ggml.go 14.8 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
package ggml

// #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
// #include <stdlib.h>
// #include <stdint.h>
// #include "ggml.h"
// #include "ggml-cpu.h"
// #include "ggml-backend.h"
import "C"

import (
	"fmt"
	"io"
	"log/slog"
	"os"
	"sync"
	"unsafe"

	"github.com/ollama/ollama/format"
	fs "github.com/ollama/ollama/fs/ggml"
	"github.com/ollama/ollama/ml"
	"golang.org/x/sync/errgroup"

24
	ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
Michael Yang's avatar
Michael Yang committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
)

type device struct {
	d *C.struct_ggml_backend_device
}

func (d device) LogValue() slog.Value {
	var free, total uint64
	C.ggml_backend_dev_memory(d.d, (*C.size_t)(&free), (*C.size_t)(&total))

	kind := "unknown"
	switch C.ggml_backend_dev_type(d.d) {
	case C.GGML_BACKEND_DEVICE_TYPE_CPU:
		kind = "cpu"
	case C.GGML_BACKEND_DEVICE_TYPE_GPU:
		kind = "gpu"
	case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
		kind = "accel"
	}

	return slog.GroupValue(
		slog.String("name", C.GoString(C.ggml_backend_dev_name(d.d))),
		slog.String("description", C.GoString(C.ggml_backend_dev_description(d.d))),
		slog.String("kind", kind),
		slog.String("free", format.HumanBytes2(free)),
		slog.String("total", format.HumanBytes2(total)),
	)
}

var devices = sync.OnceValue(func() []device {
	ggml.OnceLoad()

	s := make([]device, C.ggml_backend_dev_count())
	for i := range s {
		s[i] = device{C.ggml_backend_dev_get(C.size_t(i))}
	}

	return s
})

type Backend struct {
	meta       *fs.GGML
	cpus, gpus []Context
	tensors    map[string]*Context
}

func New(r *os.File) (ml.Backend, error) {
	meta, n, err := fs.Decode(r, -1)
	if err != nil {
		return nil, err
	}

	slog.Info(
		"",
		"architecture", meta.KV().Architecture(),
		"file_type", meta.KV().FileType(),
		"name", meta.KV().String("general.name"),
		"description", meta.KV().String("general.description"),
		"num_tensors", len(meta.Tensors().Items()),
		"num_key_values", len(meta.KV()),
	)

	var cpus, gpus []Context
	for _, d := range devices() {
		switch C.ggml_backend_dev_type(d.d) {
		case C.GGML_BACKEND_DEVICE_TYPE_CPU,
			C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
			slog.Info("cpu", "device", d)
			cpus = append(cpus, Context{
				ctx: C.ggml_init(C.struct_ggml_init_params{
					mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
					no_alloc: true,
				}),
				backend: C.ggml_backend_dev_init(d.d, nil),
			})
		case C.GGML_BACKEND_DEVICE_TYPE_GPU:
			slog.Info("gpu", "device", d)
			gpus = append(gpus, Context{
				ctx: C.ggml_init(C.struct_ggml_init_params{
					mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
					no_alloc: true,
				}),
				backend: C.ggml_backend_dev_init(d.d, nil),
			})
		}
	}

	ctxFunc := func(s []Context) (*Context, error) {
		for _, e := range s {
			return &e, nil
		}

		return nil, fmt.Errorf("no devices available")
	}

	tensors := make(map[*fs.Tensor]*Context, len(meta.Tensors().Items()))
	for _, t := range meta.Tensors().Items() {
		c, err := ctxFunc(append(gpus, cpus...))
		if err != nil {
			return nil, err
		}

		func() {
			tt := C.ggml_new_tensor(c.ctx, t.Kind, C.int(len(t.Shape)), (*C.int64_t)(unsafe.Pointer(&t.Shape[0])))

			cname := C.CString(t.Name)
			defer C.free(unsafe.Pointer(cname))
			C.ggml_set_name(tt, cname)

			tensors[t] = c
		}()
	}

	for _, b := range append(gpus, cpus...) {
		C.ggml_backend_alloc_ctx_tensors(b.ctx, b.backend)
	}

	sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))

	var g errgroup.Group
	for t, c := range tensors {
		g.Go(func() error {
			bts := make([]byte, t.Size())
			n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), bts)
			if err != nil {
				return err
			}

			if n != int(t.Size()) {
				return fmt.Errorf("expected %d bytes, got %d", t.Size(), n)
			}

			cname := C.CString(t.Name)
			defer C.free(unsafe.Pointer(cname))

