ggml.go 44.2 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
package ggml

3
4
// #cgo linux LDFLAGS: -lrt -lpthread -ldl -lstdc++ -lm
// #cgo windows LDFLAGS: -lpthread
5
6
7
8
9
10
// #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
// #include <stdlib.h>
// #include <stdint.h>
// #include "ggml.h"
// #include "ggml-cpu.h"
// #include "ggml-backend.h"
Michael Yang's avatar
Michael Yang committed
11
12
13
import "C"

import (
Michael Yang's avatar
Michael Yang committed
14
	"cmp"
15
	"context"
Michael Yang's avatar
Michael Yang committed
16
	"encoding/binary"
Jesse Gross's avatar
Jesse Gross committed
17
	"errors"
Michael Yang's avatar
Michael Yang committed
18
19
20
	"fmt"
	"io"
	"log/slog"
21
	"maps"
Michael Yang's avatar
Michael Yang committed
22
	"os"
23
	"runtime"
24
25
26
	"slices"
	"strconv"
	"strings"
Jesse Gross's avatar
Jesse Gross committed
27
	"sync"
28
	"sync/atomic"
29
	"unicode"
Michael Yang's avatar
Michael Yang committed
30
31
32
	"unsafe"

	"github.com/ollama/ollama/format"
33
34
	"github.com/ollama/ollama/fs"
	fsggml "github.com/ollama/ollama/fs/ggml"
35
	"github.com/ollama/ollama/logutil"
Michael Yang's avatar
Michael Yang committed
36
	"github.com/ollama/ollama/ml"
37
	ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
38
	"github.com/ollama/ollama/ml/nn/rope"
Michael Yang's avatar
Michael Yang committed
39
40
41
	"golang.org/x/sync/errgroup"
)

Jesse Gross's avatar
Jesse Gross committed
42
43
44
45
46
47
var (
	cpus, accels, gpus []C.ggml_backend_dev_t
	backends           map[C.ggml_backend_dev_t]C.ggml_backend_t
)

var initDevices = sync.OnceFunc(func() {
Michael Yang's avatar
Michael Yang committed
48
49
	ggml.OnceLoad()

Jesse Gross's avatar
Jesse Gross committed
50
51
52
53
54
55
56
57
58
59
60
61
	backends = make(map[C.ggml_backend_dev_t]C.ggml_backend_t)
	for i := range C.ggml_backend_dev_count() {
		d := C.ggml_backend_dev_get(i)

		switch C.ggml_backend_dev_type(d) {
		case C.GGML_BACKEND_DEVICE_TYPE_CPU:
			if len(cpus) == 0 {
				// only the first cpu device should be used
				cpus = append(cpus, d)
			}
		case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
			accels = append(accels, d)
62
63
		case C.GGML_BACKEND_DEVICE_TYPE_GPU,
			C.GGML_BACKEND_DEVICE_TYPE_IGPU:
Jesse Gross's avatar
Jesse Gross committed
64
65
66
67
68
69
			gpus = append(gpus, d)
		}

		backends[d] = C.ggml_backend_dev_init(d, nil)
	}
})
Michael Yang's avatar
Michael Yang committed
70

Jesse Gross's avatar
Jesse Gross committed
71
72
73
74
75
type layerDevice struct {
	d  C.ggml_backend_dev_t
	bt C.ggml_backend_buffer_type_t
}

Michael Yang's avatar
Michael Yang committed
76
type Backend struct {
77
78
79
	// modelPath is the location of the model data
	modelPath string

80
81
	meta *fsggml.GGML

Jesse Gross's avatar
Jesse Gross committed
82
83
84
85
	// allocMemory means that memory should be allocated for tensors and not
	// just a dry run
	allocMemory bool

86
87
88
89
	// tensorLoadTargets maps from the name of the tensor in the file
	// to the name that is used by the model definition
	tensorLoadTargets map[string][]string

90
	schedMu       sync.Mutex // Only one Compute can run at a time
91
92
93
	sched         C.ggml_backend_sched_t
	schedBackends []C.ggml_backend_t
	schedBufts    []C.ggml_backend_buffer_type_t
94

95
	tensors map[string]*C.struct_ggml_tensor
Michael Yang's avatar
Michael Yang committed
96

Jesse Gross's avatar
Jesse Gross committed
97
	// input is the backend buffer type used for inputs
98
	input C.ggml_backend_buffer_type_t
Michael Yang's avatar
Michael Yang committed
99

Jesse Gross's avatar
Jesse Gross committed
100
101
102
	// output is the backend device used for outputs
	output C.ggml_backend_dev_t

Michael Yang's avatar
Michael Yang committed
103
	// layers is the backend used for repeating layers
Jesse Gross's avatar
Jesse Gross committed
104
	layers map[int]layerDevice
105

106
107
108
109
	// requiredMemory is the cumulative memory allocations needed by the backend
	requiredMemory *ml.BackendMemory

	// btDeviceMemory maps from a buffer type to the memory allocations associated with that device
110
	btDeviceMemory map[C.ggml_backend_buffer_type_t]*ml.DeviceMemory
111

112
	flashAttention bool
Michael Yang's avatar
Michael Yang committed
113
114
115

	// maxGraphNodes is the maximum allowed number of graph nodes in this scheduler
	maxGraphNodes int
Jesse Gross's avatar
Jesse Gross committed
116
117
118

	// weightBuffers are the GGML contexts and buffers for allocating weights
	weightBuffers map[*C.struct_ggml_context]C.ggml_backend_buffer_t
Michael Yang's avatar
Michael Yang committed
119
120
}

Jesse Gross's avatar
Jesse Gross committed
121
122
var once sync.Once

123
124
125
126
127
128
129
130
func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
	r, err := os.Open(modelPath)
	if err != nil {
		return nil, err
	}
	defer r.Close()

	meta, err := fsggml.Decode(r, -1)
Michael Yang's avatar
Michael Yang committed
131
132
133
134
	if err != nil {
		return nil, err
	}

Jesse Gross's avatar
Jesse Gross committed
135
136
137
138
139
140
141
142
143
144
145
	once.Do(func() {
		slog.Info(
			"",
			"architecture", meta.KV().Architecture(),
			"file_type", meta.KV().FileType(),
			"name", meta.KV().String("general.name"),
			"description", meta.KV().String("general.description"),
			"num_tensors", len(meta.Tensors().Items()),
			"num_key_values", len(meta.KV()),
		)
	})
Michael Yang's avatar
Michael Yang committed
146

Jesse Gross's avatar
Jesse Gross committed
147
148
	initDevices()

149
	var requiredMemory ml.BackendMemory
150
	btDeviceMemory := make(map[C.ggml_backend_buffer_type_t]*ml.DeviceMemory)
151

152
	type deviceBufferType struct {
153
154
		d   C.ggml_backend_dev_t
		bts []C.ggml_backend_buffer_type_t
155
156
	}

157
158
	blocks := int(meta.KV().BlockCount())

Michael Yang's avatar
Michael Yang committed
159
	// create list of buffer types for the cpu
Michael Yang's avatar
Michael Yang committed
160
	cpuDeviceBufferType := deviceBufferType{d: C.ggml_backend_dev_by_type(C.GGML_BACKEND_DEVICE_TYPE_CPU)}
161
162
163
164
	for _, d := range append(accels, append(gpus, cpus...)...) {
		switch C.ggml_backend_dev_type(d) {
		case C.GGML_BACKEND_DEVICE_TYPE_CPU,
			C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
Jesse Gross's avatar
Jesse Gross committed
165
166
167
			bt := C.ggml_backend_dev_buffer_type(d)
			cpuDeviceBufferType.bts = append(cpuDeviceBufferType.bts, bt)

168
			btDeviceMemory[C.ggml_backend_dev_buffer_type(d)] = &requiredMemory.CPU
Michael Yang's avatar
Michael Yang committed
169
		}
170
171
	}

172
	requiredMemory.CPU.Name = C.GoString(C.ggml_backend_dev_name(cpuDeviceBufferType.d))
173
174
	var props C.struct_ggml_backend_dev_props
	C.ggml_backend_dev_get_props(cpuDeviceBufferType.d, &props)
175
	requiredMemory.CPU.ID = C.GoString(props.id)
176
	requiredMemory.CPU.Library = C.GoString(props.library)
177
178
	requiredMemory.CPU.Weights = make([]uint64, blocks+1)
	requiredMemory.CPU.Cache = make([]uint64, blocks+1)
179

