test_pointclouds.py 40.8 KB
Newer Older
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.


import unittest

6
7
import numpy as np
import torch
8
from common_testing import TestCaseMixin
9
from pytorch3d.structures import utils as struct_utils
10
from pytorch3d.structures.pointclouds import Pointclouds
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25


class TestPointclouds(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        np.random.seed(42)
        torch.manual_seed(42)

    @staticmethod
    def init_cloud(
        num_clouds: int = 3,
        max_points: int = 100,
        channels: int = 4,
        lists_to_tensors: bool = False,
        with_normals: bool = True,
        with_features: bool = True,
26
        min_points: int = 0,
27
        requires_grad: bool = False,
28
29
30
31
32
33
34
35
36
37
38
39
40
41
    ):
        """
        Function to generate a Pointclouds object of N meshes with
        random number of points.

        Args:
            num_clouds: Number of clouds to generate.
            channels: Number of features.
            max_points: Max number of points per cloud.
            lists_to_tensors: Determines whether the generated clouds should be
                              constructed from lists (=False) or
                              tensors (=True) of points/normals/features.
            with_normals: bool whether to include normals
            with_features: bool whether to include features
42
            min_points: Min number of points per cloud
43
44
45
46
47

        Returns:
            Pointclouds object.
        """
        device = torch.device("cuda:0")
48
        p = torch.randint(low=min_points, high=max_points, size=(num_clouds,))
49
50
51
52
        if lists_to_tensors:
            p.fill_(p[0])

        points_list = [
53
54
55
56
            torch.rand(
                (i, 3), device=device, dtype=torch.float32, requires_grad=requires_grad
            )
            for i in p
57
58
59
60
        ]
        normals_list, features_list = None, None
        if with_normals:
            normals_list = [
61
62
63
64
65
66
67
                torch.rand(
                    (i, 3),
                    device=device,
                    dtype=torch.float32,
                    requires_grad=requires_grad,
                )
                for i in p
68
69
70
            ]
        if with_features:
            features_list = [
71
72
73
74
75
76
77
                torch.rand(
                    (i, channels),
                    device=device,
                    dtype=torch.float32,
                    requires_grad=requires_grad,
                )
                for i in p
78
79
80
81
82
83
84
85
86
            ]

        if lists_to_tensors:
            points_list = torch.stack(points_list)
            if with_normals:
                normals_list = torch.stack(normals_list)
            if with_features:
                features_list = torch.stack(features_list)

87
        return Pointclouds(points_list, normals=normals_list, features=features_list)
88
89
90
91
92
93
94
95
96
97

    def test_simple(self):
        device = torch.device("cuda:0")
        points = [
            torch.tensor(
                [[0.1, 0.3, 0.5], [0.5, 0.2, 0.1], [0.6, 0.8, 0.7]],
                dtype=torch.float32,
                device=device,
            ),
            torch.tensor(
98
                [[0.1, 0.3, 0.3], [0.6, 0.7, 0.8], [0.2, 0.3, 0.4], [0.1, 0.5, 0.3]],
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
                dtype=torch.float32,
                device=device,
            ),
            torch.tensor(
                [
                    [0.7, 0.3, 0.6],
                    [0.2, 0.4, 0.8],
                    [0.9, 0.5, 0.2],
                    [0.2, 0.3, 0.4],
                    [0.9, 0.3, 0.8],
                ],
                dtype=torch.float32,
                device=device,
            ),
        ]
        clouds = Pointclouds(points)

        self.assertClose(
            (clouds.packed_to_cloud_idx()).cpu(),
            torch.tensor([0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2]),
        )
        self.assertClose(
            clouds.cloud_to_packed_first_idx().cpu(), torch.tensor([0, 3, 7])
        )
123
        self.assertClose(clouds.num_points_per_cloud().cpu(), torch.tensor([3, 4, 5]))
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
        self.assertClose(
            clouds.padded_to_packed_idx().cpu(),
            torch.tensor([0, 1, 2, 5, 6, 7, 8, 10, 11, 12, 13, 14]),
        )

    def test_all_constructions(self):
        public_getters = [
            "points_list",
            "points_packed",
            "packed_to_cloud_idx",
            "cloud_to_packed_first_idx",
            "num_points_per_cloud",
            "points_padded",
            "padded_to_packed_idx",
        ]
139
        public_normals_getters = ["normals_list", "normals_packed", "normals_padded"]
140
141
142
143
144
145
146
147
148
149
150
151
152
        public_features_getters = [
            "features_list",
            "features_packed",
            "features_padded",
        ]