			C.ggml_backend_tensor_set(C.ggml_get_tensor(c.ctx, cname), unsafe.Pointer(&bts[0]), 0, C.size_t(n))
			return nil
		})
	}

	if err := g.Wait(); err != nil {
		return nil, err
	}

	return &Backend{
		meta: meta,
		cpus: cpus,
		gpus: gpus,
	}, nil
}

func init() {
	ml.RegisterBackend("ggml", New)
}

func (b *Backend) Config() ml.Config {
	return b.meta.KV()
}

func (b *Backend) Get(name string) ml.Tensor {
	cname := C.CString(name)
	defer C.free(unsafe.Pointer(cname))

	for _, c := range append(b.gpus, b.cpus...) {
		if t := C.ggml_get_tensor(c.ctx, cname); t != nil {
			return &Tensor{t: t}
		}
	}

	return nil
}

func (b *Backend) NewContext() ml.Context {
	nodes := max(8192, len(b.meta.Tensors().Items())*5)
	c := C.ggml_init(C.struct_ggml_init_params{
200
201
		mem_buffer: nil,
		mem_size:   C.size_t(nodes)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(nodes), false),
Michael Yang's avatar
Michael Yang committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
		no_alloc:   true,
	})

	backends := make([]*C.struct_ggml_backend, len(b.gpus)+len(b.cpus))
	bufts := make([]*C.struct_ggml_backend_buffer_type, len(b.gpus)+len(b.cpus))
	for i, c := range append(b.gpus, b.cpus...) {
		backends[i] = c.backend
		bufts[i] = C.ggml_backend_get_default_buffer_type(c.backend)
	}

	return &Context{
		ctx:     c,
		backend: backends[0],
		nodes:   nodes,
		sched: C.ggml_backend_sched_new(
			(*C.ggml_backend_t)(unsafe.Pointer(&backends[0])),
			(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&bufts[0])),
			C.int(len(backends)),
			C.size_t(nodes),
			true,
		),
	}
}

type Context struct {
	ctx     *C.struct_ggml_context
	backend *C.struct_ggml_backend

	sched *C.struct_ggml_backend_sched
	graph *C.struct_ggml_cgraph
	nodes int
}

func (c *Context) Forward(t ml.Tensor) {
	if c.graph == nil {
		c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.nodes), false)
	}

	C.ggml_build_forward_expand(c.graph, t.(*Tensor).t)
}

243
func (c *Context) Compute(tensors ...ml.Tensor) {
Michael Yang's avatar
Michael Yang committed
244
245
	C.ggml_backend_sched_graph_compute_async(c.sched, c.graph)

246
247
248
249
250
251
252
	needSync := true
	sync := func() {
		if needSync {
			C.ggml_backend_sched_synchronize(c.sched)
			needSync = false
		}
	}
Michael Yang's avatar
Michael Yang committed
253

254
255
256
	for _, t := range tensors {
		if C.ggml_nbytes(t.(*Tensor).t) > 0 {
			t.(*Tensor).sync = sync
257
258
		}
	}
Michael Yang's avatar
Michael Yang committed
259
260
}

Jesse Gross's avatar
Jesse Gross committed
261
262
263
264
func (c *Context) MaxTensors() int {
	return c.nodes
}