Michael Yang's avatar
Michael Yang committed
180
	// create list of buffer types for each gpu
181
	var gpuDeviceBufferTypes []deviceBufferType
182
183
	requiredMemory.GPUs = make([]ml.DeviceMemory, len(gpus))
	for i, d := range gpus {
184
		bt := C.ggml_backend_dev_buffer_type(d)
185
		gpuDeviceBufferTypes = append(gpuDeviceBufferTypes, deviceBufferType{
186
			d:   d,
187
			bts: append([]C.ggml_backend_buffer_type_t{bt}, cpuDeviceBufferType.bts...),
188
		})
Jesse Gross's avatar
Jesse Gross committed
189

190
191
		btDeviceMemory[bt] = &requiredMemory.GPUs[i]
		requiredMemory.GPUs[i].Name = C.GoString(C.ggml_backend_dev_name(d))
192
193
		var props C.struct_ggml_backend_dev_props
		C.ggml_backend_dev_get_props(d, &props)
194
		requiredMemory.GPUs[i].ID = C.GoString(props.id)
195
		requiredMemory.GPUs[i].Library = C.GoString(props.library)
196
197
		requiredMemory.GPUs[i].Weights = make([]uint64, blocks+1)
		requiredMemory.GPUs[i].Cache = make([]uint64, blocks+1)
Michael Yang's avatar
Michael Yang committed
198
199
	}

Michael Yang's avatar
Michael Yang committed
200
	// inputs always use cpu
Michael Yang's avatar
Michael Yang committed
201
	input := cpuDeviceBufferType
202

Jesse Gross's avatar
Jesse Gross committed
203
204
205
206
207
	assignLayer := func(layer int) deviceBufferType {
		for _, p := range params.GPULayers {
			for _, l := range p.Layers {
				if l == layer {
					for i := range requiredMemory.GPUs {
208
						if requiredMemory.GPUs[i].DeviceID == p.DeviceID {
Jesse Gross's avatar
Jesse Gross committed
209
210
211
							return gpuDeviceBufferTypes[i]
						}
					}
212

Jesse Gross's avatar
Jesse Gross committed
213
214
215
					return cpuDeviceBufferType
				}
			}
216
217
		}

Jesse Gross's avatar
Jesse Gross committed
218
		return cpuDeviceBufferType
219
220
	}

Michael Yang's avatar
Michael Yang committed
221
	// repeating layers are assigned based on their index in reverse order, e.g. i / (block_count + 1)
222
	layers := make([]deviceBufferType, blocks)
223
	for i := range layers {
224
		layers[i] = assignLayer(i)
225
226
	}

Michael Yang's avatar
Michael Yang committed
227
	// outputs are assigned iff allowed by splits and configured number of gpu layers
228
	output := assignLayer(blocks)
229
230
231

	maxTensors := len(meta.Tensors().Items())
	maxTensors += 1
Michael Yang's avatar
Michael Yang committed
232
	// each layer has at most 2 extra tensors for rope operations
233
234
	maxTensors += blocks * 2

235
	type tensor struct {
236
		source *fsggml.Tensor
237
238
239
		target string
	}

Michael Yang's avatar
Michael Yang committed
240
	// some tensors are mapped to different names so keep a list
241
242
	targets := make(map[string][]string)

Michael Yang's avatar
Michael Yang committed
243
	// contexts are shared by tensors of the same buffer type
244
245
	ctxs := make(map[C.ggml_backend_buffer_type_t]*C.struct_ggml_context)
	createTensor := func(t tensor, bts []C.ggml_backend_buffer_type_t, layer int) *C.struct_ggml_tensor {
246
247
248
249
250
251
252
		for _, bt := range bts {
			if _, ok := ctxs[bt]; !ok {
				ctxs[bt] = C.ggml_init(C.struct_ggml_init_params{
					mem_size: C.ggml_tensor_overhead() * C.size_t(maxTensors),
					no_alloc: true,
				})
			}
Michael Yang's avatar
Michael Yang committed
253

254
255
256
257
258
259
260
261
			targets[t.source.Name] = append(targets[t.source.Name], t.target)

			name := t.source.Name
			if t.target != "" {
				name = t.target
			}

			cname := C.CString(name)
Michael Yang's avatar
Michael Yang committed
262
			defer C.free(unsafe.Pointer(cname))
263
264
265
266
			if tt := C.ggml_get_tensor(ctxs[bt], cname); tt != nil {
				return tt
			}

267
268
269
270
271
272
273
274
275
276
			kind := t.source.Kind
			if t.source.Kind == 4 {
				// transform raw mxfp4 stream to ggml mxfp4 format
				kind = 39
			} else if t.source.Kind == uint32(fsggml.TensorTypeBF16) && strings.HasSuffix(t.source.Name, "_exps.bias") {
				// transform "_exps.bias" from bf16 to fp32; add_ids only supports fp32 tensors
				kind = uint32(fsggml.TensorTypeF32)
			}

			tt := C.ggml_new_tensor(ctxs[bt], kind, C.int(len(t.source.Shape)), (*C.int64_t)(unsafe.Pointer(&t.source.Shape[0])))
Michael Yang's avatar
Michael Yang committed
277
278
			C.ggml_set_name(tt, cname)

279
			logutil.Trace("created tensor", "name", name, "shape", t.source.Shape, "dtype", t.source.Kind, "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
280
281
282

			size := pad(C.ggml_backend_buft_get_alloc_size(bt, tt), C.ggml_backend_buft_get_alignment(bt))
			if layer == -1 {
283
				requiredMemory.InputWeights += uint64(size)
284
			} else {
285
				btDeviceMemory[bt].Weights[layer] += uint64(size)
286
287
			}

288
289
290
291
292
			//nolint:staticcheck // TODO: check if buffer type supports this tensor
			return tt
		}

		return nil
Michael Yang's avatar
Michael Yang committed
293
294
	}

295
	contains := func(s string, parts ...string) bool {
296
297
298
299
300
301
302
303
		split := strings.Split(s, ".")
		for _, part := range parts {
			if slices.Contains(split, part) {
				return true
			}
		}

		return false
Michael Yang's avatar
Michael Yang committed
304
305
	}

306
307
	for _, t := range meta.Tensors().Items() {
		switch {
308
		case contains(t.Name, "position_embd", "token_embd", "token_norm_embd", "token_types"):
309
			createTensor(tensor{source: t}, input.bts, -1)
Michael Yang's avatar
Michael Yang committed
310
			if _, ok := meta.Tensors().GroupLayers()["output"]; !ok && t.Name == "token_embd.weight" {
311
				createTensor(tensor{source: t, target: "output.weight"}, output.bts, blocks)
Michael Yang's avatar
Michael Yang committed
312
			}
Michael Yang's avatar
Michael Yang committed
313
314
315
		case contains(t.Name, "cls", "output", "output_norm",
			"altup_proj", "altup_unembd_proj",
			"per_layer_token_embd", "per_layer_model_proj", "per_layer_proj_norm"):
316
			createTensor(tensor{source: t}, output.bts, blocks)
317
		case strings.HasPrefix(t.Name, "v.") || strings.HasPrefix(t.Name, "mm."):
Michael Yang's avatar
Michael Yang committed
318
			// TODO: assign vision tensors to the gpu if possible
319
			createTensor(tensor{source: t}, output.bts, blocks)
Michael Yang's avatar
Michael Yang committed
320
321
322
323
324
325
		case contains(t.Name, "rope_freqs", "rope_factors_long", "rope_factors_short"):
			// these tensors should be repeated per layer
			for i, layer := range layers {
				createTensor(tensor{
					source: t,
					target: "blk." + strconv.Itoa(i) + "." + t.Name,
326
				}, layer.bts, i)
Michael Yang's avatar
Michael Yang committed
327
			}
328
		default:
Michael Yang's avatar
Michael Yang committed
329
330
331
332
			layerIndex := -1
			if fields := strings.FieldsFunc(t.Name, func(r rune) bool { return !unicode.IsNumber(r) }); len(fields) > 0 {
				if i, err := strconv.Atoi(fields[0]); err == nil {
					layerIndex = i
333
				}
Michael Yang's avatar
Michael Yang committed
334
			}
335

Michael Yang's avatar
Michael Yang committed
336
			if layerIndex >= 0 {
337
				createTensor(tensor{source: t}, layers[layerIndex].bts, layerIndex)
338
			} else {
Michael Yang's avatar
Michael Yang committed
339
				// load all other tensors on the cpu
340
				createTensor(tensor{source: t}, input.bts, -1)
341
342
343
			}
		}
	}
Michael Yang's avatar
Michael Yang committed
344

Michael Yang's avatar
Michael Yang committed
345
	// map tensor names to tensors for easy lookup later
346
347
348
349
350
351
352
	tensors := make(map[string]*C.struct_ggml_tensor)
	for _, c := range ctxs {
		for t := C.ggml_get_first_tensor(c); t != nil; t = C.ggml_get_next_tensor(c, t) {
			tensors[C.GoString(C.ggml_get_name(t))] = t
		}
	}