        lengths = [3, 4, 2]
        max_len = max(lengths)
        C = 4

        points_data = [torch.zeros((max_len, 3)).uniform_() for i in lengths]
        normals_data = [torch.zeros((max_len, 3)).uniform_() for i in lengths]
        features_data = [torch.zeros((max_len, C)).uniform_() for i in lengths]
153
        for length, p, n, f in zip(lengths, points_data, normals_data, features_data):
154
155
156
157
158
            p[length:] = 0.0
            n[length:] = 0.0
            f[length:] = 0.0
        points_list = [d[:length] for length, d in zip(lengths, points_data)]
        normals_list = [d[:length] for length, d in zip(lengths, normals_data)]
159
        features_list = [d[:length] for length, d in zip(lengths, features_data)]
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
        points_packed = torch.cat(points_data)
        normals_packed = torch.cat(normals_data)
        features_packed = torch.cat(features_data)
        test_cases_inputs = [
            ("list_0_0", points_list, None, None),
            ("list_1_0", points_list, normals_list, None),
            ("list_0_1", points_list, None, features_list),
            ("list_1_1", points_list, normals_list, features_list),
            ("padded_0_0", points_data, None, None),
            ("padded_1_0", points_data, normals_data, None),
            ("padded_0_1", points_data, None, features_data),
            ("padded_1_1", points_data, normals_data, features_data),
            ("emptylist_emptylist_emptylist", [], [], []),
        ]
        false_cases_inputs = [
175
            ("list_packed", points_list, normals_packed, features_packed, ValueError),
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
            ("packed_0", points_packed, None, None, ValueError),
        ]

        for name, points, normals, features in test_cases_inputs:
            with self.subTest(name=name):
                p = Pointclouds(points, normals, features)
                for method in public_getters:
                    self.assertIsNotNone(getattr(p, method)())
                for method in public_normals_getters:
                    if normals is None or p.isempty():
                        self.assertIsNone(getattr(p, method)())
                for method in public_features_getters:
                    if features is None or p.isempty():
                        self.assertIsNone(getattr(p, method)())

        for name, points, normals, features, error in false_cases_inputs:
            with self.subTest(name=name):
                with self.assertRaises(error):
                    Pointclouds(points, normals, features)

    def test_simple_random_clouds(self):
        # Define the test object either from lists or tensors.
        for with_normals in (False, True):
            for with_features in (False, True):
                for lists_to_tensors in (False, True):
                    N = 10
                    cloud = self.init_cloud(
                        N,
                        lists_to_tensors=lists_to_tensors,
                        with_normals=with_normals,
                        with_features=with_features,
                    )
                    points_list = cloud.points_list()
                    normals_list = cloud.normals_list()
                    features_list = cloud.features_list()

                    # Check batch calculations.
                    points_padded = cloud.points_padded()
                    normals_padded = cloud.normals_padded()
                    features_padded = cloud.features_padded()
                    points_per_cloud = cloud.num_points_per_cloud()

                    if not with_normals:
                        self.assertIsNone(normals_list)
                        self.assertIsNone(normals_padded)
                    if not with_features:
                        self.assertIsNone(features_list)
                        self.assertIsNone(features_padded)
                    for n in range(N):
                        p = points_list[n].shape[0]
226
                        self.assertClose(points_padded[n, :p, :], points_list[n])
227
228
229
                        if with_normals:
                            norms = normals_list[n].shape[0]
                            self.assertEqual(p, norms)
230
                            self.assertClose(normals_padded[n, :p, :], normals_list[n])
231
232
233
234
235
236
237
238
239
                        if with_features:
                            f = features_list[n].shape[0]
                            self.assertEqual(p, f)
                            self.assertClose(
                                features_padded[n, :p, :], features_list[n]
                            )
                        if points_padded.shape[1] > p:
                            self.assertTrue(points_padded[n, p:, :].eq(0).all())
                            if with_features:
240
                                self.assertTrue(features_padded[n, p:, :].eq(0).all())
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
                        self.assertEqual(points_per_cloud[n], p)

                    # Check compute packed.
                    points_packed = cloud.points_packed()
                    packed_to_cloud = cloud.packed_to_cloud_idx()
                    cloud_to_packed = cloud.cloud_to_packed_first_idx()
                    normals_packed = cloud.normals_packed()
                    features_packed = cloud.features_packed()
                    if not with_normals:
                        self.assertIsNone(normals_packed)
                    if not with_features:
                        self.assertIsNone(features_packed)

                    cur = 0
                    for n in range(N):
                        p = points_list[n].shape[0]
                        self.assertClose(
                            points_packed[cur : cur + p, :], points_list[n]
                        )
                        if with_normals:
                            self.assertClose(
262
                                normals_packed[cur : cur + p, :], normals_list[n]
263
264
265
                            )
                        if with_features:
                            self.assertClose(
266
                                features_packed[cur : cur + p, :], features_list[n]
267
                            )
268
                        self.assertTrue(packed_to_cloud[cur : cur + p].eq(n).all())
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
                        self.assertTrue(cloud_to_packed[n] == cur)
                        cur += p