265
266
267
268
269
270
271
272
273
func shapeToGGML(shape []int) *C.int64_t {
	sh := make([]C.int64_t, len(shape))
	for i, s := range shape {
		sh[i] = (C.int64_t)(s)
	}

	return &sh[0]
}

Michael Yang's avatar
Michael Yang committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
	if len(shape) < 1 || len(shape) > 4 {
		panic("unsupported number of dimensions")
	}

	for _, dim := range shape {
		if dim < 1 {
			panic("invalid shape")
		}
	}

	var t *C.struct_ggml_tensor
	switch dtype {
	case ml.DTypeF32:
288
		t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F32, C.int(len(shape)), shapeToGGML(shape))
Jesse Gross's avatar
Jesse Gross committed
289
290
	case ml.DTypeF16:
		t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F16, C.int(len(shape)), shapeToGGML(shape))
Michael Yang's avatar
Michael Yang committed
291
	case ml.DTypeI32:
292
		t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_I32, C.int(len(shape)), shapeToGGML(shape))
Michael Yang's avatar
Michael Yang committed
293
294
295
296
297
298
299
300
301
302
303
304
	default:
		panic("unsupported dtype")
	}

	b := C.ggml_backend_alloc_buffer(c.backend, C.ggml_nbytes(t))
	C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
	C.ggml_set_zero(t)
	return &Tensor{t: t}
}

func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype uint32) (ml.Tensor, error) {
	n := len(s)
305
306
307
308
309
310
311

	if n == 0 {
		var shape C.int64_t = 0
		t := C.ggml_new_tensor(ctx.ctx, dtype, 1, &shape)
		return &Tensor{t: t}, nil
	}

Michael Yang's avatar
Michael Yang committed
312
313
314
315
316
317
318
319
	for _, v := range shape {
		n /= v
	}

	if n != 1 {
		return nil, fmt.Errorf("invalid shape %v for %d elements", shape, len(s))
	}

320
	t := C.ggml_new_tensor(ctx.ctx, dtype, C.int(len(shape)), shapeToGGML(shape))
Michael Yang's avatar
Michael Yang committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
	b := C.ggml_backend_alloc_buffer(ctx.backend, C.ggml_nbytes(t))
	C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
	C.ggml_backend_tensor_set(t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t))
	return &Tensor{t: t}, nil
}

func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
	return fromSlice(c, s, shape, C.GGML_TYPE_F32)
}

func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
	return fromSlice(c, s, shape, C.GGML_TYPE_I32)
}

335
func (c *Context) Close() {
336
337
338
339
	if c != nil {
		C.ggml_backend_sched_free(c.sched)
		C.ggml_free(c.ctx)
	}
Michael Yang's avatar
Michael Yang committed
340
341
342
343
}

type Tensor struct {
	t    *C.struct_ggml_tensor
344
	sync func()
Michael Yang's avatar
Michael Yang committed
345
346
347
348
349
350
351
352
353
354
}

func (t *Tensor) LogValue() slog.Value {
	return slog.GroupValue(
		slog.String("name", C.GoString(C.ggml_get_name(t.t))),
		slog.String("type", C.GoString(C.ggml_type_name(t.t._type))),
		slog.Any("shape", t.Shape()),
	)
}

355
356
func (t *Tensor) Dim(n int) int {
	return int(t.t.ne[n])
Michael Yang's avatar
Michael Yang committed
357
358
}

359
360
func (t *Tensor) Stride(n int) int {
	return int(t.t.nb[n])
Michael Yang's avatar
Michael Yang committed
361
362
}

363
364
func (t *Tensor) Shape() []int {
	shape := make([]int, C.ggml_n_dims(t.t))
Michael Yang's avatar
Michael Yang committed
365
366
367
368
369
370
371
	for i := range shape {
		shape[i] = t.Dim(i)
	}

	return shape
}

372
373
374
375
376
377
378
379
380
func (t *Tensor) Bytes() (data []byte) {
	if t.sync != nil {
		data = make([]byte, C.ggml_nbytes(t.t))

		t.sync()
		C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
	}

	return
Michael Yang's avatar
Michael Yang committed
381
382
}

383
384
385
386
387
388
func (t *Tensor) Floats() (data []float32) {
	if t.sync != nil {
		data = make([]float32, C.ggml_nelements(t.t))

		t.sync()
		C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
Michael Yang's avatar
Michael Yang committed
389
390
391
392
393
394
395
396
397
	}