353
	// map devices to backend buffer types so new tensors can be assigned to the correct device
354
	deviceBufferTypes := make(map[C.ggml_backend_dev_t]C.ggml_backend_buffer_type_t)
355
356

	// create backends and buffer types used for the compute graph scheduler
357
358
	var schedBackends []C.ggml_backend_t
	var schedBufts []C.ggml_backend_buffer_type_t
359
	for _, d := range append(gpus, append(accels, cpus...)...) {
Jesse Gross's avatar
Jesse Gross committed
360
		b := backends[d]
361
362
		bt := C.ggml_backend_get_default_buffer_type(b)

Jesse Gross's avatar
Jesse Gross committed
363
364
365
366
367
368
369
		// Always include CPU as a fallback but otherwise, just use the devices where we assigned layers
		if !slices.Contains(cpuDeviceBufferType.bts, bt) {
			if c, ok := ctxs[bt]; !ok || C.ggml_get_first_tensor(c) == nil {
				continue
			}
		}

370
371
372
373
374
375
376
377
378
379
380
381
		deviceBufferTypes[d] = bt

		schedBackends = append(schedBackends, b)
		schedBufts = append(schedBufts, bt)

		if C.ggml_backend_is_cpu(b) {
			// set number of threads for cpu backend
			C.ggml_backend_cpu_set_n_threads(b, C.int(Threads(params.NumThreads)))
		}
	}

	maxGraphNodes := max(8192, len(meta.Tensors().Items())*5)
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

	sched := C.ggml_backend_sched_new_ext(
		(*C.ggml_backend_t)(unsafe.Pointer(&schedBackends[0])),
		(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&schedBufts[0])),
		C.int(len(schedBackends)),
		C.size_t(maxGraphNodes),
		C._Bool(false),
		C._Bool(false),
		C._Bool(params.AllocMemory),
	)

	// allocate buffers for each context
	bbs := make(map[*C.struct_ggml_context]C.ggml_backend_buffer_t, len(ctxs))
	for bt, c := range ctxs {
		if C.ggml_get_first_tensor(c) == nil {
			continue
		}

		b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt)
		if b == nil {
			for _, b := range bbs {
				C.ggml_backend_buffer_free(b)
			}

			for _, ctx := range ctxs {
				C.ggml_free(ctx)
			}

			panic(ml.ErrNoMem{BackendMemory: requiredMemory})
		}

		C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS)
		bbs[c] = b
	}

	for bs := range maps.Values(bbs) {
		logutil.Trace("model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(bs)),
			"size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(bs))))
	}

422
423
	return &Backend{
		modelPath:         modelPath,
Jesse Gross's avatar
Jesse Gross committed
424
		allocMemory:       params.AllocMemory,
425
426
427
428
		flashAttention:    params.FlashAttention,
		meta:              meta,
		tensorLoadTargets: targets,
		tensors:           tensors,
429
430
431
432
433
		sched:             sched,
		schedBackends:     schedBackends,
		schedBufts:        schedBufts,
		input:             deviceBufferTypes[input.d],
		output:            output.d,
Jesse Gross's avatar
Jesse Gross committed
434
435
		layers: func() map[int]layerDevice {
			m := make(map[int]layerDevice)
436
			for i, layer := range layers {
Jesse Gross's avatar
Jesse Gross committed
437
438
439
440
				m[i] = layerDevice{
					d:  layer.d,
					bt: deviceBufferTypes[layer.d],
				}
441
442
443
			}
			return m
		}(),
444
445
446
		requiredMemory: &requiredMemory,
		btDeviceMemory: btDeviceMemory,
		maxGraphNodes:  maxGraphNodes,
Jesse Gross's avatar
Jesse Gross committed
447
		weightBuffers:  bbs,
448
449
450
451
452
453
454
	}, nil
}

func init() {
	ml.RegisterBackend("ggml", New)
}

Jesse Gross's avatar
Jesse Gross committed
455
456
457
458
459
460
461
462
463
464
465
466
467
func (b *Backend) Close() {
	if b == nil {
		return
	}

	for ctx, b := range b.weightBuffers {
		C.ggml_backend_buffer_free(b)
		C.ggml_free(ctx)
	}

	C.ggml_backend_sched_free(b.sched)
}

468
func (b *Backend) Load(ctx context.Context, progress func(float32)) error {
Jesse Gross's avatar
Jesse Gross committed
469
470
471
472
473
474
475
	if !b.allocMemory {
		return errors.New("cannot load model without memory allocation")
	}

	// Mimic llama runner logs summarizing layers and memory
	gpuLayers := 0
	for layer := range maps.Values(b.layers) {
476
477
478
		switch C.ggml_backend_dev_type(layer.d) {
		case C.GGML_BACKEND_DEVICE_TYPE_GPU,
			C.GGML_BACKEND_DEVICE_TYPE_IGPU:
Jesse Gross's avatar
Jesse Gross committed
479
480
481
482
483
484
485
486
			gpuLayers++
		}
	}
	slog.Info(fmt.Sprintf("offloading %d repeating layers to GPU", gpuLayers))

	switch C.ggml_backend_dev_type(b.output) {
	case C.GGML_BACKEND_DEVICE_TYPE_CPU:
		slog.Info("offloading output layer to CPU")
487
488
	case C.GGML_BACKEND_DEVICE_TYPE_GPU,
		C.GGML_BACKEND_DEVICE_TYPE_IGPU:
Jesse Gross's avatar
Jesse Gross committed
489
490
491
492
493
494
495
		slog.Info("offloading output layer to GPU")
		gpuLayers++
	case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
		slog.Info("offloading output layer to ACCEL")
	}
	slog.Info(fmt.Sprintf("offloaded %d/%d layers to GPU", gpuLayers, len(b.layers)+1))

496
	var doneBytes atomic.Uint64
497
	totalBytes := uint64(b.meta.Length) - b.meta.Tensors().Offset
498
499
500

	g, ctx := errgroup.WithContext(ctx)
	g.SetLimit(runtime.GOMAXPROCS(0))
501
	for _, t := range b.meta.Tensors().Items() {
502
		t := t
503
		g.Go(func() error {
504
			tts := make([]*C.struct_ggml_tensor, max(1, len(b.tensorLoadTargets[t.Name])))
505
			for i := range tts {
506
				target := b.tensorLoadTargets[t.Name][i]
507
508
509
				if target == "" {
					target = t.Name
				}
510

511
				tt, ok := b.tensors[target]
512
513
514
				if !ok {
					return fmt.Errorf("unassigned tensor: %s", t.Name)
				}
Michael Yang's avatar
Michael Yang committed
515

516
517
518
				tts[i] = tt
			}

519
520
			// Create a new FD for each goroutine so that each FD is read sequentially, rather than
			// seeking around within an FD shared between all goroutines.
521
			file, err := os.Open(b.modelPath)
522
			if err != nil {
523
				slog.Warn("file open error", "file", b.modelPath, "error", err)
524
525
526
				return err
			}
			defer file.Close()
527
			sr := io.NewSectionReader(file, int64(b.meta.Tensors().Offset+t.Offset), int64(t.Size()))
528
529
530
531
532
533
534

			if t.Kind == 4 && tts[0]._type == 39 {
				// source is mxfp4, target is ggml mxfp4

				const BS = 17                             // MXFP4 block size
				bts := make([]byte, 8*BS*format.KibiByte) // ~128k block aligned
				var s uint64
535
				var tmp [16]byte
536
537
538
539
540
541
542
543
544
545
546
547
				for s < t.Size() {
					// Stop if either the parent context has been canceled or if any of the other tensors returned an error
					if err := ctx.Err(); err != nil {
						return err
					}
					n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Size()-s))])
					if err != nil {
						slog.Warn("file read error", "file", b.modelPath, "error", err)
						return err
					}
					for j := range n / BS {
						for i := 1; i < 9; i++ {
548
549
550
551
							// transform a1b2c3 ... x7y8z9 -> 71xa82yb93zc
							a, b := bts[j*BS+i], bts[j*BS+i+8]
							tmp[2*(i-1)] = (a & 0x0F) | (b << 4)
							tmp[2*(i-1)+1] = (a >> 4) | (b & 0xF0)
552
						}
553
						copy(bts[j*BS+1:j*BS+17], tmp[:])
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
					}

					for _, tt := range tts {
						C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), C.size_t(s), C.size_t(n))
					}

					s += uint64(n)

					if progress != nil {
						done := doneBytes.Add(uint64(n))
						progress(float32(done) / float32(totalBytes))
					}
				}
				return nil
			} else if strings.HasSuffix(t.Name, "_exps.bias") && t.Kind == 30 && tts[0]._type == 0 {
				// source is bf16, target is ggml fp32