    def test_allempty(self):
        clouds = Pointclouds([], [])
        self.assertEqual(len(clouds), 0)
        self.assertIsNone(clouds.normals_list())
        self.assertIsNone(clouds.features_list())
        self.assertEqual(clouds.points_padded().shape[0], 0)
        self.assertIsNone(clouds.normals_padded())
        self.assertIsNone(clouds.features_padded())
        self.assertEqual(clouds.points_packed().shape[0], 0)
        self.assertIsNone(clouds.normals_packed())
        self.assertIsNone(clouds.features_packed())

    def test_empty(self):
        N, P, C = 10, 100, 2
        device = torch.device("cuda:0")
        points_list = []
        normals_list = []
        features_list = []
        valid = torch.randint(2, size=(N,), dtype=torch.uint8, device=device)
        for n in range(N):
            if valid[n]:
                p = torch.randint(
                    3, high=P, size=(1,), dtype=torch.int32, device=device
                )[0]
                points = torch.rand((p, 3), dtype=torch.float32, device=device)
                normals = torch.rand((p, 3), dtype=torch.float32, device=device)
298
                features = torch.rand((p, C), dtype=torch.float32, device=device)
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
            else:
                points = torch.tensor([], dtype=torch.float32, device=device)
                normals = torch.tensor([], dtype=torch.float32, device=device)
                features = torch.tensor([], dtype=torch.int64, device=device)
            points_list.append(points)
            normals_list.append(normals)
            features_list.append(features)

        for with_normals in (False, True):
            for with_features in (False, True):
                this_features, this_normals = None, None
                if with_normals:
                    this_normals = normals_list
                if with_features:
                    this_features = features_list
                clouds = Pointclouds(
315
                    points=points_list, normals=this_normals, features=this_features
316
317
318
319
320
321
322
323
324
325
326
327
                )
                points_padded = clouds.points_padded()
                normals_padded = clouds.normals_padded()
                features_padded = clouds.features_padded()
                if not with_normals:
                    self.assertIsNone(normals_padded)
                if not with_features:
                    self.assertIsNone(features_padded)
                points_per_cloud = clouds.num_points_per_cloud()
                for n in range(N):
                    p = len(points_list[n])
                    if p > 0:
328
                        self.assertClose(points_padded[n, :p, :], points_list[n])
329
                        if with_normals:
330
                            self.assertClose(normals_padded[n, :p, :], normals_list[n])
331
332
333
334
335
336
337
                        if with_features:
                            self.assertClose(
                                features_padded[n, :p, :], features_list[n]
                            )
                        if points_padded.shape[1] > p:
                            self.assertTrue(points_padded[n, p:, :].eq(0).all())
                            if with_normals:
338
                                self.assertTrue(normals_padded[n, p:, :].eq(0).all())
339
                            if with_features:
340
                                self.assertTrue(features_padded[n, p:, :].eq(0).all())
341
342
343
344
345
346
347
348
349
350
351
352
                    self.assertTrue(points_per_cloud[n] == p)

    def test_clone_list(self):
        N = 5
        clouds = self.init_cloud(N, 100, 5)
        for force in (False, True):
            if force:
                clouds.points_packed()

            new_clouds = clouds.clone()

            # Check cloned and original objects do not share tensors.
353
354
            self.assertSeparate(new_clouds.points_list()[0], clouds.points_list()[0])
            self.assertSeparate(new_clouds.normals_list()[0], clouds.normals_list()[0])
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
            self.assertSeparate(
                new_clouds.features_list()[0], clouds.features_list()[0]
            )
            for attrib in [
                "points_packed",
                "normals_packed",
                "features_packed",
                "points_padded",
                "normals_padded",
                "features_padded",
            ]:
                self.assertSeparate(
                    getattr(new_clouds, attrib)(), getattr(clouds, attrib)()
                )

            self.assertCloudsEqual(clouds, new_clouds)

    def test_clone_tensor(self):
        N = 5
        clouds = self.init_cloud(N, 100, 5, lists_to_tensors=True)
        for force in (False, True):
            if force:
                clouds.points_packed()

            new_clouds = clouds.clone()

            # Check cloned and original objects do not share tensors.
382
383
            self.assertSeparate(new_clouds.points_list()[0], clouds.points_list()[0])
            self.assertSeparate(new_clouds.normals_list()[0], clouds.normals_list()[0])
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
            self.assertSeparate(
                new_clouds.features_list()[0], clouds.features_list()[0]
            )
            for attrib in [
                "points_packed",
                "normals_packed",
                "features_packed",
                "points_padded",
                "normals_padded",
                "features_padded",
            ]:
                self.assertSeparate(
                    getattr(new_clouds, attrib)(), getattr(clouds, attrib)()
                )

            self.assertCloudsEqual(clouds, new_clouds)

