refresh=True)
            torch.cuda.synchronize()

        return compute_packed

    @staticmethod
    def compute_padded_with_init(
        num_clouds: int = 10, max_p: int = 100, features: int = 300
    ):
        clouds = TestPointclouds.init_cloud(num_clouds, max_p, features)
        torch.cuda.synchronize()

        def compute_padded():
            clouds._compute_padded(refresh=True)
            torch.cuda.synchronize()

        return compute_padded