				// data is bf16 but we need to convert to fp32
				bts := make([]byte, 128*format.KibiByte)
				var e uint64
				for e < t.Elements() {
					// Stop if either the parent context has been canceled or if any of the other tensors returned an error
					if err := ctx.Err(); err != nil {
						return err
					}
					n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Elements()-e)*2)])
					if err != nil {
						slog.Warn("file read error", "file", b.modelPath, "error", err)
						return err
					}
					fp32 := ConvertToF32(bts, uint32(fsggml.TensorTypeBF16), uint64(n/2))

					for _, tt := range tts {
						C.ggml_backend_tensor_set(tt, unsafe.Pointer(&fp32[0]), C.size_t(e*4), C.size_t(n*2))
					}
					e += uint64(n / 2)
					if progress != nil {
						done := doneBytes.Add(uint64(n))
						progress(float32(done) / float32(totalBytes))
					}
				}
				return nil
			}

598
599
600
601
			bts := make([]byte, 128*format.KibiByte)

			var s uint64
			for s < t.Size() {
602
603
604
605
606
				// Stop if either the parent context has been canceled or if any of the other tensors returned an error
				if err := ctx.Err(); err != nil {
					return err
				}

607
608
				n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Size()-s))])
				if err != nil {
609
					slog.Warn("file read error", "file", b.modelPath, "error", err)
610
					return err
611
				}
Michael Yang's avatar
Michael Yang committed
612

613
614
				for _, tt := range tts {
					C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), C.size_t(s), C.size_t(n))
615
				}
Michael Yang's avatar
Michael Yang committed
616

617
618
				s += uint64(n)

619
				if progress != nil {
620
					done := doneBytes.Add(uint64(n))
621
					progress(float32(done) / float32(totalBytes))
622
623
624
625
626
				}
			}

			return nil
		})
Michael Yang's avatar
Michael Yang committed
627
628
	}

629
630
631
632
633
634
635
636
637
638
639
640
	// Cleanup any backend state from devices that we didn't end up using
nextDevice:
	for _, d := range append(gpus, append(accels, cpus...)...) {
		for _, backend := range b.schedBackends {
			if d == C.ggml_backend_get_device(backend) {
				continue nextDevice
			}
		}

		C.ggml_backend_dev_reset(d)
	}

641
	if err := g.Wait(); err != nil {
642
		return err
643
644
	}

645
	return nil
Michael Yang's avatar
Michael Yang committed
646
647
}

648
649
650
651
func (b *Backend) BackendMemory() ml.BackendMemory {
	return *b.requiredMemory
}

652
func (b *Backend) Config() fs.Config {
Michael Yang's avatar
Michael Yang committed
653
654
655
656
	return b.meta.KV()
}

func (b *Backend) Get(name string) ml.Tensor {
657
658
	if t, ok := b.tensors[name]; ok {
		return &Tensor{b: b, t: t}
Michael Yang's avatar
Michael Yang committed
659
660
661
662
663
664
	}

	return nil
}

func (b *Backend) NewContext() ml.Context {
Michael Yang's avatar
Michael Yang committed
665
	return b.NewContextSize(b.maxGraphNodes)
666
667
668
}

func (b *Backend) NewContextSize(n int) ml.Context {
Jesse Gross's avatar
Jesse Gross committed
669
670
671
672
	if n > b.maxGraphNodes {
		panic(fmt.Errorf("requested number of graph nodes (%v) for new context exceeds maximum (%v)", n, b.maxGraphNodes))
	}

673
	var allocatedBuffers []C.ggml_backend_buffer_t
674

Michael Yang's avatar
Michael Yang committed
675
	return &Context{
676
677
		b:             b,
		maxGraphNodes: n,
678
		ctx: C.ggml_init(C.struct_ggml_init_params{
679
			mem_size: C.size_t(n)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(n), false),
680
681
			no_alloc: true,
		}),
682
		allocatedBuffers: &allocatedBuffers,
683
		layer:            -1,
Michael Yang's avatar
Michael Yang committed
684
685
686
	}
}

687
func (b *Backend) CacheConfig() ml.CacheConfig {
688
689
690
691
692
	if b.flashAttention {
		return ml.CacheConfig{CachePadding: 256, MaskDType: ml.DTypeF16, MaskBatchPadding: C.GGML_KQ_MASK_PAD}
	} else {
		return ml.CacheConfig{CachePadding: 32, PermutedV: true}
	}
693
694
}

695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
func (b *Backend) BackendDevices() []ml.DeviceInfo {
	deviceInfos := []ml.DeviceInfo{}
	for _, dev := range gpus {
		// If we have a model loaded, and it's only loaded on a subset of the devices
		// skip idle/unused devices to avoid initializing them and causing VRAM allocations
		if b.allocMemory {
			idleDev := true
			for _, backend := range b.schedBackends {
				if dev == C.ggml_backend_get_device(backend) {
					idleDev = false
					break
				}
			}
			if idleDev {
				slog.Debug("skipping unused backend device", "description", C.GoString(C.ggml_backend_dev_description(dev)))
				continue
			}
		}

		info := ml.DeviceInfo{}
		props := C.struct_ggml_backend_dev_props{}
		C.ggml_backend_dev_get_props(dev, &props)
		info.Name = C.GoString(props.name)
		info.Description = C.GoString(props.description)
		info.ID = C.GoString(props.id)
		info.Library = C.GoString(props.library)
		info.ComputeMajor = (int)(props.compute_major)
		info.ComputeMinor = (int)(props.compute_minor)
		info.DriverMajor = (int)(props.driver_major)
		info.DriverMinor = (int)(props.driver_minor)
		info.Integrated = props.integrated != 0
		if props.library != nil {
			info.Library = C.GoString(props.library)
		}
729
730
731
		if props.device_id != nil {
			info.PCIID = C.GoString(props.device_id)
		}
732
		info.LibraryPath = ggml.LibPaths()
733
734
735
		if props.numeric_id != nil {
			info.FilteredID = C.GoString(props.numeric_id)
		}
736
737
738
739
740
741
742
743
744
745

		C.ggml_backend_dev_memory(dev, &props.memory_free, &props.memory_total)
		info.TotalMemory = (uint64)(props.memory_total)
		info.FreeMemory = (uint64)(props.memory_free)

		deviceInfos = append(deviceInfos, info)
	}
	return deviceInfos
}

Michael Yang's avatar
Michael Yang committed
746
type Context struct {
747
	b *Backend
Michael Yang's avatar
Michael Yang committed
748

749
	ctx   *C.struct_ggml_context
Michael Yang's avatar
Michael Yang committed
750
	graph *C.struct_ggml_cgraph
751

752
	// buft is the buffer type used for new tensors
753
	buft C.ggml_backend_buffer_type_t
754

755
756
	// allocatedBuffers are buffers for tensors that we have allocated in this context
	// so that we can free them when we close the context
757
	allocatedBuffers *[]C.ggml_backend_buffer_t
758

Michael Yang's avatar
Michael Yang committed
759
	// maxGraphNodes is the maximum allowed number of graph nodes in this context
760
	maxGraphNodes int
761
762
763

	// layer is the graph layer that this context is allocating for - assumed to be cache
	layer int
Michael Yang's avatar
Michael Yang committed
764
765
}

766
func (c *Context) Input() ml.Context {
Michael Yang's avatar
Michael Yang committed
767
	if c.b.input != nil {
768
		return &Context{
769
770
771
772
773
			b:                c.b,
			ctx:              c.ctx,
			buft:             c.b.input,
			allocatedBuffers: c.allocatedBuffers,
			maxGraphNodes:    c.maxGraphNodes,
774
			layer:            -1,
775
776
777
		}
	}

778
	return c
779
780
}

781
func (c *Context) Layer(i int) ml.Context {
Jesse Gross's avatar
Jesse Gross committed
782
	if layer, ok := c.b.layers[i]; ok {
783
		return &Context{
784
785
			b:                c.b,
			ctx:              c.ctx,
Jesse Gross's avatar
Jesse Gross committed
786
			buft:             layer.bt,
787
788
			allocatedBuffers: c.allocatedBuffers,
			maxGraphNodes:    c.maxGraphNodes,
789
			layer:            i,
790
791
792
		}
	}

793
	return c
794
795
}

796
func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
Michael Yang's avatar
Michael Yang committed
797
	if c.graph == nil {
798
		c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.maxGraphNodes), false)
Michael Yang's avatar
Michael Yang committed
799
800
	}