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
    def test_detach(self):
        N = 5
        for lists_to_tensors in (True, False):
            clouds = self.init_cloud(
                N, 100, 5, lists_to_tensors=lists_to_tensors, requires_grad=True
            )
            for force in (False, True):
                if force:
                    clouds.points_packed()

                new_clouds = clouds.detach()

                for cloud in new_clouds.points_list():
                    self.assertTrue(cloud.requires_grad == False)
                for normal in new_clouds.normals_list():
                    self.assertTrue(normal.requires_grad == False)
                for feats in new_clouds.features_list():
                    self.assertTrue(feats.requires_grad == False)

                for attrib in [
                    "points_packed",
                    "normals_packed",
                    "features_packed",
                    "points_padded",
                    "normals_padded",
                    "features_padded",
                ]:
                    self.assertTrue(
                        getattr(new_clouds, attrib)().requires_grad == False
                    )

                self.assertCloudsEqual(clouds, new_clouds)

434
435
436
437
438
439
440
    def assertCloudsEqual(self, cloud1, cloud2):
        N = len(cloud1)
        self.assertEqual(N, len(cloud2))

        for i in range(N):
            self.assertClose(cloud1.points_list()[i], cloud2.points_list()[i])
            self.assertClose(cloud1.normals_list()[i], cloud2.normals_list()[i])
441
            self.assertClose(cloud1.features_list()[i], cloud2.features_list()[i])
442
443
444
445
446
447
448
449
450
451
452
453
454
455
        has_normals = cloud1.normals_list() is not None
        self.assertTrue(has_normals == (cloud2.normals_list() is not None))
        has_features = cloud1.features_list() is not None
        self.assertTrue(has_features == (cloud2.features_list() is not None))

        # check padded & packed
        self.assertClose(cloud1.points_padded(), cloud2.points_padded())
        self.assertClose(cloud1.points_packed(), cloud2.points_packed())
        if has_normals:
            self.assertClose(cloud1.normals_padded(), cloud2.normals_padded())
            self.assertClose(cloud1.normals_packed(), cloud2.normals_packed())
        if has_features:
            self.assertClose(cloud1.features_padded(), cloud2.features_padded())
            self.assertClose(cloud1.features_packed(), cloud2.features_packed())
456
        self.assertClose(cloud1.packed_to_cloud_idx(), cloud2.packed_to_cloud_idx())
457
        self.assertClose(
458
            cloud1.cloud_to_packed_first_idx(), cloud2.cloud_to_packed_first_idx()
459
        )
460
461
462
        self.assertClose(cloud1.num_points_per_cloud(), cloud2.num_points_per_cloud())
        self.assertClose(cloud1.packed_to_cloud_idx(), cloud2.packed_to_cloud_idx())
        self.assertClose(cloud1.padded_to_packed_idx(), cloud2.padded_to_packed_idx())
463
464
465
466
467
468
469
        self.assertTrue(all(cloud1.valid == cloud2.valid))
        self.assertTrue(cloud1.equisized == cloud2.equisized)

    def test_offset(self):
        def naive_offset(clouds, offsets_packed):
            new_points_packed = clouds.points_packed() + offsets_packed
            new_points_list = list(
470
                new_points_packed.split(clouds.num_points_per_cloud().tolist(), 0)
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
            )
            return Pointclouds(
                points=new_points_list,
                normals=clouds.normals_list(),
                features=clouds.features_list(),
            )

        N = 5
        clouds = self.init_cloud(N, 100, 10)
        all_p = clouds.points_packed().size(0)
        points_per_cloud = clouds.num_points_per_cloud()
        for force in (False, True):
            if force:
                clouds._compute_packed(refresh=True)
                clouds._compute_padded()
                clouds.padded_to_packed_idx()

488
            deform = torch.rand((all_p, 3), dtype=torch.float32, device=clouds.device)
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
            new_clouds_naive = naive_offset(clouds, deform)

            new_clouds = clouds.offset(deform)

            points_cumsum = torch.cumsum(points_per_cloud, 0).tolist()
            points_cumsum.insert(0, 0)
            for i in range(N):
                self.assertClose(
                    new_clouds.points_list()[i],
                    clouds.points_list()[i]
                    + deform[points_cumsum[i] : points_cumsum[i + 1]],
                )
                self.assertClose(
                    clouds.normals_list()[i], new_clouds_naive.normals_list()[i]
                )
                self.assertClose(
505
                    clouds.features_list()[i], new_clouds_naive.features_list()[i]
506
507
508
509
510
511
                )
            self.assertCloudsEqual(new_clouds, new_clouds_naive)

    def test_scale(self):
        def naive_scale(cloud, scale):
            if not torch.is_tensor(scale):
Georgia Gkioxari's avatar
Georgia Gkioxari committed
512
                scale = torch.full((len(cloud),), scale, device=cloud.device)
513
514
515
516
517
518
519
520
521
            new_points_list = [
                scale[i] * points.clone()
                for (i, points) in enumerate(cloud.points_list())
            ]
            return Pointclouds(
                new_points_list, cloud.normals_list(), cloud.features_list()
            )