	return
}

func (t *Tensor) DType() ml.DType {
	switch t.t._type {
	case C.GGML_TYPE_F32:
		return ml.DTypeF32
Jesse Gross's avatar
Jesse Gross committed
398
399
	case C.GGML_TYPE_F16:
		return ml.DTypeF16
Michael Yang's avatar
Michael Yang committed
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
	case C.GGML_TYPE_I32:
		return ml.DTypeI32
	default:
		return ml.DTypeOther
	}
}

func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	return &Tensor{
		t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
	}
}

func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
	if len(s) > 0 {
		return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
	}

	return t
}

func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
	return &Tensor{
		t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
	}
}

func (t *Tensor) Contiguous(ctx ml.Context) ml.Tensor {
	return &Tensor{
		t: C.ggml_cont(ctx.(*Context).ctx, t.t),
	}
}

func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	return &Tensor{
		t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
	}
}

func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	return &Tensor{
		t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
	}
}

445
446
447
448
449
450
451
452
453
func (t *Tensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	mul := C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t)
	C.ggml_mul_mat_set_prec(mul, C.GGML_PREC_F32)

	return &Tensor{
		t: mul,
	}
}

Michael Yang's avatar
Michael Yang committed
454
455
456
457
458
459
460
461
462
463
464
465
466
func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
	tt := (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
	if b != nil {
		tt = tt.Add(ctx, b)
	}

	return tt
}

func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
	return (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
}

467
func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
	if len(shape) != 4 {
		panic("expected 4 dimensions")
	}

	return &Tensor{
		t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
	}
}

func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
	if len(shape) != 4 {
		panic("expected 4 dimensions")
	}

	return &Tensor{
		t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
	}
}

func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	return &Tensor{
		t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
	}
}

func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
	return &Tensor{
		t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
	}
}

499
func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
	switch len(shape) {
	case 1:
		return &Tensor{
			t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
		}
	case 2:
		return &Tensor{
			t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
		}
	case 3:
		return &Tensor{
			t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
		}
	case 4:
		return &Tensor{
			t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
		}
	default:
		panic("unsupported number of dimensions")
	}
}

func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
	return &Tensor{
		t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
	}
}

func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
	return &Tensor{
		t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
	}
}

func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
	return &Tensor{
		t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
	}
}

540
func (t *Tensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
	if len(shape) != 4 {
		panic("expected 4 dimensions")
	}

	return &Tensor{
		t: C.ggml_unpad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
	}
}

func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
	switch len(shape) {
	case 1:
		return &Tensor{
			t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
		}
	case 3:
		return &Tensor{
			t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
				C.int64_t(shape[0]), C.int64_t(shape[2]),
				C.size_t(shape[1]),
				C.size_t(offset)),
		}
	case 5:
		return &Tensor{
			t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
				C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
				C.size_t(shape[1]), C.size_t(shape[3]),
				C.size_t(offset)),
		}
	case 7:
		return &Tensor{
			t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
				C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
				C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
				C.size_t(offset)),
		}
	default:
		panic("unsupported number of dimensions")
	}
}

const (
	ropeTypeNorm C.int = iota
)

func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim uint32, ropeBase, ropeScale float32) ml.Tensor {
	if ropeFactors == nil {
		ropeFactors = &Tensor{}
	}

Jesse Gross's avatar
Jesse Gross committed
591
592
593
594
595
	dequant := t.t
	if C.ggml_is_quantized(t.t._type) {
		dequant = C.ggml_cast(ctx.(*Context).ctx, t.t, C.GGML_TYPE_F32)
	}

Michael Yang's avatar
Michael Yang committed
596
597
	return &Tensor{
		t: C.ggml_rope_ext(
Jesse Gross's avatar
Jesse Gross committed
598
			ctx.(*Context).ctx, dequant, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
Michael Yang's avatar
Michael Yang committed
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
			C.int(ropeDim),
			131072,       // YaRN n_ctx_train
			ropeTypeNorm, // ROPE_TYPE_NORM
			C.float(ropeBase),
			C.float(ropeScale),
			0.,  // YaRN ext_factor
			1.,  // YaRN attn_factor
			32., // YaRN beta_fast
			1.,  // YaRN beta_slow
		),
	}
}

func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
	return &Tensor{
		t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
	}
}

func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
	return &Tensor{
		t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
	}
}

func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
	return &Tensor{
		t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
	}
}