801
802
803
804
805
	for _, tensor := range tensors {
		C.ggml_build_forward_expand(c.graph, tensor.(*Tensor).t)
	}

	return c
Michael Yang's avatar
Michael Yang committed
806
807
}

808
func (c *Context) Compute(tensors ...ml.Tensor) {
809
810
811
812
813
814
815
816
817
	c.ComputeWithNotify(nil, tensors...)
}

func (c *Context) ComputeWithNotify(cb func(), tensors ...ml.Tensor) {
	c.b.schedMu.Lock()
	defer c.b.schedMu.Unlock()
	if cb != nil {
		go cb()
	}
818
819
820
	if status := C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph); status != C.GGML_STATUS_SUCCESS {
		panic(fmt.Errorf("error computing ggml graph: %v", status))
	}
Michael Yang's avatar
Michael Yang committed
821
	C.ggml_backend_sched_reset(c.b.sched)
Michael Yang's avatar
Michael Yang committed
822

823
824
825
	needSync := true
	sync := func() {
		if needSync {
826
			C.ggml_backend_sched_synchronize(c.b.sched)
827
828
829
			needSync = false
		}
	}
Michael Yang's avatar
Michael Yang committed
830

831
832
833
	for _, t := range tensors {
		if C.ggml_nbytes(t.(*Tensor).t) > 0 {
			t.(*Tensor).sync = sync
834
835
		}
	}
Michael Yang's avatar
Michael Yang committed
836
837
}

838
839
func (c *Context) Reserve() {
	reserved := C.ggml_backend_sched_reserve(c.b.sched, c.graph)
840
841

	slog.Debug("compute graph", "nodes", C.ggml_graph_n_nodes(c.graph), "splits", C.ggml_backend_sched_get_n_splits(c.b.sched))
842
843
844

	// Reserve may get called multiple times for different graphs - we just want the last run, which will contain the max allocations
	for _, bt := range c.b.schedBufts {
845
		c.b.btDeviceMemory[bt].Graph = 0
846
847
	}

848
	for i := range c.b.schedBackends {
849
850
		bufferSize := C.ggml_backend_sched_get_attempted_buffer_size(c.b.sched, c.b.schedBackends[i])
		c.b.btDeviceMemory[c.b.schedBufts[i]].Graph += uint64(bufferSize)
851

852
		logutil.Trace("compute graph", "backend", C.GoString(C.ggml_backend_name(c.b.schedBackends[i])),
853
			"buffer_type", C.GoString(C.ggml_backend_buft_name(c.b.schedBufts[i])), "size", format.HumanBytes2(uint64(bufferSize)))
854
855
	}

856
857
858
	if !reserved {
		panic(ml.ErrNoMem{BackendMemory: *c.b.requiredMemory})
	}
859
860
}

861
func (c *Context) MaxGraphNodes() int {
862
	return c.maxGraphNodes
Jesse Gross's avatar
Jesse Gross committed
863
864
}

865
866
867
func shapeToGGML(shape []int) *C.int64_t {
	sh := make([]C.int64_t, len(shape))
	for i, s := range shape {
868
		sh[i] = C.int64_t(s)
869
870
871
872
873
	}

	return &sh[0]
}

874
875
876
877
func pad(length, pad C.size_t) C.size_t {
	return ((length + pad - 1) / pad) * pad
}

Michael Yang's avatar
Michael Yang committed
878
func (c *Context) newTensor(dtype ml.DType, shape []int) *Tensor {
879
	if c.buft == nil {
880
		panic("set Input or Layer before creating tensors")
881
882
	}

883
	cdtype := ggmlDType(dtype)
Michael Yang's avatar
Michael Yang committed
884

Jesse Gross's avatar
Jesse Gross committed
885
	if len(shape) < 1 || shape[0] == 0 {
Michael Yang's avatar
Michael Yang committed
886
		var shape C.int64_t = 0
887
		return &Tensor{b: c.b, t: C.ggml_new_tensor(c.ctx, cdtype, 1, &shape)}
Michael Yang's avatar
Michael Yang committed
888
	} else if len(shape) > 4 {
Michael Yang's avatar
Michael Yang committed
889
890
891
892
893
894
895
896
897
		panic("unsupported number of dimensions")
	}

	for _, dim := range shape {
		if dim < 1 {
			panic("invalid shape")
		}
	}

Michael Yang's avatar
Michael Yang committed
898
	t := C.ggml_new_tensor(c.ctx, cdtype, C.int(len(shape)), shapeToGGML(shape))
899
	size := pad(C.ggml_backend_buft_get_alloc_size(c.buft, t), C.ggml_backend_buft_get_alignment(c.buft))
900

901
	b := C.ggml_backend_buft_alloc_buffer(c.buft, size)
902
	if c.layer >= 0 {
903
		c.b.btDeviceMemory[c.buft].Cache[c.layer] += uint64(size)
904
905
	}

906
	if b == nil {
907
		panic(ml.ErrNoMem{BackendMemory: *c.b.requiredMemory})
908
909
	}

910
	*c.allocatedBuffers = append(*c.allocatedBuffers, b)
Michael Yang's avatar
Michael Yang committed
911
	C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
912
	return &Tensor{b: c.b, t: t}
913
914
}

915
func (c *Context) Empty(dtype ml.DType, shape ...int) ml.Tensor {
916
	return c.newTensor(dtype, shape)
917
918
}

919
func (c *Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
920
	t := c.newTensor(dtype, shape)
Jesse Gross's avatar
Jesse Gross committed
921
	if c.b.allocMemory {
Michael Yang's avatar
Michael Yang committed
922
		C.ggml_set_zero(t.t)
Jesse Gross's avatar
Jesse Gross committed
923
	}
924
	return t
Michael Yang's avatar
Michael Yang committed
925
926
}

927
func checkShape[S ~[]E, E any](s S, shape ...int) {
Michael Yang's avatar
Michael Yang committed
928
	n := len(s)
Jesse Gross's avatar
Jesse Gross committed
929
930

	if n == 0 {
931
		return
Jesse Gross's avatar
Jesse Gross committed
932
933
	}

Michael Yang's avatar
Michael Yang committed
934
935
936
937
938
	for _, v := range shape {
		n /= v
	}

	if n != 1 {
939
		panic(fmt.Errorf("invalid shape: %v", shape))
Michael Yang's avatar
Michael Yang committed
940
941
942
	}
}

Michael Yang's avatar
Michael Yang committed
943
944
945
946
947
948
949
950
951
952
953
func (c Context) FromBytes(dtype ml.DType, s []uint8, shape ...int) ml.Tensor {
	// Unchecked to handle quantized types
	t := c.newTensor(dtype, shape)
	if c.b.allocMemory {
		t.FromBytes(s)
	}

	return t
}

func (c *Context) FromFloats(s []float32, shape ...int) ml.Tensor {
954
	checkShape(s, shape...)
955

956
	t := c.newTensor(ml.DTypeF32, shape)
957

Michael Yang's avatar
Michael Yang committed
958
959
	if c.b.allocMemory {
		t.FromFloats(s)
Jesse Gross's avatar
Jesse Gross committed
960
961
	}

962
	return t
Michael Yang's avatar
Michael Yang committed
963
964
}

Michael Yang's avatar
Michael Yang committed
965
func (c *Context) FromInts(s []int32, shape ...int) ml.Tensor {
966
	checkShape(s, shape...)
967

968
	t := c.newTensor(ml.DTypeI32, shape)
Michael Yang's avatar
Michael Yang committed
969
970
	if c.b.allocMemory {
		t.FromInts(s)
Jesse Gross's avatar
Jesse Gross committed
971
972
	}

973
	return t
Michael Yang's avatar
Michael Yang committed
974
975
}

Michael Yang's avatar
arange  
Michael Yang committed
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
func (c Context) Arange(start, stop, step float32, dtype ml.DType) ml.Tensor {
	switch dtype {
	case ml.DTypeF32:
		// ggml_arange creates a float32 tensor
		return &Tensor{
			b: c.b,
			t: C.ggml_arange(c.ctx, C.float(start), C.float(stop), C.float(step)),
		}
	case ml.DTypeI32:
		// ggml_cast does not support float32 to int32 conversion
		arange := make([]int32, 0, int((stop-start)/step))
		for i := start; i < stop; i += step {
			arange = append(arange, int32(i))
		}

Michael Yang's avatar
Michael Yang committed
991
		return c.Input().FromInts(arange, len(arange))
Michael Yang's avatar
arange  
Michael Yang committed
992
993
994
995
996
	default:
		panic("unsupported dtype for arange")
	}
}