        N = 5
Georgia Gkioxari's avatar
Georgia Gkioxari committed
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
        for test in ["tensor", "scalar"]:
            for force in (False, True):
                clouds = self.init_cloud(N, 100, 10)
                if force:
                    clouds._compute_packed(refresh=True)
                    clouds._compute_padded()
                    clouds.padded_to_packed_idx()
                if test == "tensor":
                    scales = torch.rand(N)
                elif test == "scalar":
                    scales = torch.rand(1)[0].item()
                new_clouds_naive = naive_scale(clouds, scales)
                new_clouds = clouds.scale(scales)
                for i in range(N):
                    if test == "tensor":
                        self.assertClose(
                            scales[i] * clouds.points_list()[i],
                            new_clouds.points_list()[i],
                        )
                    else:
                        self.assertClose(
                            scales * clouds.points_list()[i],
                            new_clouds.points_list()[i],
                        )
                    self.assertClose(
                        clouds.normals_list()[i], new_clouds_naive.normals_list()[i]
                    )
                    self.assertClose(
                        clouds.features_list()[i], new_clouds_naive.features_list()[i]
                    )
                self.assertCloudsEqual(new_clouds, new_clouds_naive)
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567

    def test_extend_list(self):
        N = 10
        clouds = self.init_cloud(N, 100, 10)
        for force in (False, True):
            if force:
                # force some computes to happen
                clouds._compute_packed(refresh=True)
                clouds._compute_padded()
                clouds.padded_to_packed_idx()
            new_clouds = clouds.extend(N)
            self.assertEqual(len(clouds) * 10, len(new_clouds))
            for i in range(len(clouds)):
                for n in range(N):
                    self.assertClose(
568
                        clouds.points_list()[i], new_clouds.points_list()[i * N + n]
569
570
                    )
                    self.assertClose(
571
                        clouds.normals_list()[i], new_clouds.normals_list()[i * N + n]
572
573
                    )
                    self.assertClose(
574
                        clouds.features_list()[i], new_clouds.features_list()[i * N + n]
575
                    )
576
                    self.assertTrue(clouds.valid[i] == new_clouds.valid[i * N + n])
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
            self.assertAllSeparate(
                clouds.points_list()
                + new_clouds.points_list()
                + clouds.normals_list()
                + new_clouds.normals_list()
                + clouds.features_list()
                + new_clouds.features_list()
            )
            self.assertIsNone(new_clouds._points_packed)
            self.assertIsNone(new_clouds._normals_packed)
            self.assertIsNone(new_clouds._features_packed)
            self.assertIsNone(new_clouds._points_padded)
            self.assertIsNone(new_clouds._normals_padded)
            self.assertIsNone(new_clouds._features_padded)

        with self.assertRaises(ValueError):
            clouds.extend(N=-1)

    def test_to_list(self):
        cloud = self.init_cloud(5, 100, 10)
        device = torch.device("cuda:1")

        new_cloud = cloud.to(device)
        self.assertTrue(new_cloud.device == device)
        self.assertTrue(cloud.device == torch.device("cuda:0"))
        for attrib in [
            "points_padded",
            "points_packed",
            "normals_padded",
            "normals_packed",
            "features_padded",
            "features_packed",
            "num_points_per_cloud",
            "cloud_to_packed_first_idx",
            "padded_to_packed_idx",
        ]:
            self.assertClose(
614
                getattr(new_cloud, attrib)().cpu(), getattr(cloud, attrib)().cpu()
615
616
617
618
619
620
621
622
623
            )
        for i in range(len(cloud)):
            self.assertClose(
                cloud.points_list()[i].cpu(), new_cloud.points_list()[i].cpu()
            )
            self.assertClose(
                cloud.normals_list()[i].cpu(), new_cloud.normals_list()[i].cpu()
            )
            self.assertClose(
624
                cloud.features_list()[i].cpu(), new_cloud.features_list()[i].cpu()
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
            )
        self.assertTrue(all(cloud.valid.cpu() == new_cloud.valid.cpu()))
        self.assertTrue(cloud.equisized == new_cloud.equisized)
        self.assertTrue(cloud._N == new_cloud._N)
        self.assertTrue(cloud._P == new_cloud._P)
        self.assertTrue(cloud._C == new_cloud._C)

    def test_to_tensor(self):
        cloud = self.init_cloud(5, 100, 10, lists_to_tensors=True)
        device = torch.device("cuda:1")