Michael Yang's avatar
Michael Yang committed
997
998
func (c *Context) Close() {
	if c != nil {
999
1000
1001
1002
1003
		for _, b := range *c.allocatedBuffers {
			C.ggml_backend_buffer_free(b)
		}
		*c.allocatedBuffers = nil

1004
1005
		C.ggml_free(c.ctx)
	}
Michael Yang's avatar
Michael Yang committed
1006
1007
1008
}

type Tensor struct {
1009
	b    *Backend
Michael Yang's avatar
Michael Yang committed
1010
	t    *C.struct_ggml_tensor
1011
	sync func()
Michael Yang's avatar
Michael Yang committed
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
}

func (t *Tensor) LogValue() slog.Value {
	return slog.GroupValue(
		slog.String("name", C.GoString(C.ggml_get_name(t.t))),
		slog.String("type", C.GoString(C.ggml_type_name(t.t._type))),
		slog.Any("shape", t.Shape()),
	)
}

1022
1023
func (t *Tensor) Dim(n int) int {
	return int(t.t.ne[n])
Michael Yang's avatar
Michael Yang committed
1024
1025
}

1026
1027
func (t *Tensor) Stride(n int) int {
	return int(t.t.nb[n])
Michael Yang's avatar
Michael Yang committed
1028
1029
}

1030
1031
func (t *Tensor) Shape() []int {
	shape := make([]int, C.ggml_n_dims(t.t))
Michael Yang's avatar
Michael Yang committed
1032
1033
1034
1035
1036
1037
1038
	for i := range shape {
		shape[i] = t.Dim(i)
	}

	return shape
}

1039
1040
1041
1042
1043
1044
1045
1046
1047
func (t *Tensor) Bytes() (data []byte) {
	if t.sync != nil {
		data = make([]byte, C.ggml_nbytes(t.t))

		t.sync()
		C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
	}

	return
Michael Yang's avatar
Michael Yang committed
1048
1049
}

1050
1051
1052
1053
1054
1055
func (t *Tensor) Floats() (data []float32) {
	if t.sync != nil {
		data = make([]float32, C.ggml_nelements(t.t))

		t.sync()
		C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
Michael Yang's avatar
Michael Yang committed
1056
1057
1058
1059
1060
	}

	return
}

Michael Yang's avatar
Michael Yang committed
1061
1062
1063
1064
1065
1066
func tensorSet[S ~[]E, E byte | float32 | int32](t *Tensor, s S) {
	if len(s) == 0 {
		return
	}
	if int(C.ggml_nbytes(t.t)) != len(s)*binary.Size(s[0]) {
		panic("data size does not match tensor size")
1067
	}
Michael Yang's avatar
Michael Yang committed
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
	C.ggml_backend_tensor_set(t.t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.t))
}

func (t *Tensor) FromBytes(s []byte) {
	tensorSet(t, s)
}

func (t *Tensor) FromFloats(s []float32) {
	tensorSet(t, s)
}

func (t *Tensor) FromInts(s []int32) {
	tensorSet(t, s)
1081
1082
}

Michael Yang's avatar
Michael Yang committed
1083
1084
1085
1086
func (t *Tensor) DType() ml.DType {
	switch t.t._type {
	case C.GGML_TYPE_F32:
		return ml.DTypeF32
Jesse Gross's avatar
Jesse Gross committed
1087
1088
	case C.GGML_TYPE_F16:
		return ml.DTypeF16
1089
1090
1091
1092
	case C.GGML_TYPE_Q8_0:
		return ml.DTypeQ80
	case C.GGML_TYPE_Q4_0:
		return ml.DTypeQ40
Michael Yang's avatar
Michael Yang committed
1093
1094
	case C.GGML_TYPE_I32:
		return ml.DTypeI32
Michael Yang's avatar
Michael Yang committed
1095
1096
	case C.GGML_TYPE_MXFP4:
		return ml.DTypeMXFP4
Michael Yang's avatar
Michael Yang committed
1097
1098
1099
1100
1101
	default:
		return ml.DTypeOther
	}
}

1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
func ggmlDType(dtype ml.DType) uint32 {
	switch dtype {
	case ml.DTypeF32:
		return C.GGML_TYPE_F32
	case ml.DTypeF16:
		return C.GGML_TYPE_F16
	case ml.DTypeQ80:
		return C.GGML_TYPE_Q8_0
	case ml.DTypeQ40:
		return C.GGML_TYPE_Q4_0
	case ml.DTypeI32:
		return C.GGML_TYPE_I32
	case ml.DTypeMXFP4:
		return C.GGML_TYPE_MXFP4
	default:
		panic("unsupported dtype")
	}
}

func (t *Tensor) Cast(ctx ml.Context, dtype ml.DType) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_cast(ctx.(*Context).ctx, t.t, ggmlDType(dtype)),
	}
}

1128
1129
1130
1131
1132
1133
1134
func (t *Tensor) Neg(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_neg(ctx.(*Context).ctx, t.t),
	}
}

Michael Yang's avatar
Michael Yang committed
1135
1136
func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	return &Tensor{
1137
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1138
1139
1140
1141
		t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
	}
}

Michael Yang's avatar
Michael Yang committed
1142
1143
1144
1145
1146
1147
1148
func (t *Tensor) Sub(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_sub(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
	}
}

1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
func (t *Tensor) Repeat(ctx ml.Context, dim, n int) ml.Tensor {
	if dim < 0 || dim >= C.GGML_MAX_DIMS {
		panic("invalid dimension")
	}

	shape := make([]C.int64_t, C.GGML_MAX_DIMS)
	for i := range C.GGML_MAX_DIMS {
		if i == dim {
			shape[i] = C.int64_t(t.Dim(i) * n)
		} else {
			shape[i] = C.int64_t(t.Dim(i))
		}
	}

	tmpl := C.ggml_new_tensor(ctx.(*Context).ctx, t.t._type, C.int(len(shape)), unsafe.SliceData(shape))
	return &Tensor{
		b: t.b,
		t: C.ggml_repeat(ctx.(*Context).ctx, t.t, tmpl),
	}
}

Michael Yang's avatar
Michael Yang committed
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
	if len(s) > 0 {
		return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
	}

	return t
}

func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
	return &Tensor{
1180
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1181
1182
1183
1184
		t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
	}
}

Michael Yang's avatar
Michael Yang committed
1185
func (t *Tensor) Contiguous(ctx ml.Context, shape ...int) ml.Tensor {
1186
1187
1188
1189
	if slices.Contains(shape, -1) {
		inferShape(t, shape)
	}

Michael Yang's avatar
Michael Yang committed
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
	switch len(shape) {
	case 0:
		return &Tensor{
			b: t.b,
			t: C.ggml_cont(ctx.(*Context).ctx, t.t),
		}
	case 1:
		return &Tensor{
			b: t.b,
			t: C.ggml_cont_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
		}
	case 2:
		return &Tensor{
			b: t.b,
			t: C.ggml_cont_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
		}
	case 3:
		return &Tensor{
			b: t.b,
			t: C.ggml_cont_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
		}
	case 4:
		return &Tensor{
			b: t.b,
			t: C.ggml_cont_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
		}
	default:
		panic("unsupported number of dimensions")
Michael Yang's avatar
Michael Yang committed
1218
1219
1220
1221
1222
	}
}

func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	return &Tensor{
1223
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1224
1225
1226
1227
		t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
	}
}

1228
1229
1230
1231
1232
1233
1234
func (t *Tensor) Div(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_div(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
	}
}

1235
1236
1237
1238
1239
// Mulmat performs matrix multiplication between two tensors.
// If t has shape [m, p, ...] and t2 has shape [m, n, ...],
// Mulmat returns a new Tensor with shape [p, n, ...].
//
// Note: this is similar to matmul(t2, t.tranpose(-1, -2)) in other libraries.
Michael Yang's avatar
Michael Yang committed
1240
1241
func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	return &Tensor{
1242
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1243
1244
1245
1246
		t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
	}
}

1247
1248
1249
1250
1251
func (t *Tensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	mul := C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t)
	C.ggml_mul_mat_set_prec(mul, C.GGML_PREC_F32)

	return &Tensor{
1252
		b: t.b,
1253
1254
1255
1256
		t: mul,
	}
}

Michael Yang's avatar
llama4  
Michael Yang committed
1257
1258
1259
1260
1261
1262
1263
func (t *Tensor) MulmatID(ctx ml.Context, t2, ids ml.Tensor) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_mul_mat_id(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, ids.(*Tensor).t),
	}
}

1264
1265
1266
1267
1268
1269
1270
func (t *Tensor) AddID(ctx ml.Context, t2, ids ml.Tensor) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_add_id(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, ids.(*Tensor).t),
	}
}

1271
1272
1273
1274
1275
1276
1277
func (t *Tensor) L2Norm(ctx ml.Context, eps float32) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_l2_norm(ctx.(*Context).ctx, t.t, C.float(eps)),
	}
}

Michael Yang's avatar
Michael Yang committed
1278
func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
Michael Yang's avatar
llama4  
Michael Yang committed
1279
1280
1281
1282
1283
1284
	tt := C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))
	if w != nil {
		tt = C.ggml_mul(ctx.(*Context).ctx, tt, w.(*Tensor).t)
		if b != nil {
			tt = C.ggml_add(ctx.(*Context).ctx, tt, b.(*Tensor).t)
		}
Michael Yang's avatar
Michael Yang committed
1285
1286
	}

Michael Yang's avatar
llama4  
Michael Yang committed
1287
	return &Tensor{b: t.b, t: tt}
Michael Yang's avatar
Michael Yang committed
1288
1289
1290
}

func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
Michael Yang's avatar
llama4  
Michael Yang committed
1291
1292
1293
1294
1295
1296
	tt := C.ggml_rms_norm(ctx.(*Context).ctx, t.t, C.float(eps))
	if w != nil {
		tt = C.ggml_mul(ctx.(*Context).ctx, tt, w.(*Tensor).t)
	}

	return &Tensor{b: t.b, t: tt}
Michael Yang's avatar
Michael Yang committed
1297
1298
}

1299
func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
1300
1301
	if len(shape) != 4 {
		panic("expected 4 dimensions")
1302
1303
	} else if shape[3] != 0 {
		panic("cuda does not support 4d tensors")
Michael Yang's avatar
Michael Yang committed
1304
1305
1306
	}

	return &Tensor{
1307
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1308
1309
1310
1311
		t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
	}
}

1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
// Permute permutes t according to order. Permute panics if the number of dimensions
// in order does not match the number of dimensions in t.
func (t *Tensor) Permute(ctx ml.Context, order ...int) ml.Tensor {
	if len(order) != len(t.Shape()) && len(order) != 4 {
		panic("invalid number of dimensions for permute")
	}

	// ggml_permute requires 4 dimensions so fill in the rest
	for i := len(order); i < 4; i++ {
		order = append(order, i)
Michael Yang's avatar
Michael Yang committed
1322
1323
1324
	}

	return &Tensor{
1325
		b: t.b,
1326
		t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(order[0]), C.int(order[1]), C.int(order[2]), C.int(order[3])),
Michael Yang's avatar
Michael Yang committed
1327
1328
1329
1330
1331
	}
}

func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	return &Tensor{
1332
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1333
1334
1335
1336
1337
1338
		t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
	}
}

func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	return &Tensor{
1339
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1340
1341
1342
1343
		t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
	}
}

1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
// inferShape updates shape in place to automatically set a single -1 dimesion
// based on the input tensor and the other dimensions
func inferShape(t *Tensor, shape []int) {
	total := 1
	for _, dim := range t.Shape() {
		total *= dim
	}

	dim := -1
	for i := range shape {
		switch shape[i] {
		case -1:
			if dim != -1 {
				panic("only one dimension can be inferred")
			}
			dim = i
		case 0:
			panic("dimension cannot be zero")
		default:
			if total%shape[i] != 0 {
				panic("cannot infer dimension")
			}

			total /= shape[i]
		}
	}

	if dim != -1 {
		shape[dim] = total
	}
}

1376
func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
1377
1378
1379
1380
	if slices.Contains(shape, -1) {
		inferShape(t, shape)
	}

Michael Yang's avatar
Michael Yang committed
1381
1382
1383
	switch len(shape) {
	case 1:
		return &Tensor{
1384
			b: t.b,
Michael Yang's avatar
Michael Yang committed
1385
1386
1387
1388
			t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
		}
	case 2:
		return &Tensor{
1389
			b: t.b,
Michael Yang's avatar
Michael Yang committed
1390
1391
1392
1393
			t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
		}
	case 3:
		return &Tensor{
1394
			b: t.b,
Michael Yang's avatar
Michael Yang committed
1395
1396
1397
1398
			t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
		}
	case 4:
		return &Tensor{
1399
			b: t.b,
Michael Yang's avatar
Michael Yang committed
1400
1401
1402
1403
1404
1405
1406
1407
1408
			t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
		}
	default:
		panic("unsupported number of dimensions")
	}
}

func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
	return &Tensor{
1409
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1410
1411
1412
1413
		t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
	}
}

1414
1415
1416
1417
1418
1419
1420
func (t *Tensor) SumRows(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_sum_rows(ctx.(*Context).ctx, t.t),
	}
}

Michael Yang's avatar
Michael Yang committed
1421
1422
func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
	return &Tensor{
1423
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1424
1425
1426
1427
		t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
	}
}

1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
func (t *Tensor) Sin(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_sin(ctx.(*Context).ctx, t.t),
	}
}

func (t *Tensor) Cos(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_cos(ctx.(*Context).ctx, t.t),
	}
}

Michael Yang's avatar
Michael Yang committed
1442
1443
func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
	return &Tensor{
1444
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1445
1446
1447
1448
		t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
	}
}

Michael Yang's avatar
llama4  
Michael Yang committed
1449
1450
1451
1452
1453
1454
1455
func (t *Tensor) Sigmoid(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_sigmoid_inplace(ctx.(*Context).ctx, t.t),
	}
}

Michael Yang's avatar
Michael Yang committed
1456
1457
1458
1459
func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
	switch len(shape) {
	case 1:
		return &Tensor{
1460
			b: t.b,
Michael Yang's avatar
Michael Yang committed
1461
1462
1463
1464
			t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
		}
	case 3:
		return &Tensor{
1465
			b: t.b,
Michael Yang's avatar
Michael Yang committed
1466
1467
1468
1469
1470
1471
1472
			t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
				C.int64_t(shape[0]), C.int64_t(shape[2]),
				C.size_t(shape[1]),
				C.size_t(offset)),
		}
	case 5:
		return &Tensor{
1473
			b: t.b,
Michael Yang's avatar
Michael Yang committed
1474
1475
1476
1477
1478
1479
1480
			t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
				C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
				C.size_t(shape[1]), C.size_t(shape[3]),
				C.size_t(offset)),
		}
	case 7:
		return &Tensor{
1481
			b: t.b,
Michael Yang's avatar
Michael Yang committed
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
			t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
				C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
				C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
				C.size_t(offset)),
		}
	default:
		panic("unsupported number of dimensions")
	}
}

1492
func (t *Tensor) RoPE(ctx ml.Context, positions ml.Tensor, ropeDim int, ropeBase, ropeScale float32, options ...func(*rope.Options)) ml.Tensor {
1493
	// Default options
Michael Yang's avatar
Michael Yang committed
1494
	opts := rope.Options{Factors: &Tensor{}}
1495
1496
1497

	// Apply any provided options
	for _, option := range options {
Michael Yang's avatar
Michael Yang committed
1498
		option(&opts)
1499
1500
	}

Jesse Gross's avatar
Jesse Gross committed
1501
1502
1503
1504
1505
	dequant := t.t
	if C.ggml_is_quantized(t.t._type) {
		dequant = C.ggml_cast(ctx.(*Context).ctx, t.t, C.GGML_TYPE_F32)
	}

Michael Yang's avatar
Michael Yang committed
1506
1507
1508
1509
1510
1511
1512
1513
	var tt *C.struct_ggml_tensor
	if len(opts.MRoPE.Sections) > 0 {
		mropeSections := make([]C.int32_t, 4)
		for i, section := range opts.MRoPE.Sections {
			mropeSections[i] = C.int32_t(section)
		}

		tt = C.ggml_rope_multi(
1514
1515
			ctx.(*Context).ctx,
			dequant,
1516
1517
			positions.(*Tensor).t,
			opts.Factors.(*Tensor).t,
Michael Yang's avatar
Michael Yang committed
1518
			C.int(ropeDim),
Michael Yang's avatar
Michael Yang committed
1519
			unsafe.SliceData(mropeSections),
1520
			C.int(opts.Type),
Michael Yang's avatar
Michael Yang committed
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
			cmp.Or(C.int(opts.YaRN.OriginalContextLength), 128<<10),
			C.float(ropeBase), C.float(ropeScale),
			C.float(opts.YaRN.ExtrapolationFactor),
			cmp.Or(C.float(opts.YaRN.AttentionFactor), 1),
			cmp.Or(C.float(opts.YaRN.BetaFast), 32),
			cmp.Or(C.float(opts.YaRN.BetaSlow), 1),
		)
	} else {
		tt = C.ggml_rope_ext(
			ctx.(*Context).ctx,
			dequant,
			positions.(*Tensor).t,
			opts.Factors.(*Tensor).t,
			C.int(ropeDim), C.int(opts.Type),
			cmp.Or(C.int(opts.YaRN.OriginalContextLength), 128<<10),
			C.float(ropeBase), C.float(ropeScale),
			C.float(opts.YaRN.ExtrapolationFactor),
			cmp.Or(C.float(opts.YaRN.AttentionFactor), 1),
			cmp.Or(C.float(opts.YaRN.BetaFast), 32),
			cmp.Or(C.float(opts.YaRN.BetaSlow), 1),
		)
Michael Yang's avatar
Michael Yang committed
1542
	}
Michael Yang's avatar
Michael Yang committed
1543
	return &Tensor{b: t.b, t: tt}
Michael Yang's avatar
Michael Yang committed
1544
1545
}