        new_cloud = cloud.to(device)
        self.assertTrue(new_cloud.device == device)
        self.assertTrue(cloud.device == torch.device("cuda:0"))
        for attrib in [
            "points_padded",
            "points_packed",
            "normals_padded",
            "normals_packed",
            "features_padded",
            "features_packed",
            "num_points_per_cloud",
            "cloud_to_packed_first_idx",
            "padded_to_packed_idx",
        ]:
            self.assertClose(
651
                getattr(new_cloud, attrib)().cpu(), getattr(cloud, attrib)().cpu()
652
653
654
655
656
657
658
659
660
            )
        for i in range(len(cloud)):
            self.assertClose(
                cloud.points_list()[i].cpu(), new_cloud.points_list()[i].cpu()
            )
            self.assertClose(
                cloud.normals_list()[i].cpu(), new_cloud.normals_list()[i].cpu()
            )
            self.assertClose(
661
                cloud.features_list()[i].cpu(), new_cloud.features_list()[i].cpu()
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
            )
        self.assertTrue(all(cloud.valid.cpu() == new_cloud.valid.cpu()))
        self.assertTrue(cloud.equisized == new_cloud.equisized)
        self.assertTrue(cloud._N == new_cloud._N)
        self.assertTrue(cloud._P == new_cloud._P)
        self.assertTrue(cloud._C == new_cloud._C)

    def test_split(self):
        clouds = self.init_cloud(5, 100, 10)
        split_sizes = [2, 3]
        split_clouds = clouds.split(split_sizes)
        self.assertEqual(len(split_clouds[0]), 2)
        self.assertTrue(
            split_clouds[0].points_list()
            == [clouds.get_cloud(0)[0], clouds.get_cloud(1)[0]]
        )
        self.assertEqual(len(split_clouds[1]), 3)
        self.assertTrue(
            split_clouds[1].points_list()
681
            == [clouds.get_cloud(2)[0], clouds.get_cloud(3)[0], clouds.get_cloud(4)[0]]
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
        )

        split_sizes = [2, 0.3]
        with self.assertRaises(ValueError):
            clouds.split(split_sizes)

    def test_get_cloud(self):
        clouds = self.init_cloud(2, 100, 10)
        for i in range(len(clouds)):
            points, normals, features = clouds.get_cloud(i)
            self.assertClose(points, clouds.points_list()[i])
            self.assertClose(normals, clouds.normals_list()[i])
            self.assertClose(features, clouds.features_list()[i])

        with self.assertRaises(ValueError):
            clouds.get_cloud(5)
        with self.assertRaises(ValueError):
            clouds.get_cloud(0.2)

    def test_get_bounding_boxes(self):
        device = torch.device("cuda:0")
        points_list = []
        for size in [10]:
            points = torch.rand((size, 3), dtype=torch.float32, device=device)
            points_list.append(points)

        mins = torch.min(points, dim=0)[0]
        maxs = torch.max(points, dim=0)[0]
        bboxes_gt = torch.stack([mins, maxs], dim=1).unsqueeze(0)
        clouds = Pointclouds(points_list)
        bboxes = clouds.get_bounding_boxes()
        self.assertClose(bboxes_gt, bboxes)

    def test_padded_to_packed_idx(self):
        device = torch.device("cuda:0")
        points_list = []
        npoints = [10, 20, 30]
        for p in npoints:
            points = torch.rand((p, 3), dtype=torch.float32, device=device)
            points_list.append(points)

        clouds = Pointclouds(points_list)

        padded_to_packed_idx = clouds.padded_to_packed_idx()
        points_packed = clouds.points_packed()
        points_padded = clouds.points_padded()
        points_padded_flat = points_padded.view(-1, 3)

730
        self.assertClose(points_padded_flat[padded_to_packed_idx], points_packed)
731
732
733
734
735
736
737
738
739
740
741

        idx = padded_to_packed_idx.view(-1, 1).expand(-1, 3)
        self.assertClose(points_padded_flat.gather(0, idx), points_packed)

    def test_getitem(self):
        device = torch.device("cuda:0")
        clouds = self.init_cloud(3, 10, 100)

        def check_equal(selected, indices):
            for selectedIdx, index in indices:
                self.assertClose(
742
                    selected.points_list()[selectedIdx], clouds.points_list()[index]
743
744
                )
                self.assertClose(
745
                    selected.normals_list()[selectedIdx], clouds.normals_list()[index]
746
747
                )
                self.assertClose(
748
                    selected.features_list()[selectedIdx], clouds.features_list()[index]
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
                )

        # int index
        index = 1
        clouds_selected = clouds[index]
        self.assertEqual(len(clouds_selected), 1)
        check_equal(clouds_selected, [(0, 1)])

        # list index
        index = [1, 2]
        clouds_selected = clouds[index]
        self.assertEqual(len(clouds_selected), len(index))
        check_equal(clouds_selected, enumerate(index))

        # slice index
        index = slice(0, 2, 1)
        clouds_selected = clouds[index]
        self.assertEqual(len(clouds_selected), 2)
        check_equal(clouds_selected, [(0, 0), (1, 1)])

        # bool tensor
        index = torch.tensor([1, 0, 1], dtype=torch.bool, device=device)
        clouds_selected = clouds[index]
        self.assertEqual(len(clouds_selected), index.sum())
        check_equal(clouds_selected, [(0, 0), (1, 2)])

        # int tensor
        index = torch.tensor([1, 2], dtype=torch.int64, device=device)
        clouds_selected = clouds[index]
        self.assertEqual(len(clouds_selected), index.numel())
        check_equal(clouds_selected, enumerate(index.tolist()))

        # invalid index
        index = torch.tensor([1, 0, 1], dtype=torch.float32, device=device)
        with self.assertRaises(IndexError):
            clouds_selected = clouds[index]
        index = 1.2
        with self.assertRaises(IndexError):
            clouds_selected = clouds[index]

    def test_update_padded(self):
        N, P, C = 5, 100, 4
        for with_normfeat in (True, False):
            for with_new_normfeat in (True, False):
                clouds = self.init_cloud(
794
                    N, P, C, with_normals=with_normfeat, with_features=with_normfeat
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
                )

                num_points_per_cloud = clouds.num_points_per_cloud()

                # initialize new points, normals, features
                new_points = torch.rand(
                    clouds.points_padded().shape, device=clouds.device
                )
                new_points_list = [
                    new_points[i, : num_points_per_cloud[i]] for i in range(N)
                ]
                new_normals, new_normals_list = None, None
                new_features, new_features_list = None, None
                if with_new_normfeat:
                    new_normals = torch.rand(
                        clouds.points_padded().shape, device=clouds.device
                    )
                    new_normals_list = [
813
                        new_normals[i, : num_points_per_cloud[i]] for i in range(N)
814
815
816
817
818
819
820
821
                    ]
                    feat_shape = [
                        clouds.points_padded().shape[0],
                        clouds.points_padded().shape[1],
                        C,
                    ]
                    new_features = torch.rand(feat_shape, device=clouds.device)
                    new_features_list = [
822
                        new_features[i, : num_points_per_cloud[i]] for i in range(N)
823
824
825
                    ]

                # update
826
                new_clouds = clouds.update_padded(new_points, new_normals, new_features)
827
828
829
830
831
832
833
                self.assertIsNone(new_clouds._points_list)
                self.assertIsNone(new_clouds._points_packed)

                self.assertEqual(new_clouds.equisized, clouds.equisized)
                self.assertTrue(all(new_clouds.valid == clouds.valid))

                self.assertClose(new_clouds.points_padded(), new_points)
834
                self.assertClose(new_clouds.points_packed(), torch.cat(new_points_list))
835
                for i in range(N):
836
                    self.assertClose(new_clouds.points_list()[i], new_points_list[i])
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851

                if with_new_normfeat:
                    for i in range(N):
                        self.assertClose(
                            new_clouds.normals_list()[i], new_normals_list[i]
                        )
                        self.assertClose(
                            new_clouds.features_list()[i], new_features_list[i]
                        )
                    self.assertClose(new_clouds.normals_padded(), new_normals)
                    self.assertClose(
                        new_clouds.normals_packed(), torch.cat(new_normals_list)
                    )
                    self.assertClose(new_clouds.features_padded(), new_features)
                    self.assertClose(
852
                        new_clouds.features_packed(), torch.cat(new_features_list)
853
854
855
856
857
                    )
                else:
                    if with_normfeat:
                        for i in range(N):
                            self.assertClose(
858
                                new_clouds.normals_list()[i], clouds.normals_list()[i]
859
860
                            )
                            self.assertClose(
861
                                new_clouds.features_list()[i], clouds.features_list()[i]
862
863
                            )
                            self.assertNotSeparate(
864
                                new_clouds.normals_list()[i], clouds.normals_list()[i]
865
866
                            )
                            self.assertNotSeparate(
867
                                new_clouds.features_list()[i], clouds.features_list()[i]
868
869
870
871
872
873
874
875
876
                            )