1546
1547
1548
1549
1550
1551
1552
func (t *Tensor) IM2Col(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_im2col(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1), true, C.GGML_TYPE_F32),
	}
}

1553
1554
1555
1556
1557
1558
1559
func (t *Tensor) GELU(ctx ml.Context, t2 ...ml.Tensor) ml.Tensor {
	if len(t2) > 0 {
		return &Tensor{
			b: t.b,
			t: C.ggml_geglu_split(ctx.(*Context).ctx, t.t, t2[0].(*Tensor).t),
		}
	}
Michael Yang's avatar
Michael Yang committed
1560
	return &Tensor{
1561
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1562
1563
1564
1565
		t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
	}
}

1566
1567
1568
1569
1570
1571
func (t *Tensor) SILU(ctx ml.Context, t2 ...ml.Tensor) ml.Tensor {
	if len(t2) > 0 {
		return &Tensor{
			b: t.b,
			t: C.ggml_swiglu_split(ctx.(*Context).ctx, t.t, t2[0].(*Tensor).t),
		}
Michael Yang's avatar
Michael Yang committed
1572
	}
Michael Yang's avatar
Michael Yang committed
1573
	return &Tensor{
1574
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1575
1576
1577
1578
		t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
	}
}

1579
1580
1581
1582
1583
1584
1585
func (t *Tensor) RELU(ctx ml.Context, t2 ...ml.Tensor) ml.Tensor {
	if len(t2) > 0 {
		return &Tensor{
			b: t.b,
			t: C.ggml_reglu_split(ctx.(*Context).ctx, t.t, t2[0].(*Tensor).t),
		}
	}
Michael Yang's avatar
Michael Yang committed
1586
1587
1588
1589
1590
1591
	return &Tensor{
		b: t.b,
		t: C.ggml_relu_inplace(ctx.(*Context).ctx, t.t),
	}
}

1592
func (t *Tensor) SILUAlphaLimit(ctx ml.Context, up ml.Tensor, alpha, limit float32) ml.Tensor {
1593
1594
1595
1596
1597
1598
	return &Tensor{
		b: t.b,
		t: C.ggml_swiglu_oai(ctx.(*Context).ctx, t.t, up.(*Tensor).t, C.float(alpha), C.float(limit)),
	}
}

Michael Yang's avatar
Michael Yang committed
1599
1600
func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
	return &Tensor{
1601
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1602
1603
1604
		t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
	}
}
1605

1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
func (t *Tensor) Conv3D(ctx ml.Context, t2 ml.Tensor, c, s0, s1, s2, p0, p1, p2, d0, d1, d2 int) ml.Tensor {
	var tt ml.Tensor = &Tensor{
		b: t.b,
		t: C.ggml_conv_3d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int64_t(c), C.int(s0), C.int(s1), C.int(s2), C.int(p0), C.int(p1), C.int(p2), C.int(d0), C.int(d1), C.int(d2)),
	}

	tt = tt.Reshape(ctx, t.Dim(3)/c, t2.Dim(3)/c)
	return tt
}

Michael Yang's avatar
Michael Yang committed
1616
func (t *Tensor) AvgPool2D(ctx ml.Context, k, s int, p float32) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
1617
1618
	return &Tensor{
		b: t.b,
Michael Yang's avatar
Michael Yang committed
1619
		t: C.ggml_pool_2d(ctx.(*Context).ctx, t.t, C.GGML_OP_POOL_AVG, C.int(k), C.int(k), C.int(s), C.int(s), C.float(p), C.float(p)),
Michael Yang's avatar
Michael Yang committed
1620
1621
1622
	}
}

Michael Yang's avatar
Michael Yang committed
1623
1624
1625
1626
func (t *Tensor) Set(ctx ml.Context, t2 ml.Tensor, offset int, strides ...int) ml.Tensor {
	var tt *C.struct_ggml_tensor
	switch len(strides) {
	case 0:
Michael Yang's avatar
Michael Yang committed
1627
		tt = C.ggml_set_1d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.size_t(offset))
Michael Yang's avatar
Michael Yang committed
1628
	case 1:
Michael Yang's avatar
Michael Yang committed
1629
		tt = C.ggml_set_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.size_t(offset), C.size_t(strides[0]))
Michael Yang's avatar
Michael Yang committed
1630
1631
1632
1633
1634
1635
1636
	default:
		panic("unsupported number of dimensions")
	}

	return &Tensor{b: t.b, t: tt}
}

1637
func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask, sinks ml.Tensor, scale float64) ml.Tensor {
1638
1639
1640
1641
1642
	var kqMask *C.struct_ggml_tensor
	if mask != nil {
		kqMask = mask.(*Tensor).t
	}

1643
1644
1645
	query := t.Permute(ctx, 0, 2, 1, 3)
	key = key.Permute(ctx, 0, 2, 1, 3)

1646
1647
	if t.b.flashAttention {
		value = value.Permute(ctx, 0, 2, 1, 3)
1648

1649
		kqv := C.ggml_flash_attn_ext(ctx.(*Context).ctx, query.(*Tensor).t, key.(*Tensor).t, value.(*Tensor).t, kqMask, C.float(scale), 0, 0)
1650
1651
1652
		if sinks != nil {
			C.ggml_flash_attn_ext_add_sinks(kqv, sinks.(*Tensor).t)
		}
1653
1654
1655
1656
1657
1658
1659
1660
		C.ggml_flash_attn_ext_set_prec(kqv, C.GGML_PREC_F32)
		return &Tensor{b: t.b, t: kqv}
	} else {
		kq := key.MulmatFullPrec(ctx, query)
		kq = &Tensor{
			b: t.b,
			t: C.ggml_soft_max_ext(ctx.(*Context).ctx, kq.(*Tensor).t, kqMask, C.float(scale), 0),
		}
1661
1662
1663
		if sinks != nil {
			C.ggml_soft_max_add_sinks(kq.(*Tensor).t, sinks.(*Tensor).t)
		}
1664
1665
1666
1667

		kqv := value.Mulmat(ctx, kq)
		return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	}
1668
}
1669
1670
1671
1672
1673
1674
1675

func (t *Tensor) Duplicate(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_dup(ctx.(*Context).ctx, t.t),
	}
}
Michael Yang's avatar
llama4  
Michael Yang committed
1676
1677
1678
1679
1680
1681
1682

func (t *Tensor) TopK(ctx ml.Context, k int) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_top_k(ctx.(*Context).ctx, t.t, C.int(k)),
	}
}
1683
1684
1685
1686
1687
1688
1689

func (t *Tensor) Argsort(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_argsort(ctx.(*Context).ctx, t.t, C.GGML_SORT_ORDER_ASC),
	}
}
Michael Yang's avatar
Michael Yang committed
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728

func (t *Tensor) Mean(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_mean(ctx.(*Context).ctx, t.t),
	}
}

func (t *Tensor) Variance(ctx ml.Context) ml.Tensor {
	return t.Add(ctx, t.Mean(ctx).Scale(ctx, -1)).
		Sqr(ctx).
		SumRows(ctx).
		Scale(ctx, 1/float64(t.Dim(0)))
}

func (t *Tensor) Stddev(ctx ml.Context) ml.Tensor {
	return t.Variance(ctx).Sqrt(ctx)
}

func (t *Tensor) Sqr(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_sqr(ctx.(*Context).ctx, t.t),
	}
}

func (t *Tensor) Sqrt(ctx ml.Context) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_sqrt(ctx.(*Context).ctx, t.t),
	}
}

func (t *Tensor) Clamp(ctx ml.Context, min, max float32) ml.Tensor {
	return &Tensor{
		b: t.b,
		t: C.ggml_clamp(ctx.(*Context).ctx, t.t, C.float(min), C.float(max)),
	}
}