                        self.assertClose(
                            new_clouds.normals_padded(), clouds.normals_padded()
                        )
                        self.assertClose(
                            new_clouds.normals_packed(), clouds.normals_packed()
                        )
                        self.assertClose(
877
                            new_clouds.features_padded(), clouds.features_padded()
878
879
                        )
                        self.assertClose(
880
                            new_clouds.features_packed(), clouds.features_packed()
881
882
883
884
885
                        )
                        self.assertNotSeparate(
                            new_clouds.normals_padded(), clouds.normals_padded()
                        )
                        self.assertNotSeparate(
886
                            new_clouds.features_padded(), clouds.features_padded()
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
                        )
                    else:
                        self.assertIsNone(new_clouds.normals_list())
                        self.assertIsNone(new_clouds.features_list())
                        self.assertIsNone(new_clouds.normals_padded())
                        self.assertIsNone(new_clouds.features_padded())
                        self.assertIsNone(new_clouds.normals_packed())
                        self.assertIsNone(new_clouds.features_packed())

                for attrib in [
                    "num_points_per_cloud",
                    "cloud_to_packed_first_idx",
                    "padded_to_packed_idx",
                ]:
                    self.assertClose(
                        getattr(new_clouds, attrib)(), getattr(clouds, attrib)()
                    )

Georgia Gkioxari's avatar
Georgia Gkioxari committed
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
    def test_inside_box(self):
        def inside_box_naive(cloud, box_min, box_max):
            return (cloud >= box_min.view(1, 3)) * (cloud <= box_max.view(1, 3))

        N, P, C = 5, 100, 4

        clouds = self.init_cloud(N, P, C, with_normals=False, with_features=False)
        device = clouds.device

        # box of shape Nx2x3
        box_min = torch.rand((N, 1, 3), device=device)
        box_max = box_min + torch.rand((N, 1, 3), device=device)
        box = torch.cat([box_min, box_max], dim=1)

        within_box = clouds.inside_box(box)

        within_box_naive = []
        for i, cloud in enumerate(clouds.points_list()):
            within_box_naive.append(inside_box_naive(cloud, box[i, 0], box[i, 1]))
        within_box_naive = torch.cat(within_box_naive, 0)
        self.assertTrue(within_box.eq(within_box_naive).all())

        # box of shape 2x3
        box2 = box[0, :]

        within_box2 = clouds.inside_box(box2)

        within_box_naive2 = []
        for cloud in clouds.points_list():
            within_box_naive2.append(inside_box_naive(cloud, box2[0], box2[1]))
        within_box_naive2 = torch.cat(within_box_naive2, 0)
        self.assertTrue(within_box2.eq(within_box_naive2).all())

        # box of shape 1x2x3
        box3 = box2.expand(1, 2, 3)

        within_box3 = clouds.inside_box(box3)
        self.assertTrue(within_box2.eq(within_box3).all())

        # invalid box
        invalid_box = torch.cat(
            [box_min, box_min - torch.rand((N, 1, 3), device=device)], dim=1
        )
        with self.assertRaisesRegex(ValueError, "Input box is invalid"):
            clouds.inside_box(invalid_box)

        # invalid box shapes
        invalid_box = box[0].expand(2, 2, 3)
        with self.assertRaisesRegex(ValueError, "Input box dimension is"):
            clouds.inside_box(invalid_box)
        invalid_box = torch.rand((5, 8, 9, 3), device=device)
        with self.assertRaisesRegex(ValueError, "Input box must be of shape"):
            clouds.inside_box(invalid_box)

959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
    def test_estimate_normals(self):
        for with_normals in (True, False):
            for run_padded in (True, False):
                for run_packed in (True, False):

                    clouds = TestPointclouds.init_cloud(
                        3,
                        100,
                        with_normals=with_normals,
                        with_features=False,
                        min_points=60,
                    )
                    nums = clouds.num_points_per_cloud()
                    if run_padded:
                        clouds.points_padded()
                    if run_packed:
                        clouds.points_packed()

                    normals_est_padded = clouds.estimate_normals(assign_to_self=True)
                    normals_est_list = struct_utils.padded_to_list(
                        normals_est_padded, nums.tolist()
                    )
                    self.assertClose(clouds.normals_padded(), normals_est_padded)
                    for i in range(len(clouds)):
                        self.assertClose(clouds.normals_list()[i], normals_est_list[i])
                    self.assertClose(
                        clouds.normals_packed(), torch.cat(normals_est_list, dim=0)
                    )

988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
    @staticmethod
    def compute_packed_with_init(
        num_clouds: int = 10, max_p: int = 100, features: int = 300
    ):
        clouds = TestPointclouds.init_cloud(num_clouds, max_p, features)
        torch.cuda.synchronize()

        def compute_packed():
            clouds._compute_packed(refresh=True)
            torch.cuda.synchronize()

        return compute_packed

    @staticmethod
    def compute_padded_with_init(
        num_clouds: int = 10, max_p: int = 100, features: int = 300
    ):
        clouds = TestPointclouds.init_cloud(num_clouds, max_p, features)
        torch.cuda.synchronize()

        def compute_padded():
            clouds._compute_padded(refresh=True)
            torch.cuda.synchronize()

        return compute